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A relativistic, warm fluid model of a nonequilibrium, collisionless plasma is developed and applied to
examine nonlinear Langmuir waves excited by relativistically intense, short-pulse lasers. Closure of the cova-
riant fluid theory is obtained via an asymptotic expansion assuming a nonrelativistic plasma temperature. The
momentum spread is calculated in the presence of an intense laser field and shown to be intrinsically aniso-
tropic. Coupling between the transverse and longitudinal momentum variances is enabled by the laser field. A
generalized dispersion relation is derived for Langmuir waves in a thermal plasma in the presence of an intense
laser field. Including thermal fluctuations in three-velocity-space dimensions, the properties of the nonlinear
electron plasma wave, such as the plasma temperature evolution and nonlinear wavelength, are examined and
the maximum amplitude of the nonlinear oscillation is derived. The presence of a relativistically intense laser
pulse is shown to strongly influence the maximum plasma wave amplitude for nonrelativistic phase velocities
owing to the coupling between the longitudinal and transverse momentum variances.
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I. INTRODUCTION

Short-pulse �sub-ps�, intense ��1018 W /cm2, such that
the electron quiver velocity in the laser field is relativistic�
laser-plasma interactions access a physical regime where the
plasma electrons experience relativistic motion while the
plasma temperature �momentum spread� remains small. The
plasma is typically created by the laser through photoioniza-
tion and the laser-plasma interaction occurs on a time scale
short compared to the ion motion and the collision frequency.
Such a collisionless plasma is not in local thermodynamical
equilibrium, where standard relativistic collisionally domi-
nated plasma fluid theories apply �see, for example, Ref. �1��.
In this work, a relativistic warm plasma fluid theory of the
nonequilibrium, collisionless plasma is used to describe the
nonlinear plasma wave excitation by an intense laser pulse.

The electron plasma wave driven by an intense laser pulse
can be highly nonlinear and support large electric fields.
Large amplitude plasma waves with relativistic phase veloci-
ties can be used to efficiently accelerate charged particles
and high-intensity lasers have been proposed for the excita-
tion of relativistic plasma waves for plasma-based accelera-
tor applications �for a review, see Ref. �2��. Laser-plasma-
based accelerator experiments �3–6� have measured electric
fields in excess of 100 GV/m, several orders of magnitude
greater than conventional accelerators. The relativistic warm
fluid theory of the plasma described in this work can be
applied to address the fundamental question of the maximum
amplitude of these nonlinear relativistic electron plasma
waves driven by intense lasers �7�.

The subject of relativistic nonlinear oscillations in a
plasma was first treated by Akhiezer and Polovin �8�. Using
the nonlinear, relativistic, cold fluid equations in one dimen-
sion �1D�, Akhiezer and Polovin showed, assuming a travel-
ing wave solution, that the maximum amplitude of a plasma
wave that can sustain an oscillation in the plasma is Ecold
=�2���−1�1/2E0, which is referred to as the cold relativistic
wave-breaking field. Here, ��= �1−��

2�−1/2 is the relativistic
Lorentz factor of the plasma wave phase velocity and E0

=cm�p /e is referred to as the nonrelativistic cold wave-
breaking field, with �p= �4�n0e2 /m�1/2=kpc the plasma fre-
quency, n0 the ambient electron plasma number density, −e
the electronic charge, m the rest mass of the electron, and c
the speed of light in vacuo. In the limit of nonrelativistic
phase velocities, ���1, Ecold���E0. For a plasma wave
driven by the ponderomotive force of a short-pulse laser in
an underdense plasma, the phase velocity of the plasma wave
is approximately the laser group velocity, ����0 /�p	1 in
the linear regime �assuming a broad laser spot size�, where
�0 is the laser frequency. For plasma waves driven by Ra-
man backscatter of the laser �i.e., generated by the beating of
a laser and its backscattered light�, the phase velocity of the
plasma wave in the linear regime is nonrelativistic ��

��p /2�0�1.
The analysis of Akhiezer and Polovin �8� is based on a

cold, collisionless fluid theory. When the amplitude of the
plasma wave field approaches Ecold=�2���−1�1/2E0, the cold
plasma density becomes singular n→
, at which point fluid
oscillations can no longer be sustained. For a cold plasma,
this singularity corresponds to a peak amplitude of the fluid
velocity equal to the phase velocity of the wave, which im-
plies a strong wave-particle resonance. This singularity is
often referred to as “wave breaking” and was first described
by Dawson �9�. The singularity indicates a breakdown of the
fluid equations. In this limit, the cold, collisionless fluid
model becomes invalid and a warm plasma model is re-
quired.

Coffey �10� first considered large amplitude plasma waves
including the effects of a finite-plasma temperature and cal-
culated, assuming a 1D waterbag momentum distribution of
the plasma, the maximum field amplitude for a nonrelativis-
tic ����1� plasma wave
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where �=kBTe0 /mc2 is the normalized initial electron plasma
temperature with kB the Boltzmann constant. Equation �1� is
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valid for �1/2����1 and indicates that temperature effects
reduce the maximum field amplitude of the plasma wave.

A plasma wave driven by a short-pulse �pulse duration on
the order of the plasma period� laser will have a phase ve-
locity approximately equal to the group velocity of the laser
pulse, typically ����0 /�p�10–100 for laser propagation
in an underdense plasma �e.g., n0�1017–1019 cm−3 and �0
=2�c /�0�1 
m�. Without some additional heating mecha-
nisms, laboratory plasmas used for short-pulse laser-plasma
experiments have temperatures of the order of �mc2

�10 eV �i.e., the ionization potential� �11,12�. Therefore, a
short-pulse laser-driven plasma wave �e.g., a laser-driven
plasma-based accelerator� will satisfy �1/2���

−1�1. In Ref.
�7�, a general result for the maximum field of a nonlinear
electron plasma wave was presented, which can be applied to
the regime of laser-driven plasma waves and reduces to the
previous wave-breaking calculations in the cold and nonrel-
ativistic limits �8–10�. This general 1D wave-breaking result
was derived using the relativistic warm plasma theory pre-
sented in this work. Warm 1D fluid theories �13,14� have
also been applied in the limit of ultrarelativistic plasma
waves ��=1, which are valid for plasma waves driven by
highly relativistic electron beams satisfying ��

2�	1, and dis-
crepancies between previous 1D ultrarelativistic theories
�13,14� have been discussed in Ref. �15�.

In this paper, we extend the relativistic fluid theory used
in Ref. �7� to include the transverse thermal fluctuations. A
warm plasma assumption �i.e., the distribution has a small
width about a relativistic mean motion� allows closure of the
hierarchy of equations for the moments of the phase-space
distribution. The evolution of the momentum variance is de-
rived in the presence of an intense laser field. The laser field
is assumed to be a plane wave. Here, we show that the mo-
mentum spread is highly anisotropic. This is in agreement
with the Hamiltonian description found in Refs. �16,17� and
in contrast to the findings of Ref. �18� that predicted isotropic
pressure.

The general problem of three-dimensional �3D� adiabatic
closure for a collisionless plasma is addressed in this work.
Note that if the electron plasma is collisionless, i.e., �c��p,
where �c is the collision frequency, then changes in tempera-
ture �momentum spread� during the compression along the
direction of wave propagation will not couple to the other
two velocity dimensions and the pressure will be anisotropic.
In particular, the 3D adiabatic equation of state pn−5/3

=const, where p is the isotropic pressure and n is the plasma
density, cannot be applied to a Langmuir wave. In deriving
pn−5/3=const, an isotropic pressure is assumed �as well as no
heat flow�, which requires collisions to transfer energy
among the dimensions faster than the wave period �c	�
��p. The collision frequency is �c /�p�1 /� �19�, where �
is the plasma parameter, and the condition for a plasma re-
quires �	1. Hence, �c�� and the pressure for a Langmuir
wave is intrinsically anisotropic. We show in this work that
the presence of an intense laser pulse allows coupling be-
tween the anisotropic momentum variance components, and
using the relativistic warm fluid equations, a generalized
Langmuir dispersion relation is derived including the influ-
ence of an intense laser field on the thermal fluctuations.

