
Vibrations of a diamagnetically levitated water droplet

R. J. A. Hill* and L. Eaves
School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom

�Received 19 January 2010; revised manuscript received 14 April 2010; published 13 May 2010�

We measure the frequencies of small-amplitude shape oscillations of a magnetically levitated water droplet.
The droplet levitates in a magnetogravitational potential trap. The restoring forces of the trap, acting on the
droplet’s surface in addition to the surface tension, increase the frequency of the oscillations. We derive the
eigenfrequencies of the normal mode vibrations of a spherical droplet in the trap and compare them with our
experimental measurements. We also consider the effect of the shape of the potential trap on the
eigenfrequencies.
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I. INTRODUCTION

If the surface of a spherical liquid drop is briefly de-
formed by a puff of air, for example, it vibrates, ringing at
several different frequencies. The eigenfrequencies of these
shape oscillations were determined by Lord Rayleigh,

�T = �Tl�l − 1��l + 2�
�a3 �1/2

rad s−1, �1�

where T is the surface tension, l is the mode number, � is the
density, and a is the radius of the spherical drop at rest �1,2�.
By measuring �, we can determine the surface tension of the
liquid. Beaugnon
et al. used diamagnetic levitation to measure � of the
lowest-order �l=2� mode of a diamagnetically levitated liq-
uid droplet �3�, and recently, we used diamagnetic levitation
to investigate dynamics of a spinning water droplet �4�. A
diamagnetically levitated droplet is confined within a mag-
netogravitational potential trap �5,6�. The trap acts as an ad-
ditional cohesive force on the drop, perturbing its eigenfre-
quency spectrum. Beaugnon et al. observed the shift to
higher frequency of the lowest-order l=2 mode and deter-
mined an expression for the increase in terms of an enhanced
effective surface tension �3�. However, their result cannot be
generalized to the higher-order modes. Here, we use diamag-
netic levitation to measure the normal mode frequencies of a
levitating drop for l�2. We derive an expression for the
eigenfrequencies of a liquid droplet confined by the magne-
togravitational potential trap and compare it with our mea-
sured frequencies. Our analysis points the way to achieving
accurate measurements of surface tension using this noncon-
tact technique. We also consider the effect on the eigenfre-
quencies of the shape of the potential trap and consider
analogies with the vibrations of a model “star.”

II. EXPERIMENTAL DETAILS

We use a vertical-bore superconducting solenoid magnet
with a room temperature, 50-mm-diameter bore to levitate
droplets of water with radii �1 cm. The droplets levitate

approximately 80 mm above the geometric center of the so-
lenoid, where the diamagnetic force, proportional to B�B, is
equal in magnitude to, and opposite in direction to the gravi-
tational force on �i.e., the weight of� the droplet �5,6�. The
magnetic field is B�12 T and the vertical field gradient is
�B /�z�120 Tm−1 at the levitation point.

Figure 1 shows a spatial map of the magnetogravitational
potential

U�x,z� = gz −
�B2�x,z�

2��0
�2�

of a unit mass of water in the potential trap, where x and z
are radial and vertical cylindrical coordinates with origin at
the geometric center of the solenoid coil, �=−9�10−6 and
�=1�103 kg m−3 are the volume magnetic susceptibility
�in SI units� and density of water, respectively, and
g=9.8 m s−2. The center of the levitating droplet coincides
with the position of the stable levitation point L0 at the center
of the trap, as shown. �There is a second point of unstable
levitation L1, at the saddle point in U, as shown in Fig. 1.
However, this point is not useful for these experiments, and
so we do not discuss it further here.� The net force on a unit
mass of water, �=−�U, is zero at the levitation point. The
equilibrium shape of a liquid with no surface tension follows
the contours of U, as demonstrated recently, using liquid H2
close to the critical point �7�. For water droplets with
a�1 cm, however, the surface tension dominates the mag-
netic and gravitational forces on the drop so that its equilib-
rium shape is nearly spherical.

