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Simple model for turbulence intermittencies based on self-avoiding random vortex stretching
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Whether statistics of intermittencies (between small and large eddies) in homogeneous and isotropic turbu-
lence should be described by a logarithmic-Poisson, a logarithmic-stable probability density function, or other
is still debated nowadays. In this paper, a bridge between polymer physics, self-avoiding walk, and random
vortex stretching is established which may help to obtain new insights on this topic. A very simple relationship
between the stability index of the Lévy stable law and Flory’s exponent stemming from statistics of linear
polymer growth is established. Moreover, the scaling of turbulence intermittencies with Reynolds number is
also explained and the overall picture is given of smallest vortex tubes of Kolmogorov length width (i.e., the
smallest dissipative eddies) bent by bigger vortices of Taylor length scale (i.e., the mean dissipative eddies),
themselves stretched by the bigger eddies in a continuous cascade. This results in both a simple and sound

model with no fitting parameters required.
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I. INTRODUCTION

Since the discovery of intermittencies (between small and
large eddies) in turbulence by Batchelor and Townsend in
1949 (see Frisch [1], for a review including Richardson’s
first insights concerning turbulence: “big whorls have little
whorls, which feed on their velocity and little whorls have
lesser whorls, and so on to viscosity” a parody of a famous
poem by Swift which is the real guideline of this paper),
there have been numerous debates on how to model this
phenomenon properly. One of the first examples of modeling
was proposed by Obukhov [4] and Kolmogorov [2] who
used a logarithmic-normal law for the distribution of the dis-
sipation of turbulence. Actually Kolmogorov [3] obtained
this law in previous studies on pulverization and fragmenta-
tion and Oboukhov [4] used it later in turbulence modeling.
The next important step was the definition of “scale similar-
ity” by Novikov and Stewart [5] followed by Yaglom [6].
This led to a lot of interesting works on multifractal model-
ing of turbulence (again Frisch is a good reference; see also
Evertz and Mandelbrot [7] for the definition of a multifractal
measure) which ultimately resulted in multiscale analysis
(for instance, resorting to wavelets theory; cf. [8]). However,
this has not led to any simple law being established. Also, in
the wake of Mandelbrot’s work in economics (where
logarithmic-stable laws were widely used; a review can be
found in Ref. [9]), Kida [10,11] generalized the
Kolmogorov-Obukhov results to a logarithmic-stable law
with a stability index «a=1.65. For the meantime,
logarithmic-stable laws had been widely studied in geophys-
ics where their role as “universal multifractal” (they are uni-
versal attractor for cascade processes) was emphasized by
Schertzer and Lovejoy [12]. Lastly, the idea of a bridge be-
tween turbulence, vortex stretching, polymer growth, and
self-avoiding walk (SAW) can be found in the works of
Chorin (see [13], for instance). However, no simple connec-
tion between them is established.

The purpose of this paper is to show that Kida’s empirical
analysis can be expressed on a more solid basis as long as the
value of the stability parameter is changed from 1.65 to 1/v,
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where v stands for the Flory exponent, well known in poly-
mer physics (this leads to the value of 1.70). In Sec. II, a
bridge between an effective vortex stretching mechanism in-
troduced by Kuo [14] and (linear) polymer growth is drawn
leading to a mapping of one mechanism onto the other. The
scaling properties of three-dimensional self-avoiding walks
are then used to obtain the results. In Sec. III, we will show
how this model can be successfully applied to a given set of
experimental and numerical results. Lastly, the number of
stretching and bending events is related to the ratio between
the Taylor microscale and the Kolmogorov scale, which
leads to a quite simple model, very close to certain insights
of Tennekes [15] concerning the wormlike structure of tur-
bulent vortices. In a closely related way, the application of
this modeling to the Rice-Liepmann theorem (giving the av-
erage distance between stagnation points of the instantaneous
velocity field) is then considered.