This paper is organized as follows. Section II describes a
covariant fluid model of the collisionless plasma. Section III

discusses the warm plasma assumption that allows closure of
the fluid equations. The evolution for the anisotropic mo-
mentum variance is derived. From the linearized relativistic
warm fluid equations, a generalized Langmuir dispersion re-
lation is derived including the presence of an intense laser
field. The quasistatic warm plasma response, assuming a
traveling wave solution, is described in Sec. IV. In Sec. V,
the laser excitation of nonlinear plasma waves is discussed
and a generalized quasistatic wave equation is derived in-
cluding the transverse thermal fluctuations. From the quasi-
static wave equation, the maximum field amplitude of the
plasma wave �wave-breaking limit� is calculated. Conclu-
sions are offered in Sec. VI.

II. RELATIVISTIC FLUID EQUATIONS

The Vlasov �collisionless Boltzmann� equation �1� for
particles of charge q and mass m, in covariant form, is

p
�
f + 	 q

mc2F��p�
 � f

�p� = 0, �2�

where f�x
 , p
� is the phase-space distribution �a Lorentz
scalar�, x
= �ct ,x�, p�= �� ,��� is the normalized particle
four-momentum, �2=1+ p2, �
= ��ct ,−��, and F
�=�
A�

−��A
 is the antisymmetric electromagnetic field-strength
tensor �20�, with A
= �� ,A� the four-vector potential. The
space-time metric tensor g
� for the following covariant for-
mulation has the convention g
�=diag�1,−1,−1,−1�.

Following previous relativistic fluid formulations �21–24�,
consider the following moments of the phase-space distribu-
tion:

h =
 d�f , �3�

J
 =
 d�fp
, �4�

T
� =
 d�fp
p�, �5�

M�
� =
 d�fp�p
p�, �6�

where d�=d3p / p0=dp1dp2dp3 / p0 is the invariant
momentum-space volume element. Equations �3�–�6� corre-
spond to the invariant density, fluid four-current, energy-
momentum stress tensor, and energy-momentum stress flux,
respectively. The inhomogeneous Maxwell equations can be
expressed as

�
F
� = 4��
s

qsJs
�, �7�

where the sum is over species. The proper density may be
defined using the four-current as np= �J
J
�1/2. Using Eq. �2�,
the fluid description of the plasma �i.e., the evolution of the
moments of the phase-space distribution� can be written in
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terms of the exact collisionless conservation laws

�
J
 = 0, �8�

�
T
� = 	 q

mc2
F��J�, �9�

��M�
� = 	 q

mc2
�F
�T�
� + F��T�


� . �10�

Equations �8�–�10� correspond to the fluid continuity �mass
conservation�, energy-momentum conservation, and conser-
vation of energy-momentum flux, respectively.

Using the fluid four-momentum, defined as the ratio of the
four-current to the invariant density,

u
 = J
/h . �11�

The following centered moments of the phase-space distri-
bution may be defined as

�
� =
 d�f�p
 − u
��p� − u�� , �12�

Q�
� =
 d�f�p� − u���p
 − u
��p� − u�� . �13�

Note that there is freedom in choosing a fluid four-
momentum and various definitions may be employed �see,
for example, Refs. �1,16��. The fluid four-momentum Eq.
�11� is related to the more standard choice of Eckart �25�
U
=J
 / �J
J
�1/2 by a Lorentz invariant scalar, namely, the
ratio of proper to invariant densities: u
= �np /h�U
.

The moments Eqs. �5� and �6� may be expressed using the
centered moments Eqs. �12� and �13� as

T
� = hu
u� + �
�, �14�

M�
� = hu�u
u� + Q�
� + �
�u� + �
�u� + ���u
.

�15�

Note that the contractions of the moments satisfy g
�T
�

=h and g
�M�
�=J� and the contractions of the centered
moments satisfy

g
��
� = �1 − u
u
�h , �16�

g
�Q�
� = − 2�
�u
. �17�

The conservation laws Eqs. �8�–�10� may be expressed using
the centered moments as the fluid equations �21–24�

�
�hu
� = 0, �18�

hu
�
u� = − �
�
� + 	 q

mc2
F��hu�, �19�

and

hu�����
�/h� + �
���u� + �����u


= − ��Q�
� + 	 q

mc2
�F
���
� + F����


� . �20�

The above fluid formulation is an exact consequence of the
Vlasov equation Eq. �2� and no assumptions were made on
the derivations of the above relations �the relativistic mo-
ment equations up to the fourth moment�. In Appendix A, the
relativistic fluid quantities described in this section are re-
lated to conventional fluid quantities. In Sec. III, a “warm”
plasma assumption is described, where it is assumed that the
distribution f has a small width about a relativistic mean
momentum. In particular, the third and higher-order centered
moments �i.e., Q�
�� are assumed to be small and may be
neglected, providing closure to the hierarchy of moment
equations.

III. WARM PLASMA ASSUMPTION

In the following, it is assumed that at any x
, the distri-
bution f has a small momentum spread about its mean
�16,21–24�. This warm plasma assumption will allow the hi-
erarchy of moment equations to be truncated and no specific
form of the distribution f will be imposed.

An invariant measure of thermal spread may be defined as
�21–24�

�2 = − �


/h = u
u
 − 1, �21�

where �2�1 is assumed to be small. Note that � is a Lorentz
invariant and allows a truncation valid in the rest frame to be
preserved after an arbitrary Lorentz boost. In the local
plasma rest frame �i.e., moving at u
�, it is assumed that
�
� /h=O��2� and Q�
� /h=O��3� and the components sat-
isfy �ij /h=O��2�, �i0 /h=O��3�, �00 /h=O��4�, and Qijk /h
=O��3�, Qij0 /h=O��4�, Qi00 /h=O��5�, Q000 /h=O��6�. Trun-
cation of the moment hierarchy to order O��2� is achieved by
neglecting the third-order centered moment Q�
� in the fluid
equations �cf. Eq. �20��. The invariant measure of thermal
spread is related to the width of the distribution �i.e., tem-
perature normalized to the electron rest energy�. In Appendix
B, the invariant measure � is calculated for a relativistic
Maxwellian �Jüttner� distribution and shown to be equal to
the width of the momentum distribution.

As a consequence of the thermal inertia, the invariant den-
sity h is not equal to the proper density defined by the four-
current np= �J
J
�1/2. Following Refs. �21,23�, consider the
ratio �th=np /h. Note that u
u
=�th

2 . Using the contraction of
the stress-energy tensor T



=h,

�th
2 = 1 − �



/h = 1 + �2, �22�

and �th can be identified as the relativistic Lorentz factor
associated with the thermal fluctuations. The fluid three-
velocity normalized to the speed of light w may be defined
such that u
=J
 /h=�th��1,w�, where �= �1−w ·w�−1/2 is the
Lorentz factor associated with the normalized fluid three-
velocity. The invariant density h is related to the density in
the lab frame J0=n by h=n / ��th��.
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Neglecting the third-order-centered moment Q�
� �i.e., re-
taining terms to order O��2��, the contraction Eq. �17� be-
comes

�
�u
 = 0 �23�

and the fluid equations Eqs. �18�–�20� become �to order
O��2��

u
�
h = − h�
u
, �24�

hu
�
u� = − �
�
� + �q/mc2�F��hu�, �25�

hu�����
�/h� = − �
���u� − �����u


+ �q/mc2��F����

 + F
���

�� . �26�

Equations �23�–�26� constitute a closed set of fluid equations,
which may be solved for the plasma evolution.

