
Stability and dynamics of two-soliton molecules

U. Al Khawaja
Physics Department, United Arab Emirates University, P.O. Box 17551, Al-Ain, United Arab Emirates

�Received 4 March 2010; published 7 May 2010�

The problem of soliton-soliton force is revisited. From the exact two-soliton solution of a nonautonomous
Gross-Pitaevskii equation, we derive a generalized formula for the mutual force between two solitons. The
force is given for arbitrary soliton amplitude difference, relative speed, phase, and separation. The latter allows
for the investigation of soliton molecule formation, dynamics, and stability. We reveal the role of the time-
dependent relative phase between the solitons in binding them in a soliton molecule. We derive its equilibrium
bond length, spring constant, frequency, effective mass, and binding energy of the molecule. We investigate the
molecule’s stability against perturbations such as reflection from surfaces, scattering by barriers, and collisions
with other solitons.
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I. INTRODUCTION

The old-new interest in the problem of soliton-soliton in-
teraction and soliton molecules has been increasingly accu-
mulating particularly over the past few years. This is mainly
motivated by the application of optical solitons as data car-
riers in optical fibers �1,2� and the realization of matter-wave
solitons in Bose-Einstein condensates �3,4�. One major prob-
lem limiting the high-bit-rate data transfer in optical fibers is
the soliton-soliton interaction. On one hand, soliton-soliton
interaction is considered as a problem since it may destroy
information coded by solitons sequences. On the other hand,
it is part of the problem’s solution since the interaction be-
tween solitons leads to the formation of stable soliton mol-
ecules which can be used as data carriers with larger “alpha-
bet” �5�.

The interaction force between solitons was first studied by
Karpman and Solov’ev using perturbation analysis �6�, Gor-
don who used the exact two-soliton solution �7�, and Ander-
son and Lisak who employed a variational approach �8�. It
was shown that the force of interaction decays exponentially
with the separation between the solitons and depends on the
phase difference between them such that in-phase solitons
attract and out-of-phase solitons repel. This feature was dem-
onstrated experimentally in matter-wave solitons of attractive
Bose-Einstein condensates �3,4� where a variational ap-
proach accounted for this repulsion and showed that, in spite
of the attractive interatomic interaction, the phase difference
between neighboring solitons indeed causes their repulsion
�9�.

For shorter separations between the solitons, Malomed
�10� used a perturbation approach to show that stationary
solutions in the form of bound states of two solitons are
possible. However, detailed numerical analysis showed that
such bound states are unstable �11�. Stable bound states were
then discovered by Akhmediev et al. �12� and a mechanism
of creating robust three-dimensional soliton molecules was
suggested by Crasovan et al. �13�. Recently, soliton mol-
ecules were realized experimentally by Stratmann et al. in
dispersion-managed optical fibers �5� and their phase struc-
ture was also measured �14�. Perturbative analysis was used
to account theoretically for the binding mechanism and the

molecule’s main features �15,16�. Quantization of the bind-
ing energy was also predicted numerically by Komarov et al.
�17�. In Refs. �18,19�, a Hamiltonian is constructed to de-
scribe the interaction dynamics of solitons.

The mechanism by which the relative phase between the
solitons leads to their force of interaction, and hence the
binding mechanism, is understood only qualitatively as fol-
lows. For in-phase �out-of-phase� solitons, constructive �de-
structive� interference takes place in the overlap region re-
sulting in enhancement �reduction� in the intensity. As a
result, the attractive intensity-dependent nonlinear interac-
tion causes the solitons to attract �repel� �20�. A more quan-
titative description is given in Refs. �15,16�.

In view of its above-mentioned importance from the ap-
plications and fundamental physics point of views, we ad-
dress here the problems of soliton-soliton interaction and
soliton molecule formation using the exact two-soliton solu-
tion. This approach has been long pioneered by Gordon �7�
where he used the exact two-soliton solution of the homoge-
neous nonlinear Schrödinger equation to derive a formula for
the force of interaction between two solitons, namely,

�̈ = − 8 exp�− ��cos���� , �1�

where ��t� is the soliton separation and ���t� is their phase
difference. This formula was derived in the limit of large
soliton separation and for small difference in the center-of-
mass speeds and intensities, which limits its validity to slow
collisions. With an appropriately constructed Hamiltonian,
Wu et al. derived, essentially, a similar formula that gives the
force between two identical solitons and relieves the condi-
tion on slow collisions �19�.

Here, we present a more comprehensive treatment where
we derive the force between two solitons for arbitrary soliton
intensities, center-of-mass speeds, and separation. We also
generalize Gordon’s formula to inhomogeneous cases corre-
sponding to matter-wave bright solitons in attractive Bose-
Einstein condensates with time-dependent parabolic poten-
tials �3,4� and to optical solitons in graded-index waveguide
amplifiers �21�. Many interesting situations can thus be in-
vestigated. This includes the various soliton-soliton collision
regimes with arbitrary relative speeds, intensities, and
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phases. Most importantly, soliton-soliton interaction at short
soliton separations will now be accounted for more quantita-
tively than before. Specifically, soliton molecule formation is
clearly shown to arise from the time dependence of the rela-
tive phase, which plays the role of the restoring force. In this
case, the force between the two solitons is shown to be com-
posed of a part oscillating between attractive and repulsive,
which arises from the relative phase, and an attractive part
that arises from the nonlinear interaction. The time depen-
dence of the relative phase results in a natural oscillation of
the molecule’s bond length around an equilibrium value. The
various features of the soliton molecule, including its equi-
librium bond length, spring constant, frequency and ampli-
tude of oscillation, and effective mass will be derived in
terms of the fundamental parameters of the solitons, namely,
their intensities and the nonlinear interaction strength.

The two-soliton solution is derived here using the inverse
scattering method �22�. Although the two-soliton solution of
the homogeneous nonlinear Schrödinger equation is readily
known �7,20�, here we not only generalize this solution to
inhomogeneous cases, but also present it in a form that fa-
cilitates its analysis. The solution will be given in terms of
the four fundamental parameters of each soliton, namely, the
initial amplitude, center-of-mass position and speed, and
phase. The main features of the solution will be shown
clearly such as the contribution of the nonlinear interaction
to the actual separation and phase difference between soli-
tons where it turns that the separation between the two soli-
tons increases with logarithm of the difference between the
amplitudes of the two solitons. Furthermore, the general
statement that a state of two equal solitons with zero relative
speed and finite separation does not exist as a stationary state
for the homogeneous nonlinear Schrödinger equation will be
transparently and rigorously proved.

Stability of soliton molecules is an important issue since,
in real systems, perturbations caused by various sources such
as losses, Raman scattering, higher-order dispersion, and
scattering from local impurities tend to destroy the mol-
ecules. To investigate the stability of the soliton molecules
described by our formalism, we have considered three situa-
tions. First, we studied the reflection of the molecule from a
hard wall and a softer one. While for the hard wall the mol-
ecule preserves its molecular structure after reflection, it gen-
erally breaks up for the softer ones due to energy losses at
the interface. Second, the scattering of the molecule by a
potential barrier was also investigated. We show that the mo-
lecular structure is maintained only for some specific heights
of the barrier. This suggests a quantization in the binding
energy as predicted by Komarov et al. �17�. The oscillation
period of the reflected molecule is noticed to be smaller than
for the incident one. In addition, the outcome of scattering
depends on the phase of the molecule’s oscillation at the
interface of the barrier. For instance, a dramatic change in the
scattering outcome takes place if the coalescence point of the
molecule lies exactly at the interface. In such a case, the
otherwise totally transmitting molecule will now split into
reflecting and tunneling solitons. Third, we have considered
the collision between a single soliton and a stationary soliton
molecule. The effects of different initial speeds, amplitudes,
and phases of the scatterer soliton were studied. It turns out

that for slower collisions, it is easier for the scatterer soliton
to break up the soliton molecule, while for fast collisions the
scatterer soliton expels and then replaces one of the solitons
in the molecule. The phase of the scatterer soliton plays also
a crucial rule in preserving or breaking the bond of the mol-
ecule, which can be used as a key tool to code or uncode data
in the molecule.

The rest of the paper is organized as follows. In Sec. II,
we use the inverse-scattering method to derive the two-
soliton solution of the inhomogeneous nonlinear Schrödinger
equation and present the solution in the above-mentioned
appealing form. The main features of the solution will be
discussed in Sec. II A. The center-of-mass positions and rela-
tive phases will be derived in Secs. II B and II C, respec-
tively. The force between solitons will be derived in Sec.
II D where Gordon’s formula will be extracted as a special
case in Sec. II D 1 and our more general formula will be
derived in Sec. II D 2. In Sec. II D 3, we compare our for-
mula with the numerical calculation. In Sec. III, we show the
possibility of forming soliton molecules, derive their main
features in Sec. III A, and investigate their stability in Sec.
III B. We end in Sec. IV with a summary of results and
conclusions. The details of the derivation of the two-soliton
solution and the center-of-mass positions are relegated to Ap-
pendixes A and B, respectively.