II. RANDOM VORTEX STRETCHING

By partly following Kuo’s work, a very simple way of
modeling random vortex stretching can be obtained by sim-
plifying the vorticity equation,

Q) 1_1
E+(V~V)Q=ﬂ~vv+VAQ—Q(V'V)—EV—XVp,
p

(1)

where  is defined here as %V X v (so that it exactly repre-
sents the antisymmetric part of the rate of strain tensor i.e.,
the rotation rate of fluid particles). The first term of the right-
side member stands for vortex stretching, the second term for
viscous diffusion, the third term for vorticity increase related
to vortex thinning, and the last term is the baroclinic creation
of vorticity. Neglecting the second and fourth terms (i.e.,
viscosity effects and baroclinic generation of vorticity) and
setting

Q
B(t):Vv-m—Vw, (2)

which will be hereafter called “effective stretching,” one gets
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FIG. 1. Axial stretching of a portion of a vortex tube.
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where D/Dt stands for the material derivative. According to
Kuo, the random nature of effective vortex stretching ensures
that the vorticity evolves toward a logarithmic-normal distri-
bution. This shall be examined further in the next sections; it
will in fact be shown that this hypothesis is not compatible
with the topological constraints that affect a vortex line.

A. Angular acceleration and stretching

Consider a part of a vortex tube of length L(z), radius R(z),
and angular velocity €2(¢) submitted to an axial stretching
(cf. Fig. 1). In nonviscous flow, vorticity is conserved and
materially linked to the fluid particles. Thus, the following
simple conservation equations can be written as

Mass conservation:

R?L = const. (4)
Angular momentum conservation:
R*Q = const. (5)

Angular velocity increase can thus be considered propor-
tional to the vortex length increment. It should be noted that
this analysis is similar to the pioneering works of Lagrange,
Helmbholtz, Kelvin, Cauchy, etc. (see [16] for a more rigor-
ous approach and a review; more details on the present sim-
pler analysis can be found in [17]). Using Eq. (3) this can be
summed up to provide a continuous time stochastic multipli-
cative process of the form

DL,=B,(1)L,Dt. (6)
If we use the logarithmic derivative, we thus obtain
T
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D 1In L,=B;(r)Dt. (7)

The effective stretching B is a priori an unknown random
variable [and is a priori different in Egs. (3) and (7) since in
this process the vector nature of Eq. (3) is lost]. The next
section will determine which scaling constraint the random
variables B shall obey but, for the sake of simplicity, con-
tinuous time process (7) will be turned into a discrete time
process: introducing the logarithmic strain H=1In L (named H
for Hencky since it is very similar to Ludwik-Hencky
[18-20] “natural” strain used in the modeling of hyper elas-
tic materials) Eq. (7) reads

Hygq—H=InL,,—-InL =B (t)dt. (8)

Now, let us consider just the time step (¢, ...,f,) where a
“bending event” of a vortex tube does occur. In this case we
obtain

Tn+l
th+| _th = f BL(t)dt, (9)
1

n

where the exact properties of the stochastic integral are pur-
posely left undetermined. We shall however assume the in-
dependence of the increment of H. This is expected to work
in the special case of isotropic and homogeneous turbulence.
Consequently, it will be supposed that the average helicity is
null, so that vortex lines do not tend to be aligned in a spe-
cific direction. As for the definition of a bending event (cf.
Fig. 2), let us define it as the time instant where a new cusp
of a given angle (for instance, 7/2) appears on the vortex
line. Actually the use of the word “cusp” is a loose approxi-
mation since it is unlikely that the vortex tube develops an
exact singularity.

B. Topological constraints on a vortex tube
and self-avoiding walk

To obtain the simple Eq. (7), several simplifications and
hypotheses were made and particularly we opted to leave out
viscosity. This hypothesis holds as long as the finer scale of
turbulence known as the Kolmogorov scale 7 has not been
reached. At this scale viscosity and inertial term balance each
other, so that the former can turn the latter into heat. In this
paper the following assumption is made: the fluid possesses a
null viscosity until the Kolmogorov scale is reached, where
viscosity is applied. Neglecting viscosity ensures that Helm-
holtz’s theorem on vorticity conservation does apply [16]. As
a sequel to this theorem, vortex line cannot intersect each
other. Therefore, a vortex tube shall obey Eq. (3) or Eq. (7)
under the constraint of nonintersection.