A. Warm-plasma closure for one-dimensional fluid motion

In the limit of 1D fluid motion, i.e., u
=�th��1,wz�, Eq.
�23� implies �00=wz

2�11 and �10=wz�
11. Combining the

evolution equation for the momentum-density variance �11,
Eq. �26�, the continuity equation Eq. �24�, and the zeroth
component of the momentum equation Eq. �25�, yields �to
order O��2��

u
�
�h−3�−2�11� = 0, �27�

where �u0�−1u
�
= ��0+wz�1� is the �noncovariant� convec-
tive time derivative. Equation �27� is a result of entropy con-
servation. Assuming an initially quiescent �wz=0�, isotropic
plasma, Eq. �27� implies

�11

n0
= �2	 h

n0

3

� , �28�

where � is the initial momentum variance �initial plasma
temperature normalized to mc2 /kB�. In the limit of 1D fluid
motion, to order O��2�, the invariant measure of thermal
spread is given by

�2 =
n0

h
	�11

n0
−

�00

n0

 = 	 h

n0

2

� . �29�

The variance in momentum about the mean is given by
�11 /h=�2�2��n /n0�2� and the root-mean-square variance
in the velocity �th about the mean velocity wz is �th=� /�2.

Equation �28� provides closure to the warm fluid equa-
tions in the limit of 1D fluid motion and the momentum
variance is proportional to the density cubed. This is some-
times referred to as the “adiabatic equation of state” �26�.
Note that, the derivation of Eqs. �28� and �29� does not as-
sume a specific form of the phase-space distribution f or an
equation of state �although only reversible processes are con-
sidered in this collisionless formulation�. The derivation is a
consequence of the asymptotic expansion �warm plasma ap-
proximation�. Equation �28� is valid for any distribution f
provided �2=��h /n0�2�1 �i.e., a warm plasma� and the
plasma is initially quiescent.

The closed system of warm fluid equations in the limit of
1D fluid motion, coupled to the Poisson equation for the

electrostatic field �z
2�=kp

2�n /n0−1�, may be expressed as
�ctn+�z�nwz�=0 and

��ct + wz�z�uz = �z� − ��z��2p� − �ct�wz�
2p��/n , �30�

where n=J0 and the normalized 1D hydrostatic pressure may
be defined as p=h�2= �n /n0��3n0� �cf. Appendix A�. Note
that uz=u0wz, where u0=�th�= �1+�2�1/2�1−wz

2�−1/2= �1+�2

+uz
2�1/2 is the total relativistic Lorentz factor of the warm

fluid, and �2�1 is assumed in the warm fluid model. Com-
pared to the 1D relativistic cold fluid model, thermal effects
are manifested in the pressure terms on the right-hand side of
Eq. �30�, as well as the thermal correction to the relativistic
Lorentz factor.

B. Warm relativistic plasma in a laser field

Consider a linearly polarized drive laser �assumed to be a
plane wave� propagating in the z direction with transverse-
normalized vector potential a�=eA� /mc2 �in the Coulomb
gauge�. Consider 1D spatial and 3D momentum-space mo-
tion of the plasma in the laser field such that the phase-space
distribution is f = f�z , p
 , t�, the fluid momentum takes the
form u
=�th��1,wz ,w� ,w3� �with wz along the direction of
laser propagation, w� along the polarization direction of the
laser, and w3 orthogonal to the laser polarization and propa-
gation directions�, and �
= ��0 ,�1�= ��ct ,�z� �i.e., no trans-
verse spatial variation�.

For a plane wave laser pulse with normalized vector po-
tential a�=eA� /mc2 and space-charge oscillation with nor-
malized potential �=e� /mc2 �in the Coulomb gauge�, the
nonzero field strength tensor components are

F10 = − F01 = − �mc2/e��1� , �31�

F20 = − F02 = − �mc2/e��0a�, �32�

F12 = − F21 = − �mc2/e��1a�. �33�

In this work, we consider an underdense plasma. For an un-
derdense plasma, a time scale separation exists between the
fast laser oscillation �with time scale �0

−1� and the slow
plasma response �with time scale �p

−1� such that �p /�0�1.
For the case of linear laser polarization, a time average over
the fast laser oscillation may be performed such that �a�

2 �
�a0

2 /2, with a0
2�7.3�10−19���
m��2I0�W /cm2� and I0 is

the peak laser intensity. The plane wave assumption will be
valid provided kprL	1 and a0� �kprL�2, where rL is the char-
acteristic transverse size of the laser.

The fluid equations can be combined to yield the compo-
nents of the momentum variance Eq. �26� �to order O��2��
assuming an initially quiescent plasma: u
�
��33 /h�=0,
u
�
��23 /h�=0, u
�
��22 /h�=0,

u
�
	�13

�h2
 = − 	�23

h2 
�1�a�/�� , �34�

u
�
	�12

�h2
 = − 	�22

h2 
�1�a�/�� , �35�
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u
�
	 �11

�2h3
 = − 2	�12

�h3
�1�a�/�� . �36�

Equation �23� implies �
0=wz�

1+w��
2+w3�
3 and the

additional components are

�00 = wz
2�11 + 2wzw��12 + w�

2 �22, �37�

�01 = wz�
11 + w��12, �38�

�02 = wz�
12 + w��22, �39�

�03 = wz�
13 + w��23. �40�

The momentum variance tensor ��
� /h� is anisotropic and
Eqs. �34�–�36� indicate that the laser field allows coupling
between the momentum variance components.

The momentum variance components can be combined to
yield the invariant

u
�
�	�33

h

�	�22

h

	 �11

�2h3
 − 	�12

�h2
2�� = 0, �41�

which is a result of entropy conservation. For an initially
isotropic, quiescent plasma,

	�33

n0�

�	�22

n0�

	�11

n0�

 − 	�12

n0�

2� = �2	 h

n0

5

. �42�

Equations �41� and �42� are 3D generalizations of the 1D
results Eqs. �27� and �28�, respectively �i.e., generalization of
the 1D “adiabatic equation of state”�.

C. Dispersion relation for an electron plasma wave in an
intense laser field

Assuming a warm plasma in a laser field �closure given in
Sec. III B� and applying the Fourier transformation ��z ,�t�
→ �ik ,−i�� to the linearized relativistic warm fluid equations
�i.e., linearization of Eqs. �23�–�26��, coupled to the Poisson
equation, yields the Langmuir wave dispersion relation

�2 =
�p

2

��
	1 +

3

2

a2�

��
2 −

5

2

�

��
2 
 + 3k2c2 �

��
2 	1 −

3

2

a2

��
2 +

a2k2c2

��
2 �2 
 ,

�43�

where � is the initial isotropic plasma temperature �invariant
measure of thermal spread�, ��

2 =1+a2 is the relativistic Lor-
entz factor associated with the quiver motion in the laser
field, and a2 is assumed constant. For linear laser polariza-
tion, a2→a0

2 /2, where a0 is the normalized peak of the laser
intensity. Figure 1 shows the Langmuir wave dispersion
curves Eq. �43�. Curves �a� �=0.01 and �b� �=0.05 show the
effect of temperature on the Langmuir dispersion without a
laser field �i.e., the relativistic Bohm-Gross dispersion�.
Curves �c� �=0.01 and �d� �=0.05 include the presence of a
laser field with a=0.75. Also plotted are the speed of light
line �=kc, the plasma frequency �=�p, and the relativistic
plasma frequency �=�p /�� for a=0.75. The phase velocity
��=� /ck is strongly modified by the presence of an intense
laser field in the limit of slow phase velocities �i.e., k	kp�.

Without a laser field, the phase velocity is bounded by ��

� �3��1/2. With an intense laser field �such that a /��	���,
the phase velocity is bounded by � /ck� �3��1/4a1/2 /��.