The shape of the magnetogravitational potential trap can
be altered by adjusting the current in the magnet solenoid
coils. A convenient measure of the current is the magnetic
field at the geometric center of the solenoid, B0=B�0,0�. The
field B�x ,z� is everywhere proportional to B0. To levitate
water requires B0�16–17 T using our magnet. Figure 1
shows the U�x ,z� for B0=16.5 T. The field profile B�x ,z� of
the magnet used to construct this plot was computed by nu-
merical integration of the Biot-Savart integral, using a thin-
shell approximation for the current density in the solenoid.

We expand the potential U in a multipole expansion about
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U�r,�� = 	
j�0

cj�r�Pj�cos �� , �3�

where r and � are spherical coordinates with origin at L0; � is
the polar angle �i.e., r sin �=x�. Only the derivative of U
normal to the droplet’s surface �i.e., the radial component of
the force� influences the eigenfrequencies of the normal
modes,

	r�r,�� = −
�U�r,��

�r
= 	

j�0
cj��r�Pj�cos �� , �4�

where cj�=�cj /�r. By adjusting B0, we reduce the quadrupole
component until it is small compared to the spherically sym-
metric component c2�
c0�. The octopole harmonic c3�, which
cannot be reduced this way, remains comparable to c0�. All
other harmonics are small compared to c0�. We shall return to
discuss these points further in Sec. V.

Figure 1, top, shows a schematic diagram of the water
droplet levitating in the vertical magnet bore. The droplet at
rest is close to spherical; we measure the ratio of the equa-
torial �horizontal� diameter to the polar �vertical� diameter to

be 1.00�0.02. An optical fiber directs light from a HeNe
laser at the droplet. The drop focuses the light onto the ap-
erture of a second fiber, which transmits the light to a pho-
todiode outside the magnet. The emf of the photodiode is
measured by a storage oscilloscope. A 1-mm-diameter nozzle
directed at the center of the underside of the droplet �see
Fig. 1� is connected to a rubber bulb outside the magnet by a
tube. When the bulb is struck on a hard surface, the resulting
pulse of air from the nozzle excites several shape oscillation
modes simultaneously, with amplitude �0.05a. Since the fo-
cal length of the drop depends on its shape, the intensity of
the laser light falling on the photodiode oscillates as the drop
vibrates. The temperature of the water was brought to 16 °C
in a water bath, before it was injected into the potential trap,
to match the ambient temperature in the magnet bore. At this
temperature, the density of the liquid is �=999 kg m−3, its
surface tension is T=73.3 mN m−1 and its kinematic viscos-
ity is =1.11�10−6 m2 s−1 �8�. The liquid was injected into
the trap using a glass pipette. The volume of liquid injected
was determined to better than 1% uncertainty from the dif-
ference in the weight of the pipette before and after injection.
The liquid was drawn out of the bore using a paper towel, by
capillary action, after the experiment. By measuring the dif-
ference in weight between the wet and dry paper, we ob-
tained a second measurement of the droplet volume. Using
this simple and accurate technique, we were able to deter-
mine that the mass loss through evaporation of the drop,
during the measurement period �approximately 30–60 min�,
was always less than 2%. Experiments were performed both
in air and in dry nitrogen gas �by filling the bore with N2
from a pressurized gas cylinder�. The air experiments were
performed at B0=16.2 T and the nitrogen experiments at
16.5 T. The reason for the different B0 may be explained
by the oxygen content of the air, which, being paramagnetic,
buoys up the droplet �9,10� by an additional force �air
=−�Uair. Here, Uair=�airB

2 / �2�0�� and �air=+3.7�10−7 is
the volume magnetic susceptibility of air �SI units�. The c2�
component of U+Uair is minimized at B0=16.2 T. In nitro-
gen, the buoyancy force is negligible compared to the dia-
magnetic force, and c2� is minimized at 16.5 T as shown in
Fig. 1.