FIG. 2. Turning the continuous cascade of
bending events into a discrete one. A bending
event is defined by the appearance of a new qua-
sicusp on the vortex line: the angle between two
successive tangent vectors to the line is equal to a
given number (for instance, 7/2 in the consid-
ered case)
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FIG. 3. Wrinkling of a fluid surface in isotropic turbulence [21].
Here, material lines are stretched, but a clear analogy with vortex
tubes can be made since they can be considered as materially linked
to the fluid [16] (reprinted with permission of the author, Michael
Karweit from Johns Hopkins University).

Although vortex is mainly found in turbulent flows in the
form of vortex tubes or “worms” and, sometimes, vortex
sheets, the assumption of simple vortex lines will be main-
tained in the following for the sake of simplicity. However, a
vortex sheet can be considered as a set of vortex lines in the
same way as a material surface can be considered as a set of
material lines. Indeed this is what a visualization by a line of
hydrogen bubbles (cf. Fig. 3 and [21]) suggests: each mate-
rial line seems compelled to self-avoidance. Although some
material lines are stretched in these experiments, a clear anal-
ogy with vortex tubes can be made since the latter can be
considered as materially linked to the fluid [16] (moreover,
hydrogen bubbles have a tendency to migrate toward the
low-pressure center of vortices). It should also be noted that
since vortex lines are infinitesimally thin, they cannot stricto
sensu be submitted to stretching and only vortex tubes can be
stretched (cf. [17]). So, let us look at the ways a vortex tube
or line can fold itself under the combined constraint of ef-
fective stretching and self-avoidance. Leaving aside the dy-
namics aspect (7) of vortex line folding, it is clear that, using
Eq. (9) and considering Fig. 2, the kinematics aspects can be
fully translated into the world of linear polymer growth or
equivalently of self-avoiding walks. In fact a linear polymer
chain of N monomers is an archetype of self-avoiding walks.
It is a random walk on a lattice where each direction is cho-
sen randomly at each step but with the constraint that it
cannot trespass where it has already passed. Figure 4 gives a
sample picture of a bidimensional self-avoiding walk or 2D
SAW on a square lattice (which will be used for the sake of
simplicity although the overall picture is three dimensional).

According to Flory’s pioneering work in polymer physics
(see De Gennes [22], for instance), some scaling properties
concerning the equivalent radius of a polymer chain of N
monomers can be established. Let Ny(r) be the number of
chains of N monomers of equal size a going from the origin
to point r. Let
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FIG. 4. Example of a bidimensional self-avoiding walk and its
decomposition into two subwalks.

Ny(r)

(10)
E Ny(r)

pa(r) =

be the probability distribution of chain of length N and let the
gyration radius be defined by

o 12
R= (f rsz(r)dr> . (11)
0

Then it is known that
R=aN’, (12)

where v is a universal scaling exponent, called Flory’s expo-
nent, whose value is appreciatively 3/5 (0.588 according to
numerical simulations; cf. Sokal [23]) in a three-dimensional
space. For the sake of simplicity we will consider that a=1
from now on. The question which still has to be answered is
how the flow maps a piece of vortex tube into a self-avoiding
walk similar to that of Fig. 4.

C. Self-avoiding walk and Lévy stable stretching

Actually the answer could be quite straightforward,
namely, that the vortex may be strained and bent so as to
map onto the self-avoiding walk. But unlike Fig. 4 where
each step is equally sized, there is no a priori reason that the
average step size or standard deviation thereof shall be de-
fined and finite. We shall however use the hypothesis that the
average step size is defined and finite (but not necessarily its
standard deviation) and we will consider that the actual num-
ber of steps is related to the number of bending events. If we
accept the hypothesis that each bending event is associated
with a stretching event and considering the Hencky strain
H=In L, the latter can be considered to be a good approxi-
mation to the number of steps, i.e., N= H. Since the average
deviation of the size of steps may eventually not be defined,
let us define « as the greatest number, so that

f rp,(r)dr < oo, (13)

0

Then the following definition:
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TABLE 1. Analogy between polymer growth and vortex
stretching.