The group velocity of plasma wave is

�g =
��

c � k
=

3�

����
2 �1 + 	 2

��
2 −

3

2

 a2

��
2 � . �44�

In the absence of a laser field, �g��=3�.
For relativistic phase velocities � /ck�1, the wavelength

of the plasma oscillation given by Eq. �43� is

� = �p��
1/2�1 −

�

4��
2 −

3a2

4��
2 ��1 − ��

−2�� , �45�

where �p=2�c /�p. In the absence of a laser field a=0, �
=�p�1−� /4� and the wavelength of the oscillation is reduced
from the plasma wavelength owing to the thermal inertia.

In the weakly relativistic limit a�1, neglecting terms of
order �a2�1 yields the dispersion relation

�2 = �p
2�1 − a2/2 − 5�/2� + 3k2c2� . �46�

Equation �46� is the relativistic Bohm-Gross dispersion rela-
tion including the lowest-order correction to the relativistic
plasma frequency owing to the quiver velocity.

In the absence of a laser field �a=0�, Eq. �43� reduces to
the relativistic �including thermal inertia� Bohm-Gross dis-
persion relation derived by Clemmow and Wilson �27�: �2

=�p
2�1−5� /2�+3�k2c2.

IV. QUASISTATIC WARM FLUID EQUATIONS

In this section, the warm fluid model is applied to de-
scribe the nonlinear response of the plasma to an intense
laser field. It is assumed that the plasma wave is only a
function of the comoving variable �=z−��ct, i.e., the quasi-
static approximation �QSA� �2�, where �� is the phase veloc-
ity of the plasma wave �approximately the group velocity of
the driver�. In the QSA, the phase-space distribution takes
the form f�� , p
�. Here, the laser driver is also assumed to be
only a function of the comoving variable a����.

Applying the QSA, the continuity equation Eq. �8�,
�
�hu
�=0, becomes

0.0 0.5 1.0 1.5 2.0 2.5 3.00.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15

ω/ω
p

kc/ω
p

ω=ω
p

ω=ω
p
/γ

ω=kc

(a)

(b)

(c) (d)

FIG. 1. Langmuir wave dispersion curves Eq. �43�: �a� �=0.01;
a=0, �b� �=0.05, a=0, �c� �=0.01, a=0.75, and �d� �=0.05, a
=0.75.
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���h�th���� − wz�� = 0 �47�

or, for an initially quiescent plasma,

h/n0 = ��th��1 − ��
−1wz��−1. �48�

The proper density is given by np=�thh and the density in the
laboratory frame is n=J0=hu0=�th�h. Hence, in the QSA,
the plasma density in the laboratory frame is n /n0
= �1−��

−1w�−1.

A. Momentum variance evolution

Applying the QSA, the momentum variance components
�cf. Eqs. �34�–�36�� are �33 /n0= �h /n0��33, �23 /n0
= �h /n0��23, �22 /n0= �h /n0��22,

�13

n0
= �	 h

n0

2��13 + 	 a�

���

�23� , �49�

�12

n0
= �	 h

n0

2��12 + 	 a�

���

�22� , �50�

�11

n0
= �2	 h

n0

3��11 + 2	 a�

���

�12 + 	 a�

���

2

�22� ,

�51�

where �ij are constants of integration �the initial tempera-
tures, normalized to mc2 /kB, assuming an initially quiescent
plasma�. Note that, for a large amplitude plasma wave, the
peak of the density perturbation is nonlinear such that h /n0
	1 and �33��23��22��12��13��11, i.e., the momen-
tum variance tensor is highly anisotropic, and for highly non-
linear plasma waves with relativistic phase velocities, the
longitudinal component of the momentum variance domi-
nates. In the limit of 1D fluid motion, �3i=�2i=0 for i
=1,2 ,3 and Eq. �51� reduces to Eq. �28�.

For a plasma with an initially isotropic temperature, the
constants of integration are �ij =� for i= j and �ij =0 for i
� j. The variance tensor components for an initially isotropic
plasma are �23=�13=0 and

�22

n0
=

�33

n0
=

�1 − wz
2�1/2

���1 − ��
−1wz�

� , �52�

�12

n0
=

�1 − wz
2�1/2

���1 − ��
−1wz�2� a�

��

��
−1�1 − wz

2�1/2�� , �53�

�11

n0
=

�1 − wz
2�1/2

���1 − ��
−1wz�3�1 +

a�
2

��
2 ��

−2�1 − wz
2��� , �54�

where ��
2 =1+a�

2 . In the following, an isotropic initial tem-
perature distribution is considered.

B. Transverse momentum evolution

For plasma fluid motion in a laser with fields given by
Eqs. �31�–�33�, the equations for the transverse momentum
components, Eq. �25�, reduce to

h�th�u
�
��th�w� − a�� + �
�
2 = 0, �55�

h�th�u
�
��th�w3� + �
�
3 = 0. �56�

For an initially cold plasma, u
�
��w�−a��=0 and
u
�
��w3�=0, i.e., canonical transverse fluid momentum is
conserved. In the QSA, the transverse momentum equations
Eqs. �55� and �56� become

����th�w� − a� − ��
−1�1 − ��wz�

�12

n0
+ w�

�22

n0
� = 0,

�57�

����th�w3 − ��
−1�1 − ��wz�

�13

n0
+ w�

�23

n0
� = 0. �58�

Assuming an initially isotropic, quiescent plasma, �13=�23

=0, ����th�w3�=0, and Eq. �57� can be integrated to yield, to
order O��2�,

�w� = a� +
�12

n0
��wzw�

2 n0

h
+ ��

−1�1 − ��wz��
−

�11

n0
�1

2
�w�

n0

h
�1 − wz

2�� −
�22

n0
�1

2
�w�

n0

h
�1 − w�

2 �

+ w�� −
�33

n0
�1

2
�w�

n0

h
� . �59�

If a�=0 �e.g., after the laser driver�, then, to order O��2�,
�w�=0 and �= �1−wz

2�−1/2.
For the case of no momentum variance in the transverse

direction f =g�� , pz��2�p�−a��, i.e., initially cold in the
transverse direction such that �33=�23=�13=�12=�22=0, then

����th�w� − a�� = 0, �60�

which can be integrated to yield �th�w�=a� or

w� =
a��1 − wz

2�1/2

��th
2 + a�

2 �1/2 =
a��1 − wz

2�1/2

���
2 + �2�1/2 . �61�

The case of a distribution with no transverse momentum
variance, i.e., f =g�� , pz��2�p�−a��, was considered in Ref.
�7�.

C. Energy-momentum evolution

A quasistatic longitudinal constant of motion can be de-
rived by considering the components of the energy-
momentum conservation equation Eq. �9�,

���− ��T00 + T10� = h�th��wz��� + ��w���a�� , �62�

���− ��T01 + T11� = h�th����� + w���a�� . �63�

Combining Eqs. �62� and �63�, and using the continuity
equation Eq. �47�, yields

���− ��
2T01 + ��T11 + ��T00 − T10� = h�th���� − wz����

= n0����� . �64�

Using T
�=hu
u�+�
� and Eq. �23� �i.e., �
0=wz�

1

+w��
2�, Eq. �64� becomes
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����h�th
2 �2 + �11��1 − ��wz��1 − ��

−1wz� + �22w�
2

+ �12w��2wz − ��� + ��
−1��� = n0��� . �65�

Equation �65� yields the quasistatic longitudinal constant
of motion for the distribution f�� , p
�, assuming a plane laser
field in an initially isotropic plasma. Assuming an initially
quiescent plasma, Eq. �65� can be integrated to yield the
longitudinal constant of motion

1 + � +
5

2
� =

�1 − ��wz���

�1 − wz
2�1/2 	1 +

�

��
2 


+
3

2
�	1 +

a�
2

��
2 ��

−2��
−2
 �1 − ��wz��1 − wz

2�1/2

���1 − ��
−1wz�2 ,

�66�

with ��
2 =1+a�

2 . The first term on the right-hand side of Eq.
�66� represents the kinetic energy of the plasma fluid motion
in the wave ��=z−��ct� frame. The terms proportional to �
represent the thermal contributions to the plasma kinetic en-
ergy. The left-hand side of Eq. �66� corresponds to the rest
energy of the plasma, the electrostatic energy, and the energy
contained in the initial thermal fluctuations. For �=0, Eq.
�66� reduces to the well-known quasistatic result for the lon-
gitudinal constant of motion describing plasma wave excita-
tion by an ultrashort laser pulse in a cold plasma �2�.

