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We report on the nonlinear tunneling effects of spatial solitons of the generalized nonlinear Schrédinger
equation with distributed coefficients in an external harmonic potential. By using the homogeneous balance
principle and the F-expansion technique we find the spatial bright and dark soliton solutions. We then display
tunneling effects of such solutions occurring under special conditions; specifically when the spatial solitons
pass unchanged through the potential barriers and wells affected by special choices of the diffraction and/or the
nonlinearity coefficients. Our results show that the solitons display tunneling effects not only when passing
through the nonlinear potential barriers or wells but also when passing through the diffractive barriers or wells.
During tunneling the solitons may also undergo a controllable compression.

DOL: 10.1103/PhysRevE.81.056604

I. INTRODUCTION

Spatial solitary waves have been the subject of intense
theoretical and experimental studies in recent years [1,2].
Spatial solitons—localized pulses or bounded self-guided
beams in space—evolve from a nonlinear (NL) change in the
refractive index of material induced by the distribution of
light intensity. When the combined effects of refractive non-
linearity and beam diffraction exactly compensate each other,
the beam propagates without change in its shape and is said
to be self-trapped. NL effects responsible for the formation
of a spatial soliton are, in general, Kerr-like; they induce a
local self-focusing index change directly proportional to the
light intensity. In this case the paraxial wave equation gov-
erning the pulse evolution becomes the cubic NL
Schrodinger equation (NLSE) for the complex envelope of
the electric field. In (1+1) dimensions [(1+1)D] two distinct
types of stable localized solutions are supported by the
NLSE, the bright, and the dark solitons.

Recently various forms of NLSE have been studied in
Refs. [3-5]. The NL compression of chirped solitary waves
and the quasi solitonic phase modulation or the gain or loss
terms have been discussed in detail [3]. Soliton solutions [4],
a broad class of self-similar solutions describing both bright
and dark solitary waves [5] and periodic solutions [6], were
obtained. Generally speaking spatial solitons depicted by the
NLSE in (1+1)D with constant coefficients can propagate
without change. An important question is how the shape and
the width of solitons change when the propagation is in a
Kerr-like medium with varying coefficients of diffraction,
nonlinearity, gain or loss, and an external harmonic potential.
Varied behavior is observed including instabilities and beam
collapse in more than one transverse dimension. Also various
NLSE models can be used to design novel dispersion-
managed transmission systems [7,8].

The tunneling effects of spatial solitons governed by the
NLSE have been less investigated until now. In 1978 Newell
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predicted the tunneling effect which exists in NL media [9].
The concept of the NL tunneling effect originates from the
wave equations that stem from the NL dispersion relation.
Research has shown that the soliton can pass lossless through
the barrier under special conditions which depend on the
ratio between the solitonic amplitude and the height of the
barrier [ 10-12]. Solitonic tunneling may create a new field of
applications of spatial solitons as the tunneling effect makes
it possible to design new kinds of all-optical switches and
logic circuits.

In this paper closed-form solutions to the NLSE with vari-
able coefficients in an external harmonic potential are ob-
tained by employing the homogeneous balance principle and
the F-expansion technique. We demonstrate that the propa-
gation of spatial solitons with varying diffraction, nonlinear-
ity and the external potential can simply be interpreted as a
tunneling through the barriers and wells produced by the
changing coefficients. After passing through a barrier the
soliton reverts to its original shape regardless of the size of
the disturbance caused by the barrier. For the barriers con-
sidered no radiation emanating from the barrier could be de-
tected.

The paper is arranged as follows. In Sec. II we briefly
describe and apply the homogeneous balance principle and
the F-expansion technique to the NLSE with variable coeffi-
cients in a harmonic potential to obtain solitonic solutions. In
Sec. IIT several NL tunneling examples are considered. In
particular some special conditions on the potential barriers
and wells are discussed. Finally a short summary is pre-
sented.