Number of elements Radius Relation
Polymers N R R=N" or N=R""
Vortices (H) o o=(H)V* or (Hy=0"
® 1o
o= (f r“pH(r)dr> (14)
0

leads to a finite integral, so that Eq. (14) can supersede Eq.
(I1) and o can be considered to be a new gyration radius.
The preceding hypotheses concerning the finite average size
and possibly infinite standard deviation oblige us to consider
that 1 <a=2.

Now, let us look at the scaling properties of this model. If
we consider that the number of steps is high enough and that
the H step SAW created by the random effective stretching B
can be divided into two SAWs, named B, and B,, each hav-
ing H, and H, steps (cf. Fig. 4) then the following equation
is quite obvious:

H=H,+H,, (15)

and assuming that Eq. (12) is still verified and takes the
shape o=(H)", this leads to

0.1/V=0,%/V+a_é/1/. (16)

Equation (15) indicates that H shall belong, as a random
variable, to the family of Lévy stable law (cf. Feller [24]). To
justify this assertion, let us recall that the number of steps is
the result of the discrete stochastic process referred in Eq.
(9). As such, the number of steps at a given time is indeed a
random variable. From Eq. (14), o can thus be considered to
be the scaling parameter of the stable law and, using a sum-
ming property of these laws, Eq. (15) leads to o*=07+0%5
suggesting that the stability index « shall be taken equal to
1/v so as to recover Eq. (16) and more generally Eq. (12).
Note that the (self-intersecting) case v=1/2 leads to Kuo’s
logarithmic-normal model. To conclude this section, the
analogy between polymer growth and vortex stretching is
summarized in Table L.

III. INTERPRETATION OF SOME PREVIOUS
EXPERIMENTAL AND NUMERICAL RESULTS

Following Novikov and Stewart [5,25], the spatial distri-
bution of the rate of turbulent energy dissipation & is thought,
as ¢ represents the death of bigger eddies, to give a proper
picture of Richardson turbulent cascade. Actually € is never
directly measured and, as described by Frisch [1], a bridge
between intermittency model based on dissipation and inter-
mittency model based on velocity increment is mostly used.
According to Kolmogorov’s refined similarity hypothesis the
following relation (also known as four-fifth law) can be ob-
tained:
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Levy fit with stability index 1.6838
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FIG. 5. Fitting of the PDF of Stewart et al. [26], with a stable
law; stability parameter is found to be 1.684.

|ue(x + r)—u(x)|3=—;i8,r, (17)

where ¢, stands for the dissipation averaged on a sphere of
radius r. Assuming that the velocity increment and the angu-
lar velocity are proportional (qv), the law of In[|v(r)|] or
In(e) shall follow the law of In(|w|) [or even of In(|du/dx|)]
up to a scaling factor and a translation. In any case, these
laws shall be Lévy stable with stable parameter 1/v and an
asymmetry parameter [, equal to —1. The last condition
stems from a necessary condition for positive moments of
the logarithmic-Lévy law to be defined and finite.

A. Comparison to Kida’s previous results

Figure 5 shows the fitting of such a Lévy stable law to the
atmospheric turbulence data of Stewart er al. [26]. Although
turbulence in the atmospheric boundary layer is not globally
isotropic, it is usually considered so, locally, on small scale.
The result gives a=1.684, which is closer to 1/ than the
value of 1.65 previously used by Kida [11] but obtained
without directly fitting the probability density function (PDF)
(the present fitting procedure is described in [27]). Actually,
Kida’s value of 1.65 had been previously obtained by fitting
the scaling parameter of the moments of the distribution [9]
with the data of Anselmet er al. [28]. The following set of
definitions is used in this description: the pth-order hyperflat-
ness of the velocity increment is defined as

(JuCx + 1) = u(x)|”)

H,(r)= , 18
PO ute+ ) =P e

and the scaling parameter £, as
H,=exp(§,). (19)