Note that, in the QSA, the longitudinal momentum equa-
tion Eq. �25� can be written as

��� − wz���uz = − ��� − w���a� +
n0

n
����1 − ��w�

�	1 +
a�

2

��
2�2
 n3

n0
3�

− a�
2 n2

n0
2�3�� , �67�

where uz=�th�wz, �= �1−wz
2−w�

2 �−1/2, and w� is given by
Eq. �59�. The first term on the right-hand side of Eq. �67� is
the electrostatic field of the plasma wave, the second term is
responsible for the ponderomotive force of the laser pulse
�with thermal corrections�, and the third term is the thermal
force.

D. Temperature evolution

In Appendix B, it is shown that the invariant measure of
thermal spread is equal to the width of a Maxwellian distri-
bution �i.e., the temperature�. The invariant measure of ther-
mal spread �2=−��



 /h� evolves as

�2 =
n0

h
��1 − wz

2�
�11

n0
+ �1 − w�

2 �
�22

n0
− 2wzw�

�12

n0
+

�33

n0
� ,

�68�

and applying the QSA momentum variance equations yields

�2 = � �1 − wz
2�

�1 − ��
−1wz�2 + 2 +

2a�

��

�1 − wz
2�1/2�1 − ��wz�

�1 − ��
−1wz�2

−
a�

2

��
2 �1 − wz

2�	1 −
�1 − wz

2�
��� − wz�2
�� . �69�

Without the laser field �e.g., after the drive laser pulse, a�

=0�, Eq. �69� simplifies to

�2 = � �1 − wz
2�

�1 − ��
−1wz�2�� + 2� . �70�

For nonlinear plasma waves, such that h /n0	1, the tempera-
ture is well approximated by the 1D result �2��h /n0�2�
��n /�n0�2�.

V. NONLINEAR ELECTRON PLASMA WAVES

The evolution of the plasma wave potential is determined
by the Poisson equation

kp
−2��

2� = J0/n0 − 1 = �th�h/n0 − 1. �71�

The longitudinal constant of motion Eq. �66� can be com-
bined with the continuity equation Eq. �48� and the Poisson
equation Eq. �71� to yield the evolution equation for the
plasma fluid momentum

�2

�kp
2�2��wz� =

wz

�� − wz
, �72�

with ��wz� given by Eq. �66�. The excited plasma wave elec-

tric field is given by Ê=Ez /E0=−kp
−1����wz�, where E0

=mc2kp /e. In terms of the axial fluid velocity, the plasma
density perturbation is n /n0−1=wz / ���−wz� and the plasma
temperature evolution is given by Eq. �69�. Equation �72� is
an ordinary differential equation, which may be solved nu-
merically for an arbitrary laser field a����. Equations �66�
and �72� indicate that thermal effects will be a small contri-
bution to the plasma response, of order ��1, until the
plasma density perturbation becomes sufficiently large.

Note that Eqs. �66� and �72� differ from the result of Ref.
�18� �cf. Eqs. �4.7� and �4.10� of Ref. �18��. This is because,
in this work, we have not a priori assumed isotropy of the
momentum variance. Isotropy can only be assumed if the
collisional frequency is much greater than the plasma fre-
quency �i.e., the laser-plasma interaction time� �28�. For
short-pulse �sub-ps� laser interactions in underdense plasma,
the plasma wave excitation occurs on a time scale much
shorter than the collisional time scale ��ns� and homogene-
ity of the pressure tensor cannot be assumed. It should also
be noted that the fluid equations derived in Ref. �18� do not
reduce to the Bohm-Gross dispersion relation for a Langmuir
wave upon linearization owing to the isotropic pressure as-
sumption.

Figure 2 shows the plasma wave fluid velocity wz �dashed
curve� and the plasma wave electric field Ez /E0 �solid curve�
excited by a linearly polarized Gaussian laser pulse with en-
velope a�=a0 exp�−�2 /4Lrms

2 �, a0=1.5, and intensity rms
length kpLrms=1, in a plasma with �0 /�p=10 and �=10−4.
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Figure 2 illustrates the relativistic motion wz�1 and the non-
linear steepening of the plasma wave electric field. Figure 3
shows the electron plasma density perturbation �n /n0−1�
and the evolution of the normalized plasma temperature
�2 / �3��. The plasma temperature undergoes periodic oscilla-
tions in the wake owing to compression of the plasma elec-
tron density. Figure 4 shows the anisotropic momentum-
density variance tensor components �
� in the presence of
an intense laser field �owing to coupling between the longi-
tudinal and transverse momentum spread via the transverse
laser field�. This example corresponds to typical parameters
for laser-plasma accelerator experiments using a short-pulse,
intense Ti:sapphire laser in a gas jet, e.g., a 0.8 
m laser of
peak intensity 4.8�1018 W /cm2 and full width at half maxi-
mum �FWHM� intensity duration of 10 fs propagating in a
uniform photoionized �temperature �10 eV� plasma with
electron number density 1.7�1019 cm−3. For this density,
E0=mc�p /e�4�1011 V /m. The plasma density perturba-
tion can be measured experimentally via interferometric
techniques and frequency domain holography �29� has been
successfully applied to measure plasma waves with relativ-
istic phase velocities.

Linearizing Eq. �72� �wz�1 and assuming a��const�
and taking the Fourier transform ��→ ik yields the general-

ized dispersion relation Eq. �43� and the relativistic Bohm-
Gross dispersion relation in the absence of a laser field �a�

=0�. Assuming a plasma wave with relativistic phase veloc-
ity ����1� and linearizing Eq. �72� in the weakly relativistic
regime �a��1� yields the wave equation driven by the pon-
deromotive force

���
2 + kp

2�1 + �/2��wz = ��
2a�

2 /2. �73�

In the linear, weakly relativistic regime a�
2 �1, the dominant

thermal effect is a change in the wavelength of the plasma
wave ���p�1−� /4�.

A. First integral of plasma wave equation

Consider a plasma wave after a short laser driver �e.g., the
standard laser wake-field regime� where ��=1 or a plasma
wave excited by a long laser pulse �e.g., the self-modulated
laser wake-field regime� such that ��

−1�kp
−1������1 and ��

�const. For these cases, the first integral of Eq. �72� may be
evaluated. It is convenient to introduce the variables

� = �3/2���
−2�1 + a�

2 ��
−2��

−2��
−2�� , �74�

with ��1 and �2= �1−wz� / �1+wz� such that wz= �1−�2� /
�1+�2�, �1−wz

2�−1/2= �1+�2� / �2��, and the longitudinal con-
stant of motion Eq. �66� may be rewritten as

1 + � =
��

2�
��1 − ��� + �1 + ����2�

��1 +
4��

2��2

��1 − ��� − �1 + ����2�2� , �75�

where ��1 is assumed.
The plasma wave electric field evolution can be written as

kp
−1���Ê2�=2�kp

−1��Ê�Ê=2�wz / ���−wz���kp
−1���� or

dÊ2

d�
= � 2�1 − �2�

���1 + �2� − �1 − �2��d�

d�
. �76�

Using Eq. �75�, the above equation can be integrated to yield
the electric field as a function of the fluid velocity

-15 -10 -5 0 5
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6 Ez/E0

wz

kpξ

FIG. 2. Plasma wave axial fluid velocity wz �dashed curve� and
electric field Ez /E0 �solid curve� driven by a linearly polarized
Gaussian laser pulse with peak normalized intensity a0=1.5 and
intensity rms length kpLrms=1 �centered at kp�=0 moving toward
the right� propagating in a plasma with �0 /�p=10 and �=10−4.
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0.5
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2.0

kpξ

n/n0-1

ε2/3θ

FIG. 3. Electron plasma density perturbation n /n0−1 �solid
curve� and normalized plasma temperature �2 / �3�� �dashed curve�
for the same laser-plasma parameters as Fig. 2.
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kpξ

FIG. 4. Momentum-density variance components �normalized to
n0�� �11 �dotted curve�, �22=�33 �dashed curve�, and �12 �solid
curve� for the same laser-plasma parameters as Fig. 2.