II. SOLITARY SOLUTIONS

The generalized NLSE in (1+1)D with variable coeffi-
cients and an external harmonic potential is given by [6,13]

i% + %ﬁ(t)% + x(0)ulul? + %V(t)xzu —iF@u=0, (1)

where u(t,x) is the complex envelope of the electrical field in
the moving frame, ¢ is the normalized distance of propaga-
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tion, and x is the normalized coordinate in the transverse
direction. The function B(r) represents the diffraction coeffi-
cient, x() is the coefficient of nonlinearity, I'(¢) is the gain or
loss coefficient, and V(¢) is the coefficient of the harmonic
potential, all of which can be controlled and manipulated by
the choice of media. It is worth mentioning that the same
equation, but with the ¢ coordinate interpreted as time and
with B=1, is known as the (1+1)D Gross-Pitacvskii equa-
tion. It describes the evolution of the wave function of the
Bose-Einstein condensate and can also develop solitary-
wave solutions [14].

In order to solve the NL partial differential Eq. (1) and to
obtain solitary solutions, we look for the solution in the form

[15]
u(t,x) = A(t,x)eB® (2)

where the amplitude A=f,(1)F(0)+f_;()F'(6) and the
phase B=a(f)x*>+b(t)x+e(1) are real functions of their argu-
ments. F(6) is the Jacobi elliptic function (JEF), which is the
solution of an ordinary NL differential equation (dF/d6)*
=co+c,F?+c, F* (here ¢, ¢,, and ¢, are real constants related
to the elliptic modulus of JEFs, see Table I of Refs. [6,16]),
and the traveling variable is of the form 0=k(1)x+ (1) + 6,.
Using the same method as in Refs. [6,16] and the same pro-
cedure of solution, we obtain the traveling-wave solution of
Eq. (1):

u=f10[F(0) + S@F_l(ﬂ)}exp{i(ax2+bx+e)
4

+ ft (r- aﬁ)dt] , (3)
0

where
0=ko exp(=2[aBdi)x—bok,[ B exp(—4 [yaBdr)di+ 6, e
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=0,+1,  e=3(coki-b2)[LB exp(-4[hapdrdi+ey, b
=b, exp(—2[haBdr), and a(r) is the chirp function. Here all
symbols with subscript O are the initial values of the corre-
sponding parameters. The coefficient of nonlinearity, x(z), is
expressed in terms of the other coefficients B(z), I'(¢), and
a(r): )(:—(kgc4/f%0)ﬂ exp[-2[4(I" +aB)dt]. This equation can
be conveniently understood as an integrability condition on
Eq. (1):

1dp _1dx

Ga =2(T +ap). (4)

Likewise the chirp parameter a(7), the diffraction coefficient
B(t), and the coefficient of the harmonic potential V(z) can-
not be arbitrary simultaneously. In fact a(r) is determined
from the following Riccati equation:

da 1
— =-2Ba*+-V. 5
I Ba *+3 (5)

In general Eq. (1) is a nonintegrable system. It is noted that,
if one chooses a(r)=0, from Eq. (5) one obtains V(¢)=0.
Equation (1) then becomes the standard NLSE with variable
coefficients; hence a(¢) # 0 in this paper.

The solutions to Eq. (1) can exist only under the condi-
tions specified in Egs. (4) and (5); the coefficients B(z), x(1),
V(t), and I'(r) cannot be all chosen independently. In accor-
dance with the Table I of Refs. [6,16], by choosing e=0 and
m=1, and under the conditions specified in Egs. (4) and (5),
we obtain interesting single bright soliton (BS) and dark soli-
ton (DS) solutions of the form:

uBS =110 sech(ﬁ)exp{i{ax2+bo exp(—Zf aﬂdt>x+%(k§—b(2))f Bexp<—4f aﬂdt)dt+eo}+f (F—a,B)dt}, (6)
0 0 0 0

uds = fio tanh(ﬂ)exp{i{ax2+b0 exp(— 2f aﬁdt)x—%(2k§+b%)f ﬁexp<—4f a[::’dt)dt+e0] +f (F—a,B)dt}, (7)
0 0 0

0

where O=ko[exp(=2[(aBdi)x—b,[B exp(—4[yaBdr)di—x,] and 6y=—kox.