II. EXACT TWO-SOLITON SOLUTION

Matter-wave solitons of trapped Bose-Einstein conden-
sates and optical solitons in optical fibers can be both de-
scribed by the dimensionless Gross-Pitaevskii equation

i
�

�t
��x,t� +

1

2

�2

�x2��x,t� +
1

2
��̇�t�2 − �̈�t��x2��x,t�

+ g0e��t����x,t��2��x,t� = 0, �2�

where ��t� is a dimensionless arbitrary real function. For
matter-wave solitons, length is scaled to the characteristic
length of the harmonic potential, ax=�� /m�x, time to 1 /�x,
and the wave function ��x , t� to 1 /�2ax�� /�x, where �x
and �� are the characteristic frequencies of the quasi-one-
dimensional �����x� trapping potential in the axial and
radial directions, respectively. In these units, the strength of
the interatomic interaction will be given by the ratio g0
=as /ax, where as is the s-wave scattering length. For the case
of optical solitons, the function ��x , t� represents the beam
envelope, t is the propagation distance, x is the radial direc-
tion, and the intensity-dependent term represents the Kerr
nonlinearity. In this case, scaling is in terms of the charac-
teristic parameters of the fiber as, for instance, in Ref. �19�.
The specific form of the prefactors of the inhomogeneous
and nonlinear terms guarantees the integrability of this equa-
tion �23,24�. For the special case of ��t�=0, the homoge-
neous case is retrieved. Other interesting special cases have
also been considered �23–25�.

As outlined in Appendix A, we use the Darboux transfor-
mation method to derive the two-soliton solution of this
Gross-Pitaevskii equation, which can be put in the form
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��x,t� =�n1�11�t�
2

ei��01+�1�x,t�� sech��11�t��x − xcm1�t���

+�n2�22�t�
2

exp	i
�01 + �02 + �2�x,t�

+ tan−1��2

�1
� + tan−1��4

�3
�
�

	sech	�22�t��x − xcm2�t�� +
1

2
log��1

2 + �2
2

�3
2 + �4

2�� ,

�3�

where

xcmj�t� = e−�0−��t��xje
2�0 + g�t�
 j�, j = 1,2,

vcmj�t� = ẋcmj�t� ,

� j�x,t� =
1

8
g�t��4e−2�0
 j

2 + nj
2g0

2� −
1

2
xcmj�t�2�̇�t�

+ vcmj�t��x − xcmj�t�� −
1

2
�x − xcmj�t��2�̇�t� ,

� j j�t� =
1

2
njg0e��t�,

�1 = f1 + eym cos z ,

�2 = f2 + eym sin z ,

�3 =
f3

2n1g0
− 2n1g0eyp cos z ,

�4 =
f2

2n1g0
− 2n1g0eyp sin z ,

f1 = �n2 + n1�g0 + �n2 − n1�g0ey ,

f2 = 2�
2 − 
1�e−�0�1 + ey� ,

f3 = − �n2 − n1�g0 − �n2 + n1�g0ey ,

ym =
1

2
e��t�g0��n1 − n2�x − �n1xcm1�t� − n2xcm2�t��� ,

yp =
1

2
e��t�g0��n1 + n2�x − �n1xcm1�t� + n2xcm2�t��� ,

y = e��t�n1g0�x − xcm1�t�� ,

zjj = − xj
 j + e−2�0
 j
2g�0� + e−�0+��t�x
 j

+
1

8
e−2�0g�t��− 4
 j

2 + e2�0nj
2g0

2� ,

z = − �02 + z11 − z22,


 j = v j + xj�̇�0� ,

g�t� = �
0

t

e2��t��dt�.

The solution is put in this suggestive form to facilitate its
analysis. The first sech part corresponds to the exact single-
soliton solution with center-of-mass position xcm1�t�, width
1 /�11�t�, phase �01+�1�x , t�, and normalization n1. Hence,
x1 and v1 correspond to the initial center-of-mass position
and speed, respectively. The second sech term contains the
same features in addition to a shift in both the center-of-mass
position and phase. It should be noted, however, that xcmj�t�,
vcmj�t�, nj, and � j�x , t� correspond to the center-of-mass po-
sition and speed, normalization, and phase of the single non-
interacting solitons. Due to the interaction between solitons,
these four characteristic quantities may not correspond ex-
actly to the values of the same physical quantities as they did
for the single-soliton solution. For instance, xcm1�t� will not
correspond to the center-of-mass of one of the solitons. In-
stead, the soliton may be shifted from that position due to the
interaction with the other soliton. In the following, we
present a detailed analysis of the locations and phases of the
two solitons.

A. Main features of the solution

Inspection shows that there are two main regimes for the
two-soliton solution, namely, the regime of resolved solitons
and the regime of overlapping solitons. In the former case,
the center-of-mass concept is well defined and analysis of the
relative dynamics becomes feasible. The solitons are consid-
ered resolved as long as the two main peaks are not overlap-
ping, which means that partial overlap may occur in this
regime. The analysis in this section assumes the resolved
solitons regime.

In the resolved soliton regime, the argument of the second
sech term of Eq. �3�, namely, q=�22�t��x−xcm2�t��
+ �1 /2�log���1

2+�2
2� / ��3

2+�4
2��, simplifies to a function with

three roots. The fact that the sech function is peaked at the
roots of its argument leads to that the second sech term cor-
responds to three “solitons.” This is shown in Fig. 1. We
denote these solitons as the “left,” “central,” and “right” soli-
tons with peak locations at xl, xc�xcm1�t�, and xr, respec-
tively. We notice that the central soliton is located at the
position of the soliton of the first sech term, namely, near
xcm1�t�. Further inspection shows that the two solitons at this
location are out of phase and interfere destructively such that
they do not appear in the total profile. Therefore, the two
solitons that our solution of Eq. �3� describes are in fact the
left and right solitons arising from the second sech term. This
is different from what one aught to conclude from the form
of the exact solution, namely, that the first sech term corre-
sponds to one soliton and the second sech term corresponds
to the other soliton.

In general, the center-of-mass locations of the left and
right solitons, xl and xr, do not match xcm1�t� and xcm2�t�.
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Typically, xl will be shifted to the left of xcm1�t�, xr will be
shifted to the right of xcm2�t�, while xc remains near xcm1�t�.
The amount of shift depends mainly on the normalization
difference n2−n1 and the relative speed v2−v1, as will be
shown in the next section. An interesting general and exact
result is that, for the homogeneous case ��t�=0, a state of
two equal solitons, n1=n2, with zero relative speed, v1=v2,
and finite separation, does not exist as an exact solution of
the Gross-Pitaevskii equation. This can be proven by substi-
tuting n1=n2 and v1=v2 in q to find that the right and left
solitons migrate to � and −�, respectively, while the center-
of-mass of the central soliton matches exactly xcm1�t�. Fur-
thermore, we show in Sec. II C that the phase difference
between this central soliton and that of the first sech term
equals, in this case, �, guaranteeing their destructive inter-
ference. Thus, the three solitons disappear in such a special
case and ��x , t� becomes the trivial solution. In view of the
above, a need arises to derive formulas for the center-of-
mass positions, xl and xr, in terms of the soliton parameters,
which will then be used to derive the force between the two
solitons.

B. Center-of-mass positions

In this section, we derive formulas for the three roots of q
which correspond to the locations of the left, central, and
right solitons, xl, xc, and xr, respectively. To facilitate the
derivation, we define X=exp�ym�=exp� 1

2e��t�g0��n1−n2�x
− �n1xcm1�t�−n2xcm2�t����, Y =exp�y�=exp�e��t�n1g0�x
−xcm1�t���, nd=n2−n1, ns=n1+n2, 
d=
2−
1, and 
s=
1
+
2. The equation q�X ,Y�=0 is a third-order polynomial in
both X and Y. In principle, this equation can be solved alge-
braically for X or Y. However, extracting x from the resulting
three roots will not be possible analytically for general n1
�n2. Alternatively, and as can be seen from Fig. 1, we can
exploit the simple linear behavior of q near its roots.