If &, is logarithmic-stably distributed with S=-1 and using
Kolmogorov four-fifth law, this yields
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q“ (20)

and then
___9me (P} _p(2)*
gf’_ cos(ﬂa){<3> 2(3> } (2D

Note that the average value (e,) depends on all the three
values of my, ., oy, ., and «. This average value is not uni-
versal and therefore all these three parameters cannot be uni-
versal at the same time. Actually only « is constant in the
present modeling and it will be seen in the next paragraph
that o does depend on the small-scale structure of turbulence
(more exactly, on the Taylor and Kolmogorov scales). It can
therefore be inferred that m, . contains all the large-scale
dependencies of the dissipation statistics. Fortunately, using
definitions (18) and (19) does eliminate this unwanted pa-
rameter.

Unfortunately, error bars around values of these moments
increase with the order of the moment considered since
poorly resolved tails of the distribution are more and more
solicited. Moreover knowledge of the PDF is only equivalent
to the knowledge of all the moments of the distribution (i.e.,
an infinite number of moments). Lastly a distribution having
a discrete support (like a Poisson distribution) or a continu-
ous support (like a stable law) may yield similar sets of mo-
ments (up to a given order) [29], whereas they are both
physically and fundamentally different (due to the topologi-
cal nature of their support). These arguments illustrate the
fact that the moments of a PDF may not be the most appro-
priate way to describe accurately a PDF and that a direct
fitting of the PDF, whenever available, should be preferred.
Since these moment transformations are the most common
way of postprocessing turbulent intermittencies data in the
scientific literature on the subject, some scaling properties of
moments with Reynolds number will be used in the forth-
coming section. As well as verifying the present modeling by
comparison with new data, it will shed new light on the
cascade of stretching events described in previous sections.

B. Scaling of hyperflatness with Reynolds number
and Tennekes’ simple model for the small-scale structure
of turbulence

Before proceeding, let us discuss the way structure func-
tions can be related to vortex distribution in more detail.
Most values of Rimbert and Séro-Guillaume [30] which will
be used in the present description have been taken in the
near-dissipation range (7<r<107) where, according to
Chevillard et al. [31], turbulence intermittencies are known
to be “rapidly increasing.” This may actually be related to
the fact that it is precisely the range of scale where the ve-
locity difference is a proper picture of Richardson turbulent
cascade. Let us have a look at how, in this modeling, struc-
ture function can be computed,

PHYSICAL REVIEW E 81, 056315 (2010)

(lulx +r) —u(x)|P) = f |u(x + r, @) — u(x, w)PdP(w),

(22)

where w is a random event (i.e., a realization of the vortex
tangle) whose probability measure is P(w). Let us assume
that point x is in the neighborhood of a stretched vortex of
radius R [actually R(w)]. If r<R then both measurement
points in the structure function can be located inside the
vortex (let us call this case 1), whereas when >R, at most
one point can be located inside the vortex (case 2: one point
outside and case 3: two points outside). In the near-
dissipation range, it will be assumed that viscosity is still
nonexistent, so that the velocity can be assumed to be that of
a solid rotation at an angular velocity € inside the vortex.
Outside, it is the result of the application of the Biot-Savart
law, with the vortices and their intensity superseding electric
wires and their current (cf. Lamb [16], Chap. VII). Since the
geometry of the current is random and somewhat unknown
(it is a tangle of random self-avoiding vortices), the velocity
outside a vortex can be assumed to be a random variable
whose expectation is equal to the mean fluid velocity. Any-
way, in case 2 or 3, u(x+r) and u(x) are not much correlated
and their contribution to the structure function is hard to
figure out, whereas in case 1, one gets (appreciatively)

u(x+r)—ulx) =rQ. (23)

Actually the hypothesis that the fluid is in solid rotating mo-
tion (i.e., a Rankine vortex) is not necessary. Since r is kept
fixed, the only thing that matters is that £ and velocity in-
crement at fixed r shall be proportional. This means that it
still works if the vortex is, for instance, a Lamb or a Burgers
[32] vortex. Finally, we obtain

(u(x+r) —u(x)]P) = f "’ Q(w)’dP(w) = r”f Q’dP(Q).