C. B. SCHROEDER AND E. ESAREY PHYSICAL REVIEW E 81, 056403 �2010�

056403-8



Ê2 = ����i − � + �i
−1 − �−1 + �F̃��i� − F̃������ , �77�

where

F̃��� =
4��

2���1 − �4� − ����4 − 2�2/3 + 1��
��1 − ��� − �1 + ����2�3 �78�

and �i is given by the initial condition �determined by the
laser driver�. Equation �77� is a general expression for the
electric field as a function of �= �1−wz� / �1+wz� given by the
initial excitation �i.

B. Maximum plasma wave electric field

The peak of the electric field oscillation occurs at the

phase such that ��Ê=0. Using the Poisson equation,

kp
−1��Ê =

− �1 − �2�
���1 + �2� − �1 − �2�

�79�

and the phase location of the peak of the field oscillation

��Ê=0 occurs at the momentum �=1 �i.e., wz=0�. From the
first integral of the plasma wave equation Eq. �77�, the peak

field, given the initial condition �i, is Êpeak= Ê ��i ,�=1�.
The maximum plasma wave electric field possible �some-

times referred to as the “wave-breaking” field� is given by

Ê��0 ,�=1�, where �0 is the initial condition such that

dÊ��i ,�=1� /d�i=0. Using Eqs. �77� and �76�, the maximum
initial momentum is given by the momentum �0 that pro-
duces the extremum of �. Using Eq. �75� and solving
d� /d� ��=�0

=0 �i.e., a quartic equation for �0
2� yields the mo-

mentum which produces the extremum

�0
2 = �1 + ���−2���

−2 + ��
2� + ��

���8��
−2 + ��

2��1/2

+ �2���
2�5��

−2 + ��
2�� + 2�����

−2 + ��
2���8��

−2�

+ ��
2�2�1/2�1/2� , �80�

where ��= �1−��
2�−1/2. In the cold limit �=0, �0

2= �1
−��� / �1+��� �i.e., wz=��� and the extremum of the poten-
tial occurs when the fluid velocity equals the phase velocity
of the wave. Note that, for �� 1, �0����!�1/2 and this
indicates that the plasma wave amplitude is always bounded
�including the case with phase velocity approaching the
speed of light�.

Evaluating Eq. �77� at the phase such that �=1 and the
initial excitation such that �i=�0 yields the maximum plasma
wave electric field amplitude

Êmax
2 = ����0 + �0

−1 − 2 + �F̃��0� − 2/3��� , �81�

where F̃��0� is given by Eqs. �78� and �80�. Physically, this
limit on the plasma wave amplitude is due to the pressure
force. As the plasma becomes highly compressed, the pres-
sure force grows, ultimately limiting the density compression
and therefore the wave amplitude. For sufficiently large drive
intensity, no traveling wave solutions exist. Figure 5 shows
the maximum field amplitude of the plasma wave as a func-
tion of phase velocity ���� and Fig. 6 shows the maximum
field amplitude as a function of initial plasma temperature �.

Also shown is the cold result �dashed curve in Fig. 5� and the
ultrahigh phase velocity result �dashed curve in Fig. 6�. Ther-
mal effects reduce the maximum amplitude from the cold
wave-breaking result.

1. Cold plasma limit

In the cold plasma limit �=0, �0=���1−��� and the
maximum electric field is

Êmax
2 = ����0 + �0

−1 − 2� = 2����� − 1� . �82�

Equation �82� is a generalization of the cold relativistic
wave-breaking field to include the presence of a laser field
�7�. Equation �82� indicates that the maximum field ampli-
tude inside a laser field can be significantly larger compared
to after the drive laser pulse �where a�=0 and ��=1�.

2. Maximum field amplitude of laser-driven plasma waves

A plasma wave driven by a short-pulse laser will have a
phase velocity approximately equal to the group velocity of
the laser pulse, typically ���10–100 for laser propagation
in an underdense plasma. Without some additional heating
mechanism, laboratory plasmas used for laser-plasma accel-
erator experiments have temperatures of the order of the ion-
ization potential, mc2��10 eV �11,12�. Therefore, laser-
driven plasma waves typically satisfy ���

2 �1.
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FIG. 5. Maximum electric field amplitude Êmax=Emax /E0 �Eq.
�81�� vs �� with ��=1. Dashed line is the cold limit �=0.
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FIG. 6. Maximum electric field amplitude Êmax=Emax /E0 �Eq.
�81�� vs initial temperature � with ��=1. Dashed line is the limit
��=1.
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In the limit, ���
2 ���

2 , Eq. �81� may be expanded to yield

Êmax
2 � 2����� − 1� − ������

2�8

3
	2���

2

��
2 
1/4

− 2	2���
2

��
2 
1/2

+ ��
2	2���

2

��
2 
3/4

+ 	 1

3��
3 −

��
2

4

	2���

2

��
2 
� . �83�

For the case ��	1, Eq. �83� reduces to

Êmax
2

����

� 2�1 − ��
−1� −

8

3
�2��

2��1/4 + 2�2��
2��1/2 �84�

to lowest order assuming ��
2��1 �and ��

6�	1�. Equation
�84� contains the cold relativistic wave-breaking field �gen-
eralized to include the influence of the laser� with the lowest-
order corrections owing to the plasma temperature. For rela-
tivistic phase velocities ��	1 driven by intense laser pulses
�a��1�, ���3 /2�� /��

2 and Eq. �84� reduces to the result of
Ref. �7�.

For plasma waves with relativistic phase velocities ��

	1, the warm fluid theory predicts the maximum longitudi-
nal velocity wz,max����1−��

−3/2�2��1/4−��
−1�2��1/2����; the

fluid velocity never reaches the phase velocity of the plasma

wave. And, at the maximum field amplitude Ê= Êmax, the
maximum longitudinal fluid momentum is uz,max����1
− �2���

2�1/4����−31/2��11 /h�max
1/2 , for ��	1 and ��

2��1,
i.e., the difference between the maximum fluid momentum
and �� is of the order of the momentum variance. The above
results imply a relation between the maximum plasma wave
amplitude �wave breaking� and particle trapping in the
plasma wave. Consider the regime of laser-driven plasma
waves ���

2��1 and ��
2 	1� in the region behind the laser

driver �a�
2 =0�, at Ê= Êmax, the peak value of the longitudinal

fluid velocity is wmax=��−��
−3/2�3��1/4 and the peak value of

the longitudinal fluid momentum is uz,max=��−��
3/2�3��1/4.

At the phase position where the longitudinal fluid velocity
and momentum are at their peak, the plasma density is maxi-
mum. The longitudinal thermal velocity and momentum
spread �variance� are �th��−3��11 /h�1/2�� /�2 and
��11 /h�1/2���, respectively, and at the phase position
where the longitudinal fluid velocity is at its peak �cf. Eq.
�91�� �max���

1/2�� /3�1/4. Hence, at the maximum amplitude,
��−wmax��3�th. As the amplitude of the wave approaches

Êmax, electrons in the tail of a typical plasma distribution
may be trapped �30,31�. Although the peak value of the mean
fluid velocity is less than the phase velocity, wmax��� �and
uz,max������, electrons on the tail of a thermal distribution
with velocities in excess of the phase velocity will be
trapped, specifically, thermal electrons with velocities in ex-
cess of �3�th. Assuming a Gaussian thermal distribution, this
corresponds to approximately 4% of the electron population
are continuously being trapped by the plasma wave with am-

plitude Êmax �31�. Once a significant number of electrons
become trapped in the plasma wave, the plasma wave ampli-
tude becomes time dependent �no longer a function of only
z−��ct�, owing to beam loading and damping of the plasma
wave, and a purely traveling wave solution is no longer pos-
sible.