Assuming, without loss of generality, xcm2�t�
xcm1�t�,
and noting that in the resolved soliton regime the soliton
separation �xcm2�t�−xcm1�t�� is large, we argue in Appendix B,
Sec. B 1 that X�1 for all x, Y �1 for x�xr, Y �1 for x
�xc, and Y �1 for x�xl. Based on this, the center-of-mass

position xr can be derived from a Taylor expansion of q in
powers of large X and Y. Expanding q in powers of large X
only and leaving Y arbitrary, accounts for xc and xl simulta-
neously. Keeping terms up to first order of 1 /X, we show in
Appendix B, Sec. B 1 that the position of the right soliton is
given by

xr = xcm2�t� −
2e−��t� log Yr

g0�nd + ns�

+
4Yr

ns/�nd+ns��g0nse
�0 cos zr − 2
d sin zr�e−��t�+�0

g0�nd + ns��g0
2nd

2e2�0 + 4
d
2�

	e−�1/4�g0xd�ns−nd�e��t�
, �4�

where

Yr =
g0

2�nd − ns�2�g0
2nd

2e2�0 + 4
d
2�

g0
2ns

2e2�0 + 4
d
2 , �5�

and the position of the left soliton is given by

xl = xcm1�t� −
2e−��t� log Y+

g0�nd − ns�

−
4C+e−��t�

�g0
2e2�0�nd

2 − 6ndns + ns
2� − 32
d

2
e−�1/4�g0xd�ns+nd�e��t�

,

�6�

where xd�t�=xcm2�t�−xcm1�t�, zr=z�xr�, and C+ and Y+ are
given in Appendix B, Sec. B 1.

The second and third terms on the right-hand sides of Eqs.
�4� and �6� account for the shift in the center-of-mass posi-
tion with respect to the single-soliton ones. The third terms
are much smaller than the second ones since they decay ex-
ponentially with the soliton distance xd. In the limit nd→0
and 
d→0, both log Yr and log Y+ take the form log��nd

2

+4e−2�0
d
2 /g0

2� /ns
2�. Thus, it is obvious that for nd=
d=0,

xr=� and xl=−�. This agrees with our earlier result that two
equal solitons with zero relative speed and finite separation
do not exist as an exact solution.

C. Relative phases

In this section, we calculate the phases of the left, central,
and right solitons in reference to the phase of the soliton of
the first sech part in the two-soliton solution. For simplicity,
the special case of nd�1 and 
d�1 will be assumed. The
phase difference between the left, central, and right solitons
on one hand and the soliton of the first sech term on the other
hand is generally given by

�� = �2�x,t� + �02 + tan−1��2

�1
� + tan−1��4

�3
� − �1�x,t� ,

�7�

which by observing that for all x

�2�x,t� + �02 − �1�x,t� = z �8�

reduces to

xl xc xr

0 5 10 15 20 25 30
�10

�5

0

5

10

x

q,
��

2

FIG. 1. �Color online� Dashed �blue� curve: the argument of the
second sech term in the two-soliton solution, Eq. �3�, q=�22�t��x
−xcm2�t��+ �1 /2�log���1

2+�2
2� / ��3

2+�4
2��. Thick �green� curve: the

soliton intensity ��2�x , t��2. Light �red� curve: the soliton intensity
with only the second sech term of Eq. �3�. The parameters used are
��t�=0, n1=1, n2=1.01, x1=10, x2=20, v1=v2=0, g0=3, �01

=�02=0, and t=0.
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�� = z + tan−1��2

�1
� + tan−1��4

�3
� . �9�

This expression gives the phases of the right soliton �r, the
central soliton �c, and the left soliton �l, for x�xr, xc, and
xl, respectively.

To calculate these phases we express the parameters �1−4
in terms of X and Y as follows:

�1 = nsg0 + ndg0Y + X cos z , �10�

�2 = 
de−�0�1 + Y� + X sin z , �11�

�3 = −
nd + nsY

ns − nd
− �ns − nd�g0

Y

X
cos z , �12�

�4 =
2
de−�0�1 + Y�

�ns − nd�g0
− �ns − nd�g0

Y

X
sin z . �13�

In general, X�1 for all x, but Y �1 only for x
xcm1�t�, and
Y =Xee��t�g0n2�x−xcm2�t��/2�X for x
xcm2�t�, as shown in Ap-
pendix B, Sec. B 1.

1. Phase of the right soliton �r

In this case x
xcm2�t�, which leads to Y �X and thus
�1=ndg0Y, �2=2
de−�0Y, �3=−nsY / �ns−nd�, and �4
=2
dYe−�0 / ��ns−nd�g0�. Therefore,

tan−1�2

�1
= tan−1�2
de−�0

g0nd
� = �0, nd � 0,
d = 0

�/2, nd = 0,
d � 0

��nd,
d� , nd � 0,
d � 0,
�

and tan−1��4 /�3�=tan−1�−2
de−�0 /g0ns�=�, which gives

�r = � + � − z , �14�

where � is a function that depends on the ratio 
d /nd for
nonzero 
d and nd.

2. Phase of the central soliton �c

In this case x=xcm1�t�, which gives Y =1, and hence
tan−1��2 /�1�=z, and tan−1��4 /�3�=tan−1�−1,0�=�. Finally,
we get

�c = � . �15�

The last result shows that, for 
d=nd=0, i.e., two equal soli-
tons with zero relative speed, the central soliton and the soli-
ton of the first sech term of the two-soliton solution are out
of phase and therefore interfere destructively.

3. Phase of the left soliton �l

In this case x�xcm1�t�, which results in Y �1 and �1
=X cos z, �2=X sin z, �3=−nd / �ns−nd�, and �4
=2
de−�0 / �ns−nd�g0. Therefore, tan−1��2 /�1�=z and
tan−1��4 /�3�=tan−1�−nd / �2
de−�0 /g0��=�−�, which gives

�l = 2� − z . �16�

The phase difference between the left and right solitons
is thus given by ��=�r−�l=2�−z. Noting that �=0 for


d=0 and small but finite nd, and �=� /2 for nd=0 and small
but finite 
d, we finally conclude that the phase difference
between the two solitons is given by

�� = �r − �l = 	� − z , nd = 0,
d � 0

− z , 
d = 0,nd � 0.
� �17�

The above results are verified in Fig. 2, where we plot ��,
�r, �l, and �c versus x. The agreement between our esti-
mated values and the exact curve is evident.

D. Soliton-soliton force

In this section, we use the results of the previous two
sections to derive the force between the left and right soli-
tons. The force is proportional to the acceleration of the soli-
ton separation,

� = xr − xl = xd�t� + �e−��t�

+ ��1 cos�zr�t��e�1/4�g0ndxd�t�e��t�−��t�+2�0

+ �2 cos�zl�t��e−�1/4�g0ndxd�t�e��t�−��t�

+ �3 sin�zl�t��e−�1/4�g0ndxd�t�e��t�−��t�−�0

+ �4 sin�zr�t��e�1/4�g0ndxd�t�e��t�−��t�+�0�e−�1/4�g0nsxd�t�e��t�
,

�18�

where

� =
2��ns − nd�log�Yr� + �nd + ns�log�Y+��

g0�nd
2 − ns

2�
, �19�

and the coefficients �1–4 are given in Appendix B, Sec. B 2.
The first two terms on the right-hand side of Eq. �18� are the
dominant ones since they correspond to the noninteracting
solitons separation, xd�t�, and their logarithmic shifts ��
arising from the interaction between solitons. The time de-

xl xc xr

5 10 15 20 25

0

2

4

6

8

x

�
Φ

,Φ
r,
Φ

c,
Φ

l

FIG. 2. �Color online� The phase of solitons �dashed curves� and
soliton intensity profiles �solid curves�. Long dashed curve �orange�
corresponds to the exact phase of the solitons calculated directly
from the two-soliton solution, Eq. �3�. Dotted �blue� curve corre-
sponds to the phase of the right soliton, �r, calculated from Eq.
�14�. Thick dashed curve corresponds to the phase of the central
soliton, �c, calculated from Eq. �15�. Dashed-dotted curve corre-
sponds to the phase of the left soliton, �l, calculated from Eq. �16�.
The solid curves correspond to the density profiles as in Fig. 1. The
parameters used are ��t�=0, n1=1, n2=1.01, x1=10, x2=20, v1=1,
v2=1.2, g0=3, �01=�02=0, and t=0.
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pendence of � originates from ��t�, zr,l�t�, and xd�t�. The
acceleration can thus be derived,

�̈�t� = ��̇�t�2 − �̈�t����t� +
1

64
��5 sin�zl�t�� + �6 sin�zr�t��

+ �7 cos�zl�t�� + �8 cos�zr�t���e−�1/4�g0ns��t�e��t�+3��t�,

�20�

where the coefficients �5–8 are given in Appendix B, Sec. B
2. In the last equation, we have used Eq. �18� with only the
first two terms of its right-hand side to substitute for xd�t� in
terms of ��t� in the exponential factor. The first term on the
right-hand side of Eq. �20� corresponds to the force due to
the external potential which vanishes for the homogeneous
case. The rest of the terms correspond to the force of inter-
action between the solitons. The interaction force depends, as
expected, on the phase difference of the two solitons and
decays exponentially with their separation. It should be noted
that this equation is a generalization of Gordon’s formula �7�
in two aspects. First, it is derived for a time-dependent inho-
mogeneous medium. Second we have, essentially, no restric-
tion on the difference between the two-soliton amplitudes
and speeds, apart from some extreme cases which were men-
tioned in Appendix B, Sec. B 1 and will be discussed further
below.