(24)

The structure function can be related to moments of the dis-
tribution of vorticity. This can only happen in case 1 which is
more frequent in the near-dissipation range. This may ex-
plain the so-called increase in turbulent intermittencies in
this range. This seems also to agree with the results of
Hatakeyama and Kambe [33] for the first-, second-, and
third-order structure functions: they, for instance, showed
that Kolmogorov’s four-fifth law is precisely valid in the
near-dissipation range.

Combining the fitting of the scaling of hyper flatness with
Reynolds number of the kind H,=a(p) Ref(”) (cf. Fig. 6,
result are summed up in Table II) and using Egs. (18)—(21),
this led to the following scaling relation (cf. [30] for details):

o . ~[(1.06 = 0.08)In(\Re,)] +0.00 = 0.20, (25)

common to all the hyperflatness taken into account (i.e., p
=4,5,6). In this work a thorough attention to incertitude
determination was made (using standard techniques; see
Beck and Arnold [34], for instance). Moreover both numeri-
cal simulations [35] and experimental results [36] were used
to obtain that correlation. It should be noted that changing
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FIG. 6. Scaling of hyperflatness with Reynolds number up to a
Taylor scale based Reynolds number of 750 (cf. [30]).

the value of the stability index from 1.65 to 1.70 does not
change the overall analysis but the results are now on the
extreme side of the 95% confidence interval.

It should be remembered that the ratio between Taylor
scale X and Kolmogorov scale 7 is equal to [37]

N
== 15" Re}?, (26)
Y
so that Eq. (26) leads to
N
a-f;szln(—), (27)
Y

where N stands for the Taylor length scale i.e., the mean size
of the dissipative eddies. Moreover following Sec. II C and
considering the proportionality between vortex stretching H,
vortex angular velocity €, and turbulence dissipation, this
equation also reads as follows:

m-ofn(2)) "
n

This means that the average Hencky strain, i.e., the number
of stretching and bending events needed to describe the self-
avoiding vortex, is related to the ratio between the Taylor
microscale and the Kolmogorov scale.

The picture that is suggested can be related to Tennekes’
[15] simple model for the small-scale structure of turbulence
(cf. Fig. 7). A population of vortices of the size of the Taylor

TABLE 1I. Scaling of hyperflatness with Reynolds number
[30].

Order Hyperflatness Moment scaling parameter
4 H4=0.95 Re)° £=0.38 In(Re, ) —0.045
5 Hs=1.07 Re)** £=0.64 In(Re, ) +0.069
6 Hg=0.99 Re)*® £=0.99 In(Re,)—0.013
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FIG. 7. Tennekes’ simple model for the small-scale structure of
turbulence [15] (reprinted with permission of AIP).

microscale is both stretching and stretched into a population
of vortex tubes whose radii are on the order of the Kolmog-
orov scale. As Tennekes pointed out by making a budget of
turbulent energy dissipation per unit volume (i.e., by multi-
plying the average dissipation per filament by the filament
volume density), the following classic relationship is recov-
ered:
2 2
e= V%)\_nj= V%, (29)

where g stands for the scale of velocity fluctuation.

C. Comparison to other experimental and DNS correlations

The results shown in Secs. IIl A and III B mainly come
from a previous paper [30] and the main innovation of the
present work is the self-voiding random vortex stretching
mechanism and the new fitting of data from Stewart et al.
[26]. Therefore, it is both interesting and complementary to
compare them to different results (without trying to fit the
parameters of the law). Unfortunately and it will be ex-
plained further in the following, it is very difficult to do so as
far as PDFs are concerned, since turbulence intermittencies
results are mainly published using the moments formalism. A
selection of some relevant published results has therefore
been made but it is far from being exhaustive.