III. RESULTS

Figure 2, bottom, shows the oscillations in the photodiode
emf E�t� developed by the light refracted through an a
=6 mm droplet; they decay exponentially with a time con-
stant ��0.1–10 s, dependent on a and l, due to the viscos-
ity of the water, i.e., E�t�=	l El exp�i�lt− t /�l�. The power
spectrum of these oscillations is shown in Fig. 2, center.
Several peaks are evident in this spectrum, corresponding to
the l=2 to 7 Rayleigh modes of the drop. Peak 1 is due to a
small oscillation of the droplet’s center of mass of about L0
�amplitude �1 mm�. The frequency of this peak is indepen-
dent of a. The upper panel of Fig. 2 shows the measured
peak positions for different drops with radii between a=4.5
and 14 mm; the broken lines show the Rayleigh frequency
spectrum for a water drop, according to Eq. �1�. Note that the
measured frequencies are slightly higher, by �1 Hz, due to
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FIG. 1. Bottom: magnetogravitational potential U�x ,z� of a wa-
ter droplet levitated by the magnetic field B�x ,z� of a vertical-bore
superconducting solenoid magnet �contours at �U /g=0.05 mm in-
tervals�; x and z are radial and vertical cylindrical coordinates, re-
spectively, with origin at the geometric center of the solenoid. The
field at the center of the solenoid is B0=B�0,0�=16.5 T. The field
profile B�x ,z� used to construct the plot was computed by numerical
integration of the Biot-Savart integral. The stable levitation point at
a local minimum in the potential is labeled L0. An unstable levita-
tion point at a saddle point in the potential is labeled L1. Top:
schematic of the experimental setup. The magnetic field lines are
shown in gray. Rays are shown as bold lines.
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the effect of the magnetogravitational potential trap. We shall
calculate this frequency shift in the following sections of the
paper. Although small, it is important to be able to account
for this shift if the technique is to be used to obtain accurate
measurements of surface tension, for example.

An estimate of the effect of viscosity on the frequency of
oscillation can be obtained by calculating the ratio of the
magnitude of viscous stresses to surface tension forces,
f� / �TD−1�=Oh�2l�l−1��l+2��1/2 /�, where D=2a, f =2��,
and Oh is the Ohnesorge number �11�. This ratio is much
smaller than unity for the droplet sizes used in these experi-
ments. This indicates that we can neglect the influence of
viscosity on the oscillation frequencies as a small effect. For
example, we expect the viscosity of the water to marginally
lower the frequency � of the l=2 mode of an a=5 mm
droplet by �5�1��10−4%, but this is a small reduction com-
pared to the frequency increase resulting from the trapping
potential. �We obtained these estimates by solving numeri-
cally the Chandrasekhar equation for the eigenfrequencies of
a viscous drop �12,13�.� The Oh number indicates that vis-
cosity has a significant effect on the frequency of modes
l�20 only for water drops smaller than a�10 �m. The

shape of the peaks in the power spectrum agrees well with
the Lorentzian shape expected for an exponentially decaying
oscillation, with half-width at half maximum �HWHM� ��
=1 /��a−2�l−1��2l+1� given by the Chandrasekhar equa-
tion �12,13�. �Since the power spectrum is the square of the
magnitude of the Fourier transform of the oscillations, we
compare the shape of the peak with the square of the Lorent-
zian function.�

IV. SPHERICAL POTENTIAL APPROXIMATION

We now consider the effect of a spherically symmetric
magnetogravitational potential well on the eigenfrequencies
of the drop. We shall discuss the effects of additional har-
monics in Sec. V. Our derivation follows Lamb’s derivation
of the Rayleigh frequencies �2� closely, with the addition of
the force 	r on the droplet’s surface due to the gradient of the
magnetogravitational potential at the surface. We write the
shape of the lth mode of a drop oscillating with frequency �,
for oscillations with small amplitude �, as

r = R��,t� = a + � = a + �Pl�cos ��sin �t , �5�

where Pl is a Legendre polynomial of degree l�1 �l=1 cor-
responds to an oscillation of the droplet’s center of mass in
the potential trap�.