III. GENERAL NL TUNNELING EFFECTS

Recently, based upon the NLSE (1) with variable coeffi-
cients in a gainless medium and without an external poten-
tial, the tunneling effect of BSs has been analyzed by Serkin
et al. [10]. Their results display the process of NL tunneling
of a BS through a strong NL thin film barrier, which exhibits
jumplike nonadiabatic evolution and eventually leads to the
soliton “fission reaction.” Yang confirmed, using Eq. (1)
without an external potential, that an optical pulse can be
compressed by NL barriers [11]. Also Wang discussed the

NL tunneling effect in Eq. (1) under the assumption B(¢)
=1 and showed that BS and DS similarly can pass through
the NL barriers or wells [12].

We explore the general NL tunneling effect using the
complete Eq. (1) including diffractive (or dispersive) poten-
tial barriers and wells. As mentioned above, the solutions to
the generalized NLSE can be categorized in terms of arbi-
trary functions, B(z), x(t), V(t), and I'(¢). We have freedom in
selecting three of these functions independently in accor-
dance with some actual physical requirements. The idea is to
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FIG. 1. (Color online) Comparison of tunneling effects for the
propagation of BSs and DSs through potential barriers (top row)
with the propagation through potential wells (bottom row). Here x
is the transverse variable and ¢ is the propagation variable. The
barriers (wells) are formed using the diffraction coefficient B(z).
The system parameters are =5, =8, a(=0.02, and 7y=2. BS is at
the left and DS is at the right. Other parameters are fjo=ko=1, by
=0, and x(=0.

make such choices that display tunneling effects of spatial
solitons. By tunneling we mean the propagation of solitons
across regions in which deliberate changes in the diffraction
coefficient and the coefficient of nonlinearity are introduced
such that the solitons emerge without any change.

In order to understand further the dynamical behavior of
NL tunneling in Egs. (6) and (7) we consider the following
two examples, namely, two possibilities for the system coef-
ficients: (1) the system has a diffraction potential barrier
(well); i.e., the diffraction coefficient B(r) is chosen as B(r)
=Bye”"" =\ sech?’[ 5(t—1,)], while x(f)=1. (2) The system
has a nonlinearity potential barrier (well); i.e., the coefficient
of nonlinearity is chosen as x(t)=x,e™"" = \ sech’[ 5(t—1,)],
while B(r)=1. Here the positive or the negative sign denotes
the barrier or the well. Also N represents the barrier’s ampli-
tude, 7 is the parameter relating to the barrier’s width, #,
marks the position of the barrier, and r is a decay parameter.
The coefficients are set such that the resulting tunneling
structures are stable and do not radiate, while still allowing
for the analytical treatment of equations.

A. Specific NL tunneling effects

Now we consider the tunneling effects of a solitary wave
with the parameters chosen as follows: the constant chirp
a(t)=ay (ap>0), B(£)=1=\ sech’[7(t—1,)] (namely, r=0
and By=1) and x(¢)=1. Then from the constraint conditions
of Egs. (4) and (5) we find the coefficient of the external
harmonic potential V() and the gain coefficient I'(r):
V(r)=4a3{1 =\ sech’[7(t—1,)]} and

['(1) = —ag(1 = X sech’[ (= 1,)]) = N9 sech’[ 5(t — 1,)]
Xtanh[ 7(r — 1,) J{1 * X\ sech?[ 7(t - t,)]}.

In Fig. 1 a comparison is presented of the propagation of
BS and DS through a potential barrier with propagation
through a potential well for the case of the diffraction barrier.
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FIG. 2. (Color online) The change in the external harmonic
potential coefficient V(¢) and the gain coefficient I'(r) along distance
t. The system parameters are A=5, 7=8, ap=1, and t,=2. The
potential barrier is at the left and the potential well at the right.

When the BS passes through the diffraction barrier, it van-
ishes and a valley is formed, while the DS forms a channel in
the background near r=1,; after the tunneling the solitons are
restored to their original shapes. Conversely, when the bright
or the dark soliton crosses the diffraction well, the intensity
of the soliton grows and forms a peak; afterwards it again
recovers its original shape. Please note that, when the soliton
passes through the diffraction potential barrier (well), the
amplitude decreases slightly.