1. Gordon’s formula

For the homogeneous case, ��t�=0, and in the limits nd
→0 and 
d→0, the acceleration formula, Eq. �20�, simpli-
fies considerably. An apparent inconsistency occurs when
switching the order of these two limits, namely,

lim
nd→0

lim

d→0

�̈�t� = −
1

8
�nsg0�3e−�1/4�nsg0� cos z , �21�

while

lim

d→0

lim
nd→0

�̈�t� =
1

8
�nsg0�3e−�1/4�nsg0� cos z , �22�

which differs by an overall minus sign. The conflict is re-
solved by invoking Eq. �17� where it is shown that in the first
case z=��, while in the second case z=�−��. Therefore,
the two approaches agree on the following result:

�̈�t� = −
1

8
�nsg0�3e−�1/4�nsg0�cos �� . �23�

This is essentially Gordon’s result, Eq. �1�, since in his deri-
vation Gordon took g0=1 and soliton amplitude nj

�g0 /2=1,
j=1,2, as can be seen in Eqs. �1� and �6� of �7�. Substituting
g0=1 and ns=4 in the last equation, it becomes identical to
Eq. �1�. It should be mentioned here that Eq. �1� was also
derived in Ref. �6� using a perturbation analysis based on the
inverse scattering method, and in Ref. �8� using a variational
calculation.

2. Our formula

For nonzero ��t� and in the limits nd→0 and 
d→0, the
acceleration formula takes the form

�̈�t� = ��̇�t�2 − �̈�t����t� −
1

16
�g0ns�3

	e−�1/4�g0ns��t�e��t�+3��t�−�0�1 + e�0�cos���� . �24�

This is a generalization to Gordon’s formula for the inhomo-
geneous case as modeled by Eq. �2�. Depending on the spe-
cific form of ��t�, the two force terms, namely, the external
�first term� and the interaction �second term�, can be repul-
sive, attractive, or oscillatory. In addition, the phase differ-
ence ���t� also depends on ��t�. It is established in the
homogeneous case, as will also be shown in Sec. III, that the
time dependence of the phase difference is responsible for
binding the two solitons in the soliton molecule. Here, in
addition to the possibility of forming soliton molecules, the
dependence of ���t� on ��t� allows for controlling the pa-
rameters of the molecule such as its equilibrium bond length,
period, and spring constant. This and possibly other interest-
ing phenomena will be left for future investigation.

3. Comparison with numerical calculations

To obtain an estimate of the accuracy of the general ac-
celeration formula, Eq. �20�, we calculate numerically the
acceleration from the exact two-soliton solution, Eq. �3�, and
compare the two results. The distance between the two soli-
tons of the function ���x , t��2 is determined using a numeri-
cal algorithm that employs our formulas for xl and xr given
by Eqs. �4� and �6� to calculate seed values. The distance is
then differentiated numerically twice at t=0. In Fig. 3, we
compare the two results. Good agreement is obtained for
�
d��1. The analytical solution diverges at 
d� �1. The
value at which divergence takes place is set by the specific
choice of parameters in Fig. 3. As pointed out in Sec. II B,
the divergence occurs due to the merging of the central and
left solitons. This artifact divergency can be remedied by
associating the location of the local maximum of q to xl once
this maximum has reached the x axis from above.

Restricting our study to the region where agreement is
obtained, we interestingly notice that the acceleration is os-
cillating between positive and negative values. This means

�3 �2 �1 0 1 2 3
�0.00001

�5.�10�6

0

5.�10�6

0.00001

0.000015

Ηd

��
�0
�

FIG. 3. �Color online� The initial acceleration of the solitons

separation, �̈�0�, versus 
d. Thick �blue� curve is calculated from
Eq. �20�. Light �red� curve is calculated numerically from the exact
two-soliton solution, Eq. �3�. The parameters used are ��t�=0, n1

=1, n2=1.01, x1=10, x2=20, v1=1, g0=3, �01=�02=0, and t=0.
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that the force between the solitons is oscillating between at-
tractive and repulsive. The possibility of having attractive
forces for finite 
d is particularly interesting; for two solitons
with nonzero relative positive speed, i.e., the solitons are
initially diverging from each other, the force between them is
attractive. This suggests that, if the force remains attractive
for sufficient time, the two solitons will slow down and even-
tually converge at some point. If true, this should occur at
small distances since the force decays exponentially with
distance, and when the two solitons are allowed to diverge
even for a short while, the force might be weakened such that
the two solitons cannot return back. To be able to judge on
such a possibility, we need to know what happens to the
acceleration at later times. To that end, we calculate numeri-
cally the acceleration in terms of 
d and t. The result is
plotted in Fig. 4, where it is clear that the acceleration indeed
decays with time for all 
d. This leads to that any nontrivial
effect of the oscillating force is most likely to take place at
short soliton separations. This is what we find in the next
section where the possibility of forming stable soliton mol-
ecules is pointed out.

III. SOLITON MOLECULE

We have shown in the previous section that, as a result of
the solitons time-dependent relative phase, the force of inter-
action between solitons is oscillating between repulsive and
attractive. Since the force decays exponentially with the soli-
tons separations, this oscillation will have a tangible effect
only when the two solitons are close to each other. In this
section, we investigate the force of interaction between soli-
tons for short soliton separation. In such a special case, Eq.
�18� takes a simple form that accounts for the soliton sepa-
ration in terms of their relative phase. Using this formula, we
show that the solitons will be bound to oscillate around some
equilibrium distance where the phase plays the role of the
restoring force. Comparison with exact numerical calcula-
tions shows that this formula is accurate for almost the full
range of the soliton separation, except at the coalescence
point �if any�. In Sec. III A, we discuss the main features of
the resulting soliton molecules, and in Sec. III B, we inves-
tigate numerically their stability in different scattering re-
gimes.

To focus on the role of relative phase, we simplify the
analysis by restricting our treatment to the homogeneous

case, ��t�=0, and zero relative speed, 
d=vd=v2−v1=0. We
also set x1=x2 so that any separation between the solitons to
be as small as possible, which in this case arises only from
the logarithmic shifts ��� in Eq. �18��. In this case, the
soliton separation �, given by Eq. �18�, simplifies in the limit
nd�ns to

��t� =
4

g0ns
log
1 + 2nsg0 cos�1

8
g0

2ndnst� + �nsg0�2

−

4

g0ns
log�g0nd

2

ns
� , �25�

and the acceleration is given by

�̈�t� = −
1

8
�nsg0�3

	

2nsg0 + �nsg0�2cos�1

8
g0

2ndnst� + cos�1

8
g0

2ndnst�
1 + 2nsg0 cos�1

8
g0

2ndnst� + �nsg0�2

	e−�1/4�g0ns�x. �26�

It is noted that for nsg0�1 or nsg0�1, Gordon’s formula is
retrieved, but here with an explicit time dependence of the
phase, ��=ndnsg0t /8. This acceleration formula deviates
considerably from Gordon’s formula for nsg0�1. Specifi-
cally, for nsg0=1, � diverges to −� at cos�ndnsg0t /8�=−1,
which indicates that the two solitons coalesce. This is con-
firmed below by examining the exact solution at this condi-
tion. We note here that an approximate expression for the
soliton separation was also derived in Refs. �6,8,20�. In ad-
dition, our predicted molecule’s oscillation frequency �see
Eq. �33� below� agrees with these references.