The pressure equation at the surface of the droplet �to first
order� is �2�


 ��

�t



r=a

= U�R� +
p�R�

�
+ F�t� , �6�

where F�t� is an arbitrary function of t only and � is the
velocity potential �2�

��r,�� = −
rl

lal−1��Pl�cos ��cos �t . �7�

The pressure difference across the surface resulting from the
surface tension is �2�

p�R� = T�2

a
+

��l − 1��l + 2�
a2 � . �8�

The magnetogravitational potential U at the surface of the
drop is �to first order�

U�R��,t�� = U�a� − 	r�a,���R − a� �9a�

=U�a� − �	r�a,��Pl�cos ��sin��t� , �9b�

where 	r�a ,��=−c0��a� for a spherically symmetric well �see
Eq. �4��. Inserting Eqs. �7�, �8�, and �9b� into Eq. �6�, we
obtain

�2 = �T
2 + �0

2, �10�

where

�0
2 =

c0��a�l
a

�11�

is the oscillation frequency �squared� of a hypothetical drop
with T=0, held together by the magnetogravitational trap
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FIG. 2. Bottom: photodiode voltage E measuring the shape os-
cillations of an a=5.8 mm water droplet. Center: power spectrum
of the oscillations of an a=5.8 mm water droplet, as a function of
oscillation frequency f =� /2�. Top: measured frequencies f of the
oscillation modes of water droplets with radii between a=4.5 and
14 mm, up to l=16. The broken lines show the Rayleigh frequency
spectrum for a water drop, according to Eq. �1�. The measured
frequencies �crosses� are slightly higher, by �1 Hz, due to the
effect of the magnetogravitational potential trap.
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alone. The fact that the square of the measured frequency �2

is a simple sum of the square of the Rayleigh frequency �T
2

and �0
2 is due to the fact that l remains a good eigen-number

for oscillations in a spherically symmetric potential well. In
Sec. V, we will consider the effect of a nonspherical magne-
togravitational well. In a nonspherical well, l is not a good
eigen-number in general, but for small deviations from
spherical, we can use perturbation theory to obtain correc-
tions to Eq. �10�.

We can obtain an experimental measurement of c0� by ex-
amining the difference between the measured frequencies �
of any two of the modes l ,n�2:

hl�0,n
2 − hn�0,l

2 = hl�n
2 − hn�l

2, �12�

where hl= l�l−1��l+2�. Dividing by �nhl− lhn� /a, we obtain
an experimental measurement of c0��r� from the oscillations
of a drop that has radius a=r at rest:

c0��r� = r
hl�n

2 − hn�l
2

nhl − lhn
. �13�

By using two measured frequencies, �l and �n, rather than a
single frequency, we obtain a measurement of c0� independent
of the surface tension.

Figure 3 �left panel� shows the values of c0� that we obtain
from the above “two-frequency” method using the lowest-
order mode n=2 and a second mode l�2. We use the n=2
mode since the corresponding peak in the power spectrum is
always clearly resolved. We plot the mean of the values ob-
tained for each mode l�2. Error bars �standard error� indi-
cate the variation in the measured c0� obtained from different
modes l. Filled circles and open squares show data obtained
from a drop in a nitrogen atmosphere at B0=16.5 T and in
air at B0=16.2 T, respectively. The broken line on Fig. 3

shows the value of c0��r� computed from the potential U
shown in Fig. 1 �i.e., from the geometry of the solenoid and
the current B0�. This line is in reasonably good agreement
with the experimentally measured values of c0�, although the
data points fall at slightly higher values. As an additional
check of our method, we plot the dependence of the mea-
sured c0� on l �right-hand panel�. If the trap-induced fre-
quency enhancement that we measure experimentally is ac-
curately given by Eq. �11�, then the c0� values that we
determine by this method should exhibit no dependence on l.
Although there is some scatter in the data due to experimen-
tal error, there is no clear dependence on l.

V. NONSPHERICAL POTENTIAL

In the previous section, we assumed that the potential well
was spherically symmetric around L0. However, while we
have chosen the field B0 to minimize the quadrupole compo-
nent of the trap, the octopole component remains significant,
as can be seen clearly in Fig. 1. Thus it initially appears
surprising that we can treat the well as if it were spherical, in
order to calculate its effect on the vibrations of the droplet’s
shape. �Had we determined an unphysical dependence of our
measured c0� on l in the previous section, it would also have
followed that the spherical well approximation was inad-
equate.� We now consider the effect on the eigenfrequencies
of the drop of additional harmonic components cj� of the
potential trap and consider why, if the trap has a significant
octopole component, the spherical well approximation is so
effective at reproducing the measured frequencies of the
droplet.