First, let us compare the present results with the atmo-
spheric data results of Antonia et al. [38]. In these, the mea-
sured values of the exponents of Hs, Hy, Hs, and Hg are 0.11,
0.31, 0.61, and 1.0 whereas the present correlation leads,
respectively, to the values of 0.14, 0.35, 0.62, and 0.96.
These values come from a strict application of Egs. (28),
(22), and (20). In [38], confidence intervals are not reported
but the present modeling works quite well. The discrepancies
increase if the recent wind-tunnel values of 0.09, 0.39, 0.63,
and 1.08 obtained by Gylfason er al. [39] are considered.
But, again, in this experimental study, confidence intervals of
the regressions are not reported. It should also be noted that
some of these last results have been obtained with an active
grid and that the values of & range from 0.079 to 7.78 m?/s>.
This is somewhat different from direct numerical simulation
(DNS) data where ¢ is usually kept constant and the viscos-
ity is varied so as to increase the Reynolds number. In [40],
Ishihara et al. reported DNS values of 0.11 and 0.34 for the
exponents of H; and H,. They also studied the PDF of
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|(9u/ dx|, but the values are given between 0 and 30 standard
deviations in a linear plot making slightly 1 decade available
for comparison. It should be first pointed out that the power-
law tail of the Lévy PDF concerns very small fluctuations
which are not apparent in linear scale. Second, since the
greatest reported value of Re, is 1130, this means that oy, ,
=~ %ln(l 130) = 3.5. Thus, the velocity gradient data should be
collected on a range of 60y, A, =207, . ~4.0 Neperian magni-
tude scales, i.e., 1.7 decades. (Fully asymmetric Lévy laws
are somewhat different from normal Gaussian laws. It is well
known that normal random variables are mainly contained in
a ball centered on their average value and of radius equal to
1.96 times their standard deviation, i.e., a range of roughly
40 whereas that range turns to be closer to 6o for fully
asymmetric Lévy laws. In this reasoning, Kolmogorov’s
four-fifth law has been used and leads to the following rela-
tion between scale parameters of velocity increments and
turbulence dissipation: 30y, A, =07, ; cf. [24,41].) Actually,
as old as it may be, Ref. [26] may be one of the only refer-
ences where the postprocessing of the PDF of the velocity
gradient is done in an appropriate manner as far as compari-
son with the present modeling is concerned: 6 Neperian mag-
nitude scales are given by Stewart et al. whereas the Rey-
nolds number is estimated to be 10° in [26], so Re, ~ 10,
Om~2.0 and 4 Neperian magnitude scales should be
roughly expected for the velocity increments. However
Stewart et al. gave the statistics of velocity gradients and as
pointed out in [42], the scaling used by Stewart ef al. was
&=(du/dx)*; therefore, the proper relationship is 207y oulox])
=0y, Which leads to the accurate answer of 6 Neperian
magnitude scales.

D. Application to the Rice-Liepmann theorem

Another interesting upshot of this modeling is that it can
be applied to the Rice-Liepmann theorem [43-46]. This
theorem can be related to Tennekes intuitive picture of tur-
bulence summarized in Fig. 7. It states that the average dis-
tance / between two zeros of a stationary stochastic function
u is equal to

2\1/2
PR o (30)

()

under the assumption that u and du/dx shall be zero centered
and statistically independent. (Application to the non-
Gaussian case was suggested by Sreenivasan et al. [47] and
the proof is given in [48].) C is the ratio

e

dx
When u stands for the longitudinal fluctuating velocity, the
ratio N=(u?)""?/{(du/ dx)*)"'? is the Taylor microscale and the
distance [ is the average distance between stagnation points
of the instantaneous velocity field. Equation (31) now reads

(31)
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FIG. 8. Comparison between predicted curve (33) obtained by
application of the Rice-Liepmann theorem to the present
logarithmic-stable law and data collected in [48]. See that reference
for a more complete description of the different experimental
setups.