To verify this feature, we calculate numerically the dis-
tance between the two solitons directly from the exact solu-
tion, Eq. �3�, for different values of nsg0. For nsg0=2.5, the
density plot in Fig. 5�a� shows a soliton molecule of two
clearly resolved solitons with a separation oscillating around
some nonzero equilibrium distance. Approaching the solitons
coalescence point with nsg0=1.5, the density plot in Fig.
6�a�, shows the two solitons approaching each other more
than the previous case. Furthermore, this figure shows a
slight bounce back by one of the solitons in the region of
collision. Approaching further the coalescence condition
with nsg0=1.25, we indeed observe in Fig. 7�a� that the two
solitons merge almost completely. For a more quantitative
comparison, we calculate numerically the center-of-mass tra-
jectories of the two solitons. We show the trajectory curves
in the density plots of Figs. 5�a�–5�c�, 6�a�–6�c�, and 7�a�. In
Figs. 5�b�, 5�c�, 6�a�–6�c�, 7�a�, and 7�b�, we plot the solitons
separation obtained from formula �25� and the numerical tra-
jectories obtained from the exact solution. It is clear from
these figures that this formula agrees well with the exact
soliton separation except near the collision region. In Fig.
5�b�, the two solitons remain away from each other during
the collision, and therefore good agreement is obtained with
the exact result even in the collision region. In Fig. 6�b� the
two-soliton approach each other further such that formula

FIG. 4. The acceleration of the soliton separation, �̈�0�, versus

d and t. The parameters used are ��t�=0, n1=1, n2=1.01, x1=10,
x2=20, v1=1, g0=3, and �01=�02=0.
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�25� does not account for the above-mentioned slight bounce
of one of the solitons. In Fig. 7�b�, agreement with the exact
solution in the collision region is qualitative. We found that
at the condition nsg0=1 and for nd�ns, the analytical curve
overlaps with that of the exact solution, apart from the hori-
zontal segments where formula �25� diverges to −�. Further
insight is obtained by plotting the density profile of the soli-
ton molecule at some specific times, as shown in Figs. 5�c�,
6�c�, and 7�c�. In Fig. 5�c�, we observe that the initial ampli-

tude imbalance is never removed during the dynamics. In-
stead, it becomes maximum when the two solitons are clos-
est to each other. In addition, we notice that the oscillation
amplitude of the larger soliton around its equilibrium posi-
tion is larger. Figure 6�c� shows clearly the soliton bounce,
which takes place in the time interval t=55–80. In these
figures we plot two vertical dashed lines that indicate the
position of the solitons at the closest approach. It is clear that
after first closest approach at t=55, the right soliton bounces

FIG. 5. �Color online� Density profile of the soliton molecule and the soliton center-of-mass trajectories and separations. �a� Density plot
corresponds to solitons density. Curves correspond to soliton trajectories calculated numerically from the exact solution �3�. �b� Thick �green�
curve is soliton separation calculated from the exact solution �3�. Light �red� curve is the soliton separation calculated from formula �25�. �c�
Density profile at some specific times. The parameters used are ��t�=0, n1=2.37, nd=0.5, x1=x2=10, v1=v2=0, g0=0.5, and �01=�02=0.

FIG. 6. �Color online� Same as Fig. 5 but with n1=1.25.
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back with a maximum displacement at t=66. In Fig. 7�c�, it
is shown that, although the two solitons coalesce, two small
symmetric wings appear. A detailed examination of these
wings shows that they are the remnants of the two solitons
after they coalesce and they both bounce back in the colli-
sion region similar to the case of Fig. 6.

It is also instructive to show the dynamics of the phase
profile during the molecule’s oscillation. This is shown with
the contour plots in Fig. 8, which correspond to the mol-
ecules of Figs. 5–7. In Fig. 8�a�, which corresponds to Fig. 5,
the two solitons start initially in phase. By that time the
phase of the right soliton, which is the one with higher in-
tensity amplitude and larger oscillation displacement, starts
to exceed that of the left soliton. At the point of closest
approach, the phase difference is exactly �. After that point,
the two solitons diverge again, the phase difference starts to
decrease, and the cycle is repeated. Similar behavior is seen
in Fig. 8�b�. However, in Fig. 8�c�, where the two solitons

coalesce for a considerable amount of time, the phase differ-
ence during the coalescence time is zero. It is thus not com-
pletely understood why, in this case, the two solitons still
repel each other and eventually split.

A. Molecule formation and dynamics

Having established the existence of the soliton molecule
from the exact two-soliton solution and derived a formula
that describes its bond length, here we use this formula to
examine more closely the properties of the soliton molecule
and its mechanism of binding. It is clear from Eq. �26� that
the sinusoidal time dependence of the solitons relative phase
leads to a force of interaction that oscillates between attrac-
tive and repulsive and hence allowing for soliton molecule
formation. Further details of the mechanism of binding will

be uncovered by expressing the acceleration, �̈�t�, in terms
of ��t� by substituting for cos�nsndg0

2t /8� from Eq. �25� into
Eq. �26� to get

�̈ =
1

16
g0ns�1 − g0

2ns
2�2� ns

nd
�2

e−�1/2�g0ns�

−
1

16
�g0ns�2�g0

2ns
2 + 1�e−�1/4�g0ns�. �27�

This shows that the interaction force between the two soli-
tons is the resultant of an attractive part and a repulsive part.

The equilibrium bond length, defined by �̈��=�eq�=0, is
given by

�eq =
4

g0ns
log
 ns�g0

2ns
2 − 1�2

nd
2g0�g0

2ns
2 + 1�
 . �28�

In consistence with our previous result, the equilibrium bond
length diverges as −log nd. Solving the last equation for nd

2

and then substituting in Eq. �27�, �̈ simplifies to

FIG. 7. �Color online� Same as Fig. 5 but with n1=1.

FIG. 8. �Color online� Contour plots showing the phase of the
soliton molecules of Figs. 5–7. �a�, �b�, and �c�, correspond to Figs.
5–7, respectively. The blue �lower� and green �upper� curves corre-
spond to the center-of-mass trajectories of the left and right solitons,
respectively.
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�̈ =
1

16
g0

2ns
2�g0

2ns
2 + 1���e−�1/4�g0ns��−�eq/2��2 − e−�1/4�g0ns�� .

�29�

For small amplitude oscillations, ���eq, the last equation
gives

�̈ = −
1

64
g0

3ns
3�g0

2ns
2 + 1��� − �eq�e−�1/4�g0ns�eq. �30�

The restoring force ���� originates from the phase-
dependent terms, cos�ndnsg0

2t /8�. This appealing form of the
force of interaction shows that the force between the solitons
is of Hooke’s law type with a spring constant

k =
m

64
g0

3ns
3�g0

2ns
2 + 1�e−�1/4�g0ns�eq, �31�

where m is the bare mass of the molecule. Expressed in
terms of ns and nd, the spring constant takes the form

k =
g0

4nd
2ns

2�g0
2ns

2 + 1�2

64�g0
2ns

2 − 1�2 m , �32�

which shows that k=0 for nd=0, corresponding to a soliton
molecule of infinite bond length. Furthermore, k diverges for
nsg0=1, which signifies soliton coalescence, as we have
pointed out in the previous section. Since the frequency of
the soliton molecule is given by

� =
1

8
ndnsg0

2, �33�

and the spring constant is given in Eq. �32�, the effective
mass m�=k /�2 will be given by

m� =
�g0

2ns
2 + 1�2

�g0
2ns

2 − 1�2m , �34�

which again diverges at the soliton coalescence condition,
nsg0=1. Having determined the main properties of the soli-
ton molecule, we can now return to Eq. �25� to express � as

� = �0 +
4

g0ns
log
g0

2ns
2 + 2g0ns cos��t� + 1

�g0ns + 1�2 
 , �35�

where �0 is the initial value of �, which is given by the
soliton parameters through

�0 = �eq +
4

g0ns
log
 1 + g0

2ns
2

�1 − g0ns�2
 . �36�

The amplitude of the oscillation �max=�0−�eq is thus given
by

�max =
4

g0ns
log
 1 + g0

2ns
2

�1 − g0ns�2
 , �37�

which gives an elastic potential energy

E =
1

2
k�max

2 =
1

8
g0

2nd
2�1 + g0

2ns
2

1 − g0
2ns

2�2

log2
 1 + g0
2ns

2

�1 − g0ns�2
 .

�38�

It should be noted here that this is equal to the mechanical

energy since the initial speed vanishes, �̇�0�=0. The fact that
the potential energy diverges at the coalescence condition
nsg0=1 is a gain an artifact of the calculation, but it at least
indicates that the bond is tighter than cases where nsg0�1 or
nsg0�1.

B. Stability

Here, we investigate the stability of the soliton molecule
against breakup in the following three collision regimes: �i�
reflection by a hard wall, �ii� crossing a finite potential bar-
rier, and �iii� collision with a single soliton. To that end we
solve the Gross-Pitaevskii equation, Eq. �2�, numerically. As
an initial state, we use, for cases �i� and �ii� the two-soliton
solution, Eq. �3�, which represents the soliton molecule. For
case �iii�, we use the superposition of the exact single soli-
ton, Eq. �A4�, with the two-soliton solution.