3. Nonrelativistic phase velocities

For a nonrelativistic plasma wave phase velocity, such
that ����

2 �1, Eq. �83� reduces to

Êmax
2

����
2 � 1 −

8

3
	 2�

��
2 
1/4

+ 2	 2�

��
2 
1/2

−
1

3
	 2�

��
2 
 , �85�

with �= �3 /2��� /��
2 ��1+a�

2 ��
−2��

−2�, where terms of the order
O����

2� have been neglected. Equation �85� with ��=1 is the
result derived by Coffey �10�, which assumed a nonrelativ-
istic plasma wave and a water-bag momentum distribution.
In the limit a�

2 /��
2 	��

2 �with ����
4 �1�,

Êmax
2

����
2 � 1 −

8

3
	 3�a�

2

��
4��

4 
1/4

+ 2	 3�a�
2

��
4��

4 
1/2

−
1

3
	 3�a�

2

��
4��

4 
 .

�86�

As shown in Figs. 7 and 8, the presence of an intense laser
field strongly modifies the maximum field amplitude for
plasma waves with nonrelativistic phase velocities. Figure 7

shows the maximum plasma wave amplitude ��
−1Êmax vs ini-

tial thermal velocity for nonrelativistic phase velocity ��

=0.05. Shown in Fig. 7 is the reduction of the maximum
plasma wave amplitude in the presence of an intense laser
field with a�=0.25 compared to the result of Ref. �10� �i.e.,
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FIG. 7. Normalized maximum plasma wave amplitude ��
−1Êmax

as function of initial thermal velocity �1/2 for a�=0 and a�=0.25
with nonrelativistic phase velocity ��=0.05
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FIG. 8. Normalized maximum plasma wave amplitude ��
−1Êmax

as function of laser field intensity a� for nonrelativistic phase ve-
locity ��=0.1 and initial temperature �=10−5.
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for a�=0�. This is due to the increased thermal spread via
the transverse coupling of the momentum variance tensor.
Figure 8 shows the maximum plasma wave amplitude

��
−1Êmax as function of laser field intensity for nonrelativistic

phase velocity ��=0.1 and initial temperature �=10−5 as a
function of laser intensity. For sufficiently large laser inten-
sity a��1, the relativistic electron mass shift results in a
larger maximum plasma wave amplitude.

C. Nonlinear plasma wavelength

The wavelength of the nonlinear plasma oscillation can
evaluated from the wave equation Eq. �72�. The first integral
of the plasma wave equation Eq. �77� can be expressed in the

form Ê2 /2+V���=V0, where the pseudopotential is

V��� = V������ =
1

2
�� + �−1 + �F̃���� �87�

and V0 V��i� �the constant V0=V��0� corresponds to the
maximum wave amplitude�. The period of the plasma oscil-

lation �osc can be computed from kp
−1���=−Ê=−�2�V0−V�,

namely,

�osc =
 d� =
�p

�



�min

�max

d�
�d�/d��

�2�V0 − V�
, �88�

where �min/max is given by the solutions to V0=V���. At the

maximum plasma wave amplitude and assuming Êmax
2 	1,

�osc /�p��2 /��Êmax, where Êmax is given by Eq. �81�. Ther-
mal effects reduce the wavelength of the plasma oscillation.

D. Plasma temperature at the maximum field amplitude

The highly compressed electron plasma density results in
local increase in the plasma temperature �as shown in Fig. 3�.
From the continuity equation Eq. �47�, the lab-frame plasma
density is

n

n0
=

��

�� − wz
=

���1 + �2�
���1 + �2� − �1 − �2�

. �89�

The peak density perturbation at the maximum field ampli-
tude is given by n��0� /n0, which does not become singular in
contrast to the cold fluid theories �i.e., there is no shock
formation�.

Using Eq. �70�, the invariant measure of thermal spread
�i.e., the plasma temperature� is, after the laser pulse,

�2 = �� 2���

���1 + �2� − �1 − �2��2

+ 2� �90�

and the maximum temperature occurs at the maximum com-
pression, i.e., at �=�0.

In the limit ����
−2�1 �e.g., laser-driven plasma wave�,

the temperature at the maximum field is

�max
2 �

1

3
��

2 �2��
2��1/2�1 −

1

4
�2��

2��1/2� �91�

and the temperature of the plasma remains nonrelativistic
�max

2 �1. For a laser-driven plasma wave, the temperature of

the plasma will remain nonrelativistic at the maximum pos-
sible compression. This shows that the asymptotic expansion
�2�1 performed by the warm plasma assumption presented
here is always valid, provided the initial temperature is non-
relativistic �such that ���

2 �1 in the laser-driven regime�.
The maximum density perturbation is finite and peaks at
�n /n0�max���������1/2�2��−1/4	1. In the limit of nonrela-
tivistic phase velocity ���1, the maximum temperature is
�max

2 ����2��1/2 /3�1.
In the limit, ��

−2���1 �e.g., a highly relativistic particle
beam-driven plasma wave�, then �max

2 ���=1�=2 /3 and

Êmax
2 = �2 /3�3/2�−1/2. Note that, in this ultrarelativistic limit,

the maximum field is independent of the phase velocity. This
is in agreement with numerical solutions of the Vlasov equa-
tion in the limit ��

2�	1 that found Emax independent of ��

�32�. In this limit, higher-order moments of the distribution
may contribute to the plasma response. This implies that the
plasma response will be a function of the specific details of
the form of the phase-space distribution �i.e., the higher-
order moments�. An analysis of the maximum amplitude as-
suming a 3D water-bag momentum distribution has recently
been carried out in Ref. �33� and it was shown that, in the

limit ��→1, Êmax
2 = �9 /20�1/2�−1/2. Note that the differences

in the coefficient can be attributed to choice of a specific
distribution in the case of the 3D water-bag assumption or to
the asymptotic expansion in the case of the warm fluid as-
sumption.

VI. CONCLUSIONS AND DISCUSSION

In this work, a relativistic warm fluid theory of a nonequi-
librium, collisionless plasma was applied to model intense,
short-pulse laser-plasma interactions. The fluid equations
were treated asymptotically and closure was obtained by as-
suming a nonrelativistic temperature �2�1 �no specific form
of the phase-space distribution f or equation of state was
assumed�. The relativistic warm fluid theory was used to
derive the evolution of the momentum variance in the pres-
ence of an intense laser field �variance components given in
Sec. III B�. The momentum variance was found to be aniso-
tropic and the presence of the laser field allowed coupling
between the transverse and longitudinal components. A gen-
eralized Langmuir dispersion relation in the presence of an
intense laser field Eq. �43� was derived from the linearized
warm fluid equations.

A quasistatic wave equation Eq. �72� was derived �with
��wz� given by the constant of motion Eq. �66��, assuming
f�� , p
�, and used to describe nonlinear electron plasma
waves excited by intense, short-pulse lasers. The quasistatic
wave equation was used to calculate the maximum plasma

wave amplitude assuming a traveling wave Êmax. Thermal
effects decreased the maximum wave amplitude compared to
the cold result. For the case of relativistic phase velocities,
the plasma wave evolution is dominated by the longitudinal
momentum variance �and the maximum field amplitude re-
duces to the limit of 1D motion described in Ref. �7��. For
the case of nonrelativistic phase velocity plasma waves, the
presence of a laser field can strongly modify the maximum
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field amplitude, owing to the coupling between transverse
and longitudinal thermal fluctuations. The warm plasma
theory remains finite at the maximum field amplitude and
does not contain the singular behavior observed assuming a
cold plasma.