Figure 2 illustrates the profiles of the coefficient of the
external harmonic potential V(¢) and the gain coefficient I'(z)
along the propagation distance ¢. From Fig. 2 it is noted that
the harmonic coefficient V() forms a potential barrier or a
well at =1, which results in the corresponding change in the
gain coefficient I'(r) near t=1,. For the barrier the gain coef-
ficient I'(¢) forms a concave part in the vicinity of r=t, and
then forms a convex part (see the left part of Fig. 2). For the
potential well the reverse occurs (see the right part of Fig. 2).

We consider next solitary waves passing through a
potential barrier (well) formed by the nonlinearity when
a(t)=ag tanh(2apt)  (ap>0), x(£)=1=%\ sech?[ 7(t—1,)]
(namely, r=0 and x,=1), and pB(r)=1. From Egs.
(4) and (5) we obtain the other coefficients:

I'(r) = — a, tanh(2ayt) = A7 SCChz[ 7t —10)]
Xtanh[ (- 1) J{1 = X sech®[ 7(t — 1,) ]}

and V(r)=4a}. Figure 3 depicts the effects of tunneling.
When the soliton crosses the barrier, the intensity of the
pulse decays and becomes a gully with a bank; afterwards
the soliton is restored to its original shape. When the soliton
crosses a well, at first it produces a peak, then plunges into a
ravine and in the end recovers a peak; finally the soliton
propagates with its original shape. It is noted that the pulse
forms two adjacent banks or peaks.

An analysis of Figs. 1 and 3 shows that, when the NLSE
solitons pass through the two types of potential barriers, the
pulse undergoes tunneling phenomenon; the intensity of the
soliton grows or declines within the barrier, but in the end
the solitons pass through unchanged. We could not detect
any radiation emanating from the barrier region. Also this
tunneling effect has nothing to do with the loss or gain in
media. We have reported similar phenomena in [6], where
we demonstrated lossless scattering off a diffractive wall
as well as a snakelike propagation through combined
t-dependent diffraction and nonlinearity coefficients.
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FIG. 3. (Color online) Intensity evolution during the tunneling
effect through the barrier (upper row) or the well (lower row)
formed by the nonlinearity coefficient. The system parameters have
the values A=5, 7=8, a(=0.02, and #y=2. BS is at the left and DS
at the right. Other parameter are f)y=ky=1, by=0, and x,=0.

B. NL tunneling compression

Finally we find that the pulse can be compressed when the
soliton passes through the barriers of diffraction or nonlin-
earity of special form. This presents a potentially important
method for an efficient compression of solitons. We consider
a system with decaying nonlinearity and with a diffraction
barrier riding on a decaying exponential of the form: B(z)
=Bye”"" =\ sech?[ 7(t—1,)], T'(t)=0 and x(¢)=xoe™"", where r
(>0), By (>0), and x, (>0) are the constant parameters of
the system. Figure 4 presents the evolution of the soliton
pulse at different distances with the diffraction barrier on an
exponential. From Fig. 4 it can be seen that after passing the
barrier the soliton is compressed about =7, and then it
propagates unchanged. This means that, when the pulse
passes through the dispersion barrier (well) with an exponen-
tial decay of coefficients, it can be compressed to a desired
extent by the choice of the barrier (well) parameters.

IV. CONCLUSIONS

In conclusion we have analyzed the tunneling effects of
spatial solitons passing through the potential barriers and
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FIG. 4. (Color online) Evolution of a pulse while tunneling (top
row) and the pulse compression (bottom row) at distances ¢
=1.8,2.2, respectively. The system parameters have values A\=2,
n=4, r=0.02, and 7,=2. BS is at the left and DS at the right. Other
parameters are fo=ko=1, by=0, and x(=0.

wells formed by the coefficients of diffraction and nonlinear-
ity. By using the homogeneous balance principle and the
F-expansion technique we introduced the spatial bright and
dark soliton solutions that are then tunneled through the bar-
riers and wells of diffraction and nonlinearity. Our results
show that the solitons peak or form valleys as they pass
through these potential barriers; however, there is no relation
of these phenomena to the loss or gain in media. No radia-
tion is detected after solitons tunnel through the barriers. It is
significant that the spatial solitons propagate undeformed in
media with such barriers. It is also shown that the compres-
sion of solitons to an extent desired can be achieved by pass-
ing them through appropriately chosen barriers and wells
placed atop diffraction and nonlinearity coefficients of expo-
nential decay.
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