Before starting the discussion of results, we point out that
in Figs. 9–14, we present the results of this section using
spatiotemporal density plots. Since the solitons are too thin
compared to the spacial range that we consider, a density plot
with full spatial and time ranges will not show a clear soliton
peak density or center-of-mass path, as Fig. 9�c� shows. To
solve this problem, we restricted the density plotting to a
finite range of ���x , t��2, namely, between 0.025 and 0.15,
corresponding to the upper part of the soliton peaks. This
results in an easier tracking of both the soliton peak density

FIG. 9. �Color online� Soliton molecule reflection by a potential
step given by Eq. �39�. The dashed vertical line represents the in-
terface of the potential step. The parameters used are g0=0.5, x2

=x1=50, �01=�02=c=0, nd=0.3, n1=1.0, 
=−0.1, and x0=−50.
�a� V0=100; �b�–�d� V0=0.075.
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and center-of-mass path, as shown in Figs. 9�a�, 9�b�, and
9�d� and the rest of subsequent figures.

For reflection from a hard wall we solve Eq. �2� with a
potential step of the form

V�x� = 	V0, x � x0

0, x � x0,
� �39�

where V0 and x0 are the height and location of the potential
wall, respectively. The result of reflection from this hard
wall, with V0=100, is shown in Fig. 9�a�. The soliton mol-
ecule preserves its molecular structure but with different
characteristics. The solitons in the reflected molecule do not
coalesce as in the incident molecule. In other words, the
equilibrium bond length becomes larger. The density plot
shows that initially the two solitons are of comparable inten-
sities. After reflection, the brighter color of the left soliton
and darker color of the right soliton indicate that the left
soliton acquires higher intensity on the expense of the right
soliton. We also notice that the left soliton performs two

reflections from the potential interface. After the first reflec-
tion, it collides with the right soliton and then collides with
the potential interface for the second time.

The picture becomes different when the height of the wall
is reduced to V0=0.075, as shown in Fig. 9�b�. The soliton
molecule breaks up after reflection. This is due to loss of
energy at the interface of the potential. Part of the soliton
molecule transmits as a nonsolitonic pulse that broadens and
decays in intensity by time. By plotting ���x , t��2 in Fig. 9�c�
with its full range, we can see the nonsolitonic part as the
left- and right-going two red ejections corresponding to the
transmitted and reflected nonsolitonic pulses, respectively. In
Fig. 9�d�, we combine Figs. 9�b� and 9�c� to show the loca-
tions of the nonsolitonic ejections with respect to the solitons
centers. In the case of reflection from a hard wall, the non-
solitonic ejections are essentially not present which results in
the stability of the molecular structure.

For reflection from a potential barrier we solve Eq. �2�
with the potential

FIG. 10. Soliton molecule reflection by and transmitting through a potential barrier given by Eq. �40� for different barrier heights. The
parameters used are g0=0.5, x2=x1=42, �01=�02=c=0, nd=0.1, n1=0.95, 
=−0.1, d=0.005, and x0=0.
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V�x� = 	V0, x0 − d � x � x0

0, elsewhere,
� �40�

where V0, d, and x0 are the height, width, and location of the
right side of the barrier, respectively. In Fig. 10, we show the
many different possibilities that result when the height of the
barrier is changed. The free evolution case with V0=0 is
shown as a reference plot. The full reflection case is shown
for V0=100, which is similar to the previous case of reflec-
tion from a hard wall. Reducing the height of the barrier to
V0=1, we notice that the soliton molecule breaks up after
reflection. As pointed above, this is due to the nonsolitonic
ejections taking place at the interfaces of the potential. Re-
ducing the height of the barrier to V0=0.5, a sign of solitons
recombining appears in the form of a soliton molecule of a
short lifetime. At V0=0.465 a stable molecule is remarkably
formed with a considerably shorter period than for the inci-
dent molecule. We have confirmed numerically that this mol-

FIG. 11. Soliton molecule reflection by a potential barrier given by Eq. �40� for different initial positions of the molecule. The parameters
used are x2=x1, g0=0.5, �01=�02=c=0, nd=0.1, n1=0.95, 
=−0.1, V0=0.465, d=0.005, and x0=0.

FIG. 12. Collision between a single soliton and a soliton mol-
ecule for two single-soliton phases. g0=0.5, x2=x1=�01=�02=c
=0, nd=0.2, n1=1.9, n3=2, x3=−40, and 
3=0.025. The phase dif-
ference between the injected soliton of �b� and that of �a� equals �.
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ecule remains stable for much longer time provided that the
soliton molecule remains sufficiently far from the boundaries
of the spatial grid. This unique structure remains for some
small domain around V0=0.465, but is lost for V0=0.45,
where the molecule breaks for long evolution times. De-
creasing the height of the barrier to V0=0.4, the molecule
breaks at the interface and splits into a reflected and trans-
mitted solitons. For V0=0.075, the molecule breaks at the
interface, but both solitons transmit through the barrier. For
V0=0.01, the transmitted solitons show a sign of recombin-
ing again but with shorter period than for the free evolution
case and larger than in the case of V0=0.465.

Motivated by the fact that at the coalescence point the
intensity of the molecule is considerably higher than at other
instants, we expect to find different scattering dynamics
when the soliton molecule meets the interface of the poten-
tial at different phases of its periodic oscillation. In Fig. 11,
this is investigated by fixing the height of the potential bar-
rier at V0=0.465 and changing the initial launching position
of the molecule. Starting at x1=27, the molecule breaks after
reflection. A shortly lived molecule is obtained at x1=37, and
a stable molecule is found for x1=42, which corresponds to

the V0=0.465 case of Fig. 10. At x1=52, the soliton splits at
the interface into transmitted and reflected solitons. The coa-
lescence point is, in this case, located at the interface. Trans-
mission takes place due to the high intensity of the soliton at
the coalescence point. At x1=62, the two solitons still split as
in the previous figure but with a weak transmitted soliton
intensity less than 0.025 and hence will not be shown in our
density plots which are restricted to the intensities between
0.025 and 0.15, as pointed out previously. For x1=82, the
coalescence point takes place before the molecule reaches
the interface and both solitons reflect but the molecule breaks
up. For x1=92 the two reflected solitons start to recombine
forming a stable molecule at x1=102. At x1=137 the re-
flected molecule starts to break up since the second coales-
cence point becomes close to the interface. Thus, the conclu-
sion from this figure is that the soliton molecule is more
vulnerable to break up when it meets the interface at the
coalescence point. Equivalently, soliton molecules with
larger equilibrium bond length, such that coalescence does
not occur, will be more stable against breakup postreflection
from barriers.

Finally, we present in Figs. 12–14 the results of scattering
of a soliton molecule by a single soliton described by Eq.
�A3� with normalization n3, and center-of-mass position and
speed, x3 and 
3=v3, respectively. The effects of the phase,
speed, and amplitude of the injected soliton are investigated
separately. In Fig. 12�a�, a soliton initially at x=−40 is
launched toward a stationary soliton molecule near x=0. At
the impact, the molecule brakes up, its right soliton is ejected
in the direction of the positive x axis, and the left soliton
combines with the scatterer soliton to form a new stationary
molecule shifted by about a bond length to the left. We point
out here that for such an outcome to occur, it is essential that
the amplitude of the scatterer soliton is nearly equal to that of
the right soliton of the molecule. Otherwise, a different out-
come, as that of Fig. 14, will be obtained. In Fig. 12�b�, the
same numerical experiment is repeated but with adding a �
to the phase of the scatterer soliton. Clearly, this phase addi-
tion prevents the formation of a new molecule resulting in
three solitons diverging from each other. From the applica-
tion point of view, the phase of � could be used as a “key” to
“unlock” the molecule for the purpose of extracting stored
data. In Fig. 13, we show the effect of the initial speed of the
injected soliton. In contrary to one’s first judgment, the mol-
ecule preserves its structure for fast collisions, as in Fig.
13�a�, and breaks up for slower collisions, as in Fig. 13�b�. In
Fig. 14, the injected soliton has an amplitude that is approxi-
mately two times larger than any of the two solitons of the
molecule. The injected soliton penetrates the molecule leav-
ing it almost unchanged apart from a center-of-mass shift to
the left.

IV. CONCLUSIONS

We have used the inverse scattering method to derive the
two-soliton solution of a nonlinear Schrödiner equation with
a parabolic potential and cubic nonlinearity with time-
dependent coefficients, as given by Eq. �2�. The solution was
then simplified and put in a suggestive form in terms of the

FIG. 13. Collision between a single soliton and a soliton mol-
ecule for two single-soliton initial speeds. g0=0.5, x2=x1=�01

=�02=c=0, nd=0.2, n1=1, n3=1, and x3=−80. �a� 
3=−0.04; �b�

3=−0.025.