If the plasma temperature is relativistic, the asymptotic
expansion described in Sec. III will no longer be valid. For
relativistic temperatures, the higher-order moments of the
distribution will be important and will be a function of the
specific form of the phase-space distribution. Note that the
choice of an unphysical distribution �e.g., 1D water bag� may
lead to unphysical, singular �unbounded� solutions in the
relativistic temperature regime, since details of the shape of
the phase-space distribution �i.e., the higher-order moments�
become important. For sufficiently large density perturba-
tions, the collisionless plasma model will no longer be valid
and collisional effects will become important.

In addition to the warm plasma assumption, wave-particle
interactions were neglected in this theory. For example, par-
ticle trapping of a significant fraction of the distribution in a
plasma wave can lead to broadening of the momentum
spread such that the assumption �2�1 is no longer valid.
The warm plasma assumption will be valid provided that the
bulk of the plasma distribution is far from resonance with the
wave.

As the field amplitude approaches and exceeds the maxi-
mum amplitude of a traveling wave �wave-breaking limit�,
particles in the tail of the plasma distribution may become
trapped in the plasma wave �30,31�. Specifically, for laser-
driven plasma waves ���

2��1 and ��
2 	1�, the results of the

warm fluid theory imply that the maximum longitudinal fluid
velocity wmax satisfies wmax+�3�th���, where �th is the
thermal velocity spread �variance� of the electron distribu-
tion. At the maximum field amplitude of a traveling wave,
electrons in the tail of the distribution with velocities ��3�th
will be trapped. When a sufficient number of electrons be-
come trapped, the wave will be perturbed such that the qua-
sistatic assumption will no longer be valid. Proper character-
ization of the form of the phase-space distribution is critical
to analyzing kinetic effects such as particle trapping in in-
tense laser-plasma interactions.

As well as modeling intense laser-plasma interactions, the
relativistic, warm fluid theory of a nonequilibrium, collision-
less plasma presented here can also be applied to model rela-
tivistic charged particle beams and beam-plasma interactions
and may have applications to astrophysical plasmas.
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APPENDIX A: RELATION BETWEEN FLUID
QUANTITIES AND WARM FLUID MODEL

In this appendix, the relativistic fluid model quantities of
Sec. II are related to conventional fluid quantities �see, e.g.,

Ref. �1��. The energy density �in the local rest frame� may be
defined as

e = U
T
�U�, �A1�

where U
=J
 / �J�J��1/2=J
 /np. Recall that npU
=hu
 and
�np /h�2=�th

2 =1+�2. Using the centered moment definition
Eq. �14� and the warm plasma assumption Eq. �23�, the en-
ergy density in the warm fluid model is

e = h + h�2, �A2�

where the invariant density h can be identified as the en-
thalpy.

The pressure tensor may be defined as

P
� = "�

T��"�

� , �A3�

where "
�=g
�−U
U� is the projector with the property
"
�U�=0. Using the centered moment definition Eq. �14�,
the pressure tensor is P
�="�


���"�
� . In the warm plasma

approximation u
�
�=0 and the pressure tensor is equal to
the momentum variance tensor P
�=�
�. Since the plasma
is assumed collisionless, the pressure is intrinsically aniso-
tropic �in the local rest frame� and a local hydrostatic scalar
pressure cannot describe the pressure tensor outside the 1D
limit �28�. In the 1D limit, the contraction of the pressure
tensor can be identified with the local hydrostatic scalar pres-
sure p=−P



=−�


=h�2.

The heat flow �difference of the energy flow and flow of
enthalpy� may be defined as

q
 = U�T��"�

. �A4�

Evaluating the heat flow in terms of centered moments yields

q
 = �h/np��U�Q�
��U
 − Q�


��/2 = −
1

2

h

np
Q�

�


+
1

4
	 h

np

2

U
����
��2/h − R��

��� , �A5�

where R��
�=�d�f�p�−u���p�−u���p
−u
��p�−u�� is the
fourth-order centered moment. The heat flow is proportional
to the third-order �and higher� moments, i.e., q
�h�3. The
heat flow is only proportional to third and higher-order mo-
ments because a collisionless plasma �i.e., no viscosity� was
assumed and q
=0 in the warm plasma model.

The Taub inequality �34�

eh ! np
2 �A6�

can be expressed in terms of the centered moments as
���

��2 hR��
��, which is the Cauchy-Schwarz inequality for

the moments of the distribution. Therefore, the Taub inequal-
ity must always be satisfied within the warm fluid model �to
all orders in ��. In the warm plasma approximation, assuming
� is a small parameter and expanding to O��2�, eh=np

2. The
warm plasma approximation is consistent with the Taub in-
equality.
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APPENDIX B: INVARIANT MEASURE OF THERMAL
SPREAD OF A RELATIVISTIC MAXWELL DISTRIBUTION

In this appendix, the invariant measure of thermal spread
� is calculated assuming a relativistic Maxwell-Boltzmann
�Jüttner� distribution. It is shown that the invariant measure
of thermal spread is related to the width of the distribution.

Consider the distribution �1� given by

f = f0 exp�− p
J
/�np�J�� , �B1�

where �J is the equilibrium temperature of the system �nor-
malized to mc2 /kB� and f0 is a constant. Note that, since
p
J
 is a Lorentz scalar, p
J
 is invariant and may be evalu-
ated in any frame. In the rest frame of the plasma fluid, J


=np�1,0� and p
J
=np�. In the rest frame of the plasma
fluid and assuming a warm plasma, f = f0 exp�−� /�J�
= f0 exp�−�1−�2�−1/2 /�J�� f1 exp�−�2 /2�J� and the equilib-
rium temperature �J is the root-mean square of the plasma
velocity distribution.

In 1D, the invariant momentum-space volume is
d�=dp / p0=dp /�= ��2−1�−1/2d�. For a Jüttner distribution
Eq. �B1� in 1D, the invariant density is

h =
 d�f = 2f0

1




d�
e−�/�J

��2 − 1�1/2 = 2f0K0��J
−1� �B2�

and the proper density np= �J
J
�1/2 is given by

np =
J


np

 d�fp
 = 2f0


1




d�
�e−�/�J

��2 − 1�1/2 = 2f0K1��J
−1� ,

�B3�

where Km are mth-order modified Bessel functions of the
second kind. The ratio of proper to invariant densities is

�th=np /h=K1��J
−1� /K0��J

−1� and the invariant measure of
thermal spread is

�2 = �K1��J
−1�/K0��J

−1��2 − 1. �B4�

Note that for large argument �	1, Kn���
���� /2��−1/2e−��1+ �4n2−1� / �8���. In the limit of nonrel-
ativistic temperature �J�1,

�2 �
�1 + 3�J/8�2

�1 − �J/8�2 − 1 � �J. �B5�

The invariant measure of thermal spread can be identified as
the equilibrium temperature of a Jüttner �relativistic
Maxwell-Boltzmann� distribution, �2=�J.

In 3D, the invariant momentum-space volume is
d�=d3p / p0=4�p2dp /�=4���2−1�1/2d�. For a Jüttner dis-
tribution Eq. �B1� in 3D, the invariant density is

h = 4�f0

1




d���2 − 1�1/2e−�/�J = 4�f0�JK1��J
−1� �B6�

and the proper density np= �J
J
�1/2 is

np = 4�f0

1




d���2 − 1�1/2�e−�/�J = 4�f0�JK2��J
−1� .

�B7�

The ratio of proper to invariant densities is �th=np /h
=K2��J

−1� /K1��J
−1� and the invariant measure of thermal

spread is

�2 = �K2��J
−1�/K1��J

−1��2 − 1. �B8�

In the limit of nonrelativistic temperature �J�1,

�2 �
�1 + 15�J/8�2

�1 + 3�J/8�2 − 1 � 3�J. �B9�
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