[=C\r. So, as suggested in Fig. 7, the average distance be-
tween two zeros of the fluctuating velocity field is expected
to be proportional to the Taylor microscale. C equals 1 when
du/dx is Gaussian and Mazellier and Vassilicos [48] sug-
gested that C is actually a function of Re, and that it should
contain some effects of the intermittencies. Let us examine
the consequences of the logarithmic-stable model. If we use
Egs. (17) and (20), we thus obtain

()" e gl

=T 3y, D CXp
3 2\3
du &) cos(ﬂy
dx 2
(32)
which using Eq. (25), leads to
C=0.80 Re)® (33)

or C¥?=0.71 Reg'og. Actually when a is small, we get the
approximation Re{ =exp(a In Re,) = 1+a In Re, and the pre-
ceding law can also be written as C¥?~0.71+.061 In Re,
for small Re,. As they expected a dependency of C on
In(Re, ), Mazellier and Vassilicos reported the following fit:
C¥?=~0.87+0.11 In Re,, for all Re,. In [48], a collection of
experimental results published in the scientific literature and
of new results is gathered. This leads to a wide range of
Reynolds number and gives some statistical significance to
the resulting correlation but both active and passive grid tur-
bulence and the so-called “chunk” turbulence (Modane wind
tunnel) are considered. To circumvent the observed discrep-
ancy, a direct comparison between the present (semiempir-
ical) power law and data set used in [48] has been made and
is presented in Fig. 8. The results of the comparison are quite
good, except for data collected in the Modane wind-tunnel
experiment. Therefore, with the exception of these data, it
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seems that the dependence of the constant C on Reynolds
number may be related to some extent to the present model
of small-scale intermittencies.

IV. CONCLUSION

In this paper, a bridge between vortex stretching and lin-
ear polymer growth has been drawn leading to logarithmic-
stable law of stability parameter inversely proportional to the
Flory exponent. The number of stretching and folding stages
needed to map a vortex onto a three-dimensional self-
avoiding walk has been proven to be related to the logarithm
of the ratio between the Taylor microscale (i.e., the size of
the mean dissipative eddies) and the Kolmogorov scale (i.e.,
the size of the smallest dissipative eddies). Experimental val-
ues of the parameters of this modeling have been obtained
from four independent sets of experimental and numerical
results (PDF from Stewart et al. [26], moments from Ansel-
met et al. [28], Kerr [35], and Belin ef al. [36]). All these
results merge perfectly, leading to the same value of param-
eters and giving some generality to the model. Moreover, the
resulting model fits reasonably well with other experimental
correlations [38,39] and DNS results [40]. However, postpro-
cessing of this data is not usually done in an appropriate
manner and therefore a comparison can only be made on a
small number of indirect representations of the PDF (e.g.,
moments). Another interesting result derived from this model
is that it leads to a plausible explanation of the intermittency
effect which has been observed when applying the Rice-
Liepmann theorem to turbulent flows and to the repartition of
stagnation points of the instantaneous velocity field.

There is also an interesting unanswered question remain-
ing, namely, whether changing definition (11) by definition
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(14) does influence the value of the scaling exponents v and
a or not. In fact @ should now be properly defined by the
following relationship (where long self-avoiding walks of N
unitary steps are considered):

1
a/ lim Nf [r|*py(r)dr=1 (34)

N—+00 0

(again the answer would be a=2 in the case of self-
intersecting walks). Tests using numerical and statistical sort-
ing [23] of N steps self-avoiding walks could be used to find
an answer to this question.

To conclude, however interesting this modeling may be
(since it does not contain any free parameter, actually only
values of Taylor and Kolmogorov scales do depend on the
experiment taken into account), we wish to stress the fact
that it can only be considered as a kinematic description
insofar as it shows a possible way for the vortices to evolve.
The rate and dynamics of vortex evolution is another matter
that should be taken into account (this shall be rather simple,
in the inertial range, but boundary conditions on the integral
scale and Kolmogorov scale are another tougher matter). The
goal of this work would be, for instance, to explain the re-
laxation mechanism of homogeneous and isotropic turbu-
lence [49]. Other topics of interest would be the introduction
of transitions in the behavior of vortices (for instance, vortex
breakdown or reconnections; cf. Tabeling and Willaime [50]
and Chorin [13]) or application to helical flows, all of which
may lead to some change in the modeling (maybe in the
value of the stability parameter). Lastly links with the pio-
neering work of Kolmogorov on pulverization (cf. [27])
which was the incentive of this work will be considered in
forthcoming papers.
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