FIG. 14. Collision between a high-intensity single soliton and a
soliton molecule. g0=0.5, x2=x1=�01=�02=c=0, nd=0.2, n1=1,
n3=2, 
3=0.04, and x3=−40.
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fundamental parameters of the two solitons, namely, their
amplitudes, center-of-mass positions and speeds, and their
phases. In this form, two different regimes of the solution,
namely, the resolved solitons and overlapping solitons, were
distinguished and the main features such as the soliton sepa-
ration and relative phase were extracted. From the expression
for the soliton separation we find that for the homogeneous
case and zero solitons relative speed, the soliton separation
diverges logarithmically with the soliton amplitude differ-
ence such that, for equal solitons, the trivial solution is ob-
tained.

The force of interaction was then derived, essentially, for
arbitrary soliton parameters. This resulted in generalizing
Gordon’s formula �7� to �i� the generalized inhomogeneous
case considered here, �ii� arbitrary soliton relative speed and
amplitudes, and �iii� short soliton separations �compared to
their widths�. With this formula, the possibility of forming
soliton molecules emerged naturally, where the force at short
distance was shown to be composed of an attractive part,
resulting from the nonlinearity, and another part that oscil-
lates between repulsive and attractive resulting from the
time-dependent relative phase. The main features of the soli-
ton molecule—including its equilibrium bond length and
bond spring constant, frequency and amplitude of oscillation,
effective mass, and its elastic potential energy—were then
calculated in terms of the soliton parameters. It turns out that
the amplitude difference nd=n2−n1 plays an important role
in determining these quantities. Furthermore, we show that at
the condition g0ns=1, the two solitons coalesce while away
from this condition, the solitons approach each other but re-
main resolved. At this condition, the molecule’s effective
mass and spring constant have maximum values. In our ex-
pressions Eqs. �32� and �34� diverge because these formulas
were derived assuming the solitons remain resolved.

To have a sense of its stability we investigated numeri-
cally �i� the collision of the soliton molecule with a hard wall
and softer one, �ii� scattering by a potential barrier, and �iii�
collision with a single molecule. The first case showed that
while the molecular structure is preserved after reflection
from a hard wall, it breaks when reflecting from a softer one.
Reflection from a finite barrier showed that the molecular
structure is preserved only for specific heights of the barrier.
For an incident molecule with the coalescence condition sat-
isfied, the molecule will be most vulnerable to break up
when the coalescence point takes place at the interface of the
barrier. This is simply understood by the fact that the inten-
sity of the soliton molecule is maximum when the two soli-
tons coalesce such that tunneling becomes possible. Stability
of the molecule was also investigated by scattering the mol-
ecule with a single soliton. It turned that slower collisions
tend to break up the molecule more easily than faster ones.
In addition, the outcome of the collision depends on the
phase of the incoming soliton such that a scatterer soliton
which is in phase with the molecule will typically preserve
its molecular structure, but for an out-of-phase soliton, the
molecule breaks up.

The two-soliton solution presented here and the analysis
that shows how to extract the soliton separation and relative

phase may constitute the basis for a more accurate and de-
tailed investigation of the origin of the soliton-soliton force,
especially for short separations and at coalescence. The re-
sults of this paper will be hopefully of relevance to possible
future applications of soliton molecules as data carriers or
memories.
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APPENDIX A: DERIVING THE TWO-SOLITON
SOLUTION

The Lax pair associated with the Gross-Pitaevskii equa-
tion, Eq. �2�, is obtained using our Lax pair search method
�23,26� and reads

�x = �J · � · � + P · � , �A1�

�t = i�2J · � · � · � + ��iP + x�̇J� · � · � + W · � ,

�A2�

where

��x,t� = ��1�x,t� �2�x,t�
�1�x,t� �2�x,t�

�, � = ��1 0

0 �2
� ,

J = �1 0

0 − 1
�, P = � 0 �g0Q

− �g0Q� 0
� ,

W = � ig0�Q�2/2 �g0x�̇Q + i�g0Qx/2

− �g0x�̇Q� + i�g0Qx
�/2 − ig0�Q�2/2

� ,

��t�=�2e��t�, Q�x , t�=��x , t�e���t�+i�̇�t�x2�/2, and �1 and �2 are
arbitrary constants. Here, ��x , t� is the solution of Eq. �2�
and � is the auxiliary field.

The compatibility condition �xt=�tx of the linear system,
Eqs. �A1� and �A2�, is equivalent to the Gross-Pitaevskii
equation, Eq. �2�, and its complex conjugate. For a known
seed solution, �0�x , t�, of Eq. �2� the linear system will have
the solution �0. The Darboux transformation is defined as
��1�=� ·�−��, where ��1� is the transformed field and
�=�0 ·� ·�0

−1. Requiring the linear system to be covariant
under the Darboux transformation imposes the transforma-
tion P�1�=P+J ·�−� ·J, where P�1� is the transformed P.
This gives the new solution in terms of the seed solution as

��x,t� = �0�x,t� −� 8

g0
��1 − �2�e���t�−i�̇�t�x2�/2

	
�1�x,t��2�x,t�

�2�x,t��1�x,t� − �1�x,t��2�x,t�
. �A3�

Using the trivial solution ��x , t�=0 as a seed, the Darboux
transformation generates the well-known sech-shaped single-
soliton solution �23�
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��x,t� =�n1�11

2
ei�1�x,t� sech��11�x − xcm1�t��� , �A4�

where

�1�x,t� = �0�t� + ẋcm1�t��x − xcm1�t��

−
1

2
�̇�t��x − xcm1�t��2, �A5�

xcm1�t� = �x1e2�0 + 
1g�t��e−��t�−�0, �A6�

�0�t� = �01 +
1

8
g�t��4e−2�0
1

2 + �n1g0�2� −
1

2
�̇�t�xcm1

2 �t� .

�A7�

Here, g�t�=�0
t e2��t��dt�, �11=e��t�n1g0 /2, ��0�=�0, and the

constant �01 corresponds to an arbitrary overall phase. This
solution corresponds to a soliton density profile that is local-
ized at xcm1�t�, moving with center-of-mass speed ẋcm1�t�,
and normalized to n1.

Using this single-soliton solution as a seed, the Darboux
transformation generates a two-soliton solution. The solution
of the linear system, Eqs. �A1� and �A2�, can in this case be
derived and simplified to the following form:

�1�x,t� = e��2y�1/g0n1�+y2� exp
y1 + y�1

2
+

− 2�2�1 + ie−�0
1

g0n1
�


ey + 1
−

g0n1�ey − 1�
ey + 1

+ 2�2�2�1 − ie−�0
1�� , �A8�

�2�x,t� = e�−�2y�1
�/g0n1�+y3�−

2g0n1 exp
− y1
� + y�1

2
+

2�2�1
� + ie−��0�
1

g0n1
�


ey + 1
+

− 2�2�1
� − ie−�0
1

g0n1
−

ey − 1

2�ey + 1�
� , �A9�

�1�x,t� = �2
��x,t� , �A10�

�2�x,t� = − �1
��x,t� , �A11�

�2 = − �1
�, �A12�

where

y = g0n1e��t��x − xcm1�t�� , �A13�

y1 =
1

8
e−2�0�− ie2�0g�t��32�1

2 − g0
2n1

2�

− 16�2e�0
1�1g�t� + 4i
1
2g�t�� , �A14�

y2 = ��2e−�0
1 + 2i�1��1g�t� , �A15�

y3 = − �1
�g�t���2e−�0
1 − 2i�1

�� + i�01. �A16�

Finally, the two-soliton solution is obtained by substituting
for �1,2 and �1,2 in Eq. �A3�, which upon substituting �1
=n2g0 / �4�2�+ ie−�0
2 /�8 and further simplification can then
be put in the form of Eq. �3�.

APPENDIX B: DERIVING CENTER-OF-MASS POSITIONS
AND ACCELERATION

1. Center-of-mass positions

Since X and Y are functions of x, we start by examining
their values near the roots of q. This task can be simplified

by rewriting X as X=e�1/2�e��t�g0�n1�x−xcm1�t��−n2�x−xcm2�t���. For
x�xcm1�t�, we get X�e�1/2�e��t�g0n2�xcm2�t�−xcm1�t���1, and for
x�xcm2�t�, we have X�e�1/2�e��t�g0n1�xcm2�t�−xcm1�t���1. For
x
xcm2�t� the first term in the exponent of X is larger than
the second one, provided that n1 is not much larger than n2,
as remarked at the end of this appendix; hence X�1. For
x�xcm1�t� the magnitude of the first term in the exponent of
X is smaller than the magnitude of the second one, which
again leads to X�1. For the region xcm1�t��x�xcm2�t�,
the condition X�1 is always satisfied. In conclusion, X�1
for all x, apart from situations with extreme values of n1 /n2.
The situation is simpler for Y :Y �1 for x
xcm2�t�, Y �1 for
x�xcm1�t�, and Y �0 for x�xcm1�t�. Thus, to find xr, we
expand q in powers of large X and Y and to find xl and xc, we
expand q in powers of large X.

Expanding q in powers of X and Y around � up to first
order in 1 /X and 1 /Y, we find

q =
1

2
�log Y − 2 log X + log Yr�

−
g0

2e�0�nd − ns�2�g0nse
��0� cos z − 2
d sin z�

X�g0
2ns

2e2�0 + 4
d
2�

, �B1�

where

Yr =
g0

2�nd − ns�2�g0
2nd

2e2�0 + 4
d
2�

g0
2ns

2e2�0 + 4
d
2 . �B2�

The root of this equation gives the center-of-mass position
of the right soliton. The first two logarithmic terms equal
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n2g0�x−xcm2�t��. The third logarithmic term is constant and
diverges for nd=
d=0. The last term is small since it is pro-
portional to 1 /X, but it is needed because it contains the
phase-dependent contributions. Due to the combination of
log X and X, finding an algebraic expression for the root of
this equation will not be possible. Instead, we ignore at first
the 1 /X term to obtain the dominant contribution, which will
then be used to find the 1 /X contribution. This gives

xr = xcm2�t� −
2e−��t�

g0�nd + ns�
log Yr. �B3�

Substituting back in Eq. �B1� and solving for x, we finally
get

xr = xcm2�t� −
2e−��t� log Yr

g0�nd + ns�

+
4Yr

ns/�nd+ns��g0nse
�0 cos zr − 2
d sin zr�

g0�nd + ns��g0
2nd

2e2�0 + 4
d
2�

	e�1/4�g0xd�nd−ns�e
��t�−��t�+�0, �B4�

where zr=z�x=xr�.
For the left and central solitons, we expand q in powers of

X, leaving Y arbitrary. In this manner, we account for the two
roots, xl and xc, simultaneously. Expanding q in powers of
large X, we get

q =
1

2
log Y +

1

2
log� �nd − ns�2

4�Y + 1�2e−2�0
d
2/g0

2 + �nd + nsY�2� +
C

X
,

�B5�

where

C = �Y + 1�2e−�0�2g0
2e2�0
d sin z�nd

2 + ns
2Y�

+ 4g0e�0
d
2 cos z�ndY + ns� + g0

3ndnse
3�0 cos z�nd + nsY�

+ 8�Y + 1�
d
3 sin z�/�g0

2e2�0�nd + nsY�2 + 4�Y + 1�2
d
2� .

�B6�

Similar to the above procedure for xr, we solve first Eq. �B5�
without the 1 /X term, which gives

Y� =
g0e�0�g0e�0�nd

2 − 4ndns + ns
2� � �M�nd − ns�� − 8
d

2

2g0
2ns

2e2�0 + 8
d
2 ,

�B7�

where

M = g0
2e2�0�nd

2 − 6ndns + ns
2� − 32
d

2. �B8�

In the limit nd→0 and 
d→0, the solution Y+ approaches
zero, which corresponds to xl=xcm1�t�+ �log Y+� / �n1g0e��t��
→−�. The solution Y− approaches 1, which corresponds to
xc=xcm1�t�. Thus, the solutions Y+ and Y− correspond the left
and central solitons, respectively. Since we will be interested
only in the left and right solitons, we take for the rest of this
appendix the Y+. To find the contribution of the 1 /X term, we
substitute for Y+ in the 1 /X term of Eq. �B5�, and then solve
for Y to get a corrected expression for Y+,

Y+ =
g0e�0��nd − ns��M+ + g0e�0�e2C+/X+�nd − ns�2 − 2ndns�� − 8
d

2

2g0
2ns

2e2�0 + 8
d
2 , �B9�

where M+=g0
2e2��C+/X+�+�0��e2C�/X+�nd−ns�2−4ndns�

−16
d
2�e2C�/X+ +1�, X+=e�1/4�g0xd�nd+ns�e

��t�+�0, xd=xcm2�t�
−xcm1�t�, C+=C�Y =Y+ ,x=xl ,z=zl�, and zl=z�xl�. Expanding
for large X+ and then solving for x, we finally get

xl = xcm1�t� −
2e−��t� log�Y+�

g0�nd − ns�

−
4C+e�0−��t�

X+
�g0

2e2�0�nd
2 − 6ndns + ns

2� − 32
d
2

. �B10�

Final remarks about the validity of the above derivation are
in order. The condition X�1 will be met in the region x

xcm2�t� only for n1 /n2
 �xr−xcm2�t�� / �xr−xcm1�t��. Note
that the numerator of the right-hand side of this inequality is
less than the denominator by at least xcm2�t�−xcm1�t�. For x
�xcm1�t�, the condition X�1 will be met only for n1 /n2
� �xcm2�t�−xl� / �xcm1�t�−xl�. Here, the numerator of the
right-hand side of this inequality is larger than the denomi-
nator by at least xcm2�t�−xcm1�t�. A more quantitative esti-

mate for the ratio n1 /n2 can be obtained using the above
results for xl�n1 ,n2� and xr�n1 ,n2�.

Furthermore, the above-derived formula for xl is limited
to values of the parameters for which the quantities M and
M+ are positive. At M =0, the two roots xl and xc coincide. In
Fig. 1, this corresponds to the maximum of the q curve lying
on the x axis. For M �0, the maximum of the curve is below
the x axis and the two roots become nonreal.

2. Acceleration

Soliton separation �=xr−xl is calculated using Eqs. �B4�
and �B10�. This gives rise to Eq. �18� with coefficients

�1 =
4nsYr

ns/�nd+ns�

�nd + ns��g0
2nd

2e2�0 + 4
d
2�

, �B11�

�2 =
4g0�Y+ + 1�2�g0

2ndnse
2�0�nd + nsY+� + 4
d

2�ndY+ + ns��
�M�g0

2e2�0�nd + nsY+�2 + 4�Y+ + 1�2
d
2�

,

�B12�
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�3 =
8�Y+ + 1�2
d�g0

2e2�0�nd
2 + ns

2Y+� + 4�Y+ + 1�
d
2�

�M�g0
2e2�0�nd + nsY+�2 + 4�Y+ + 1�2
d

2�
,

�B13�

�4 = −
8
dYr

ns/�nd+ns�

g0�nd + ns��g0
2nd

2e2�0 + 4
d
2�

. �B14�

Noting that

ẋd�t� = 
de��t�−�0 − xd�t��̇�t� ,

ẍd�t� = xd�t���̇�t�2 − �̈�t�� ,

żl�t� = −
1

8
e2��t�−2�0�g0

2ndnse
2�0 − 4
d

2� ,

z̈l�t� = −
1

4
e2��t�−2�0�̇�t��g0

2ndnse
2��0� − 4
d

2� ,

żr�t� = −
1

8
e2��t�−2�0�g0

2ndnse
2�0 + 4
d

2� ,

z̈r�t� = −
1

4
e2��t�−2�0�̇�t��g0

2ndnse
2��0� + 4
d

2� ,

the acceleration, �̈�t�, can be calculated to take the form of
Eq. �20� with coefficients

�5 =
Y+

�nd+ns�/�2nd−2ns�

64�Yr

e�−�1/4�g0�nde��t�−5�0��4g0e2�0
d
2�g0�3�nd

2

+ 4ndns + ns
2� + 4�2
d�nd + ns�� − g0

3ndnse
4�0�g0ndns�3

+ 4�2
d�nd + ns�� − 16�3
d
4� ,

�6 = −
Yr

�nd/�nd+ns��−1/2

64�Y+

e��1/4�g0�nde��t�−3�0��− 4g0e2�0
d
2�g0�4�nd

2

− 4ndns + ns
2� + 4�1
d�nd − ns�� + g0

3ndnse
4�0�g0ndns�4

+ 4�1
d�ns − nd�� + 16�4
d
4� ,

�7 =
Y+

�nd+ns�/�2nd−2ns�

64�Yr

e�−�1/4�g0�nde��t�−4�0�

	�4g0
2e2�0
d�g0ndns�3�nd + ns� + �2
d�nd

2 + 4ndns

+ ns
2�� + g0

4nd
2ns

2�2�− e4�0� − 16
d
3�g0�3�nd + ns�

+ �2
d�� ,

�8 = −
Yr

�nd/�nd+ns��−1/2

64�Y+

e��1/4�g0�nde��t�−2�0�

	�− 4g0
2e2�0
d�g0ndns�4�ns − nd� + �1
d�nd

2 − 4ndns

+ ns
2�� + g0

4nd
2ns

2�1e4�0 + 16
d
3�g0�4�nd − ns� + �1
d�� .
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