We first discuss how close to spherical it is possible to
make the potential trap; that is, how small the coefficients cj�,
j�0 can be made. Lorin and Mailfert have considered the
relationship between the coil geometry �the distribution of
the current density� and the shape of the potential trap �14�.
Although we cannot alter the coil geometry, we can alter the
coefficients cj� by adjusting the current flowing in the sole-
noid. The magnitude of the quadrupole component of the
radial force �c2�� is smallest �for our magnet� at B0=16.2 T in
air, and at B0=16.5 T in nitrogen gas; at this field, �c2��

 �c0�� and only weakly dependent on r. Increasing B0 beyond
this value gives a positive c2�, increasing with r. Decreasing
B0 below this value gives a negative c2�, becoming more
negative with increasing r. The gradient of the octopole com-
ponent c3�, however, is of the same order as c0� and increases
as r2. This component is a feature of the magnetogravita-
tional potential trap generated by a solenoid. It can be re-
duced slightly, by increasing B0, but only at the expense of
significantly increasing �c2��. Note that the dipole component
of the trap c1 is necessarily zero �hence c1�=0 too� since the
net vertical force on the droplet Fz must be zero for levita-
tion. Since Fz is proportional to the difference between the
mean surface potentials of its upper and lower hemispheres,
i.e.,
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FIG. 3. Left panel: gradient of the magnetogravitational poten-
tial trap c0� obtained from the measured frequencies of two modes,
l=2 and l�2, of a drop with radius a=r at rest. Error bars show the
standard error. Filled circles: data obtained in nitrogen atmosphere.
Open squares: data obtained in air atmosphere. Dotted line: c0� com-
puted from the solenoid geometry. Right panel: dependence of the
experimentally obtained c0� on the mode number with l�2 �see
text�.
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Fz � �
0

1

�w�U�a,w�dw − �
−1

0

�w�U�a,w�dw

� 	 j
cj�

−1

1

wPj�w�dw

� c1,

it follows that c1=0 where w=cos ��=P1�. The harmonic
components j�3, are small compared to both c0� and c3�, in
our system. Figure 4 shows the values of the j=0 and j
=2,3 �quadrupole and octopole� coefficients cj� at B0

=16.5 T �for nitrogen atmosphere� computed from the sole-
noid geometry. The spheres in Fig. 5 show the computed
magnitude of �=−�U at the surface of three droplets, radius
a=5.0, 7.5, and 10.0 mm. Radiating lines indicate the direc-
tion and magnitude of �, which is directed toward the inte-
rior of the droplet. The variation in ��� over the surface of the
droplet is due to the octopole component of the potential
trap.

We now consider the effect on the droplet’s eigenfrequen-
cies of adding a harmonic component cj�, j�2 to the poten-
tial trap. The analysis proceeds as above, however, we must
now include higher-order harmonics in the eigenfunction of
the shape oscillation,

r = R��,t� = a + � sin �t	
l�1

blPl�cos �� , �14�

since l is not, in general, a good eigen-number in a non-
spherical potential. In principle, we should decompose the
shape into spherical harmonics Yl

m since the degeneracy in m

is also lifted in a nonspherical potential �see Fig. 6�. How-
ever, our method of inducing shape oscillations in the droplet
tends to excite only the axisymmetric shapes �i.e., with m
=0� since the air jet is aligned along the solenoid axis. For
this reason, we derive here the frequencies of the m=0 os-
cillations only �Eq. �14��, which are sufficient to interpret the
experimental results. We summarize the treatment of the gen-
eral case �m�� l in the Appendix.

The velocity potential is

��r,�� = − �� cos �t 	
l�1

blr
ll−1a−l+1Pl�cos �� . �15�

The magnetogravitational potential U at the surface of the
drop is �see Eq. �9a��

U�R� = U�a� − �	r�a,��sin��t�	
l�1

blPl�cos �� , �16�

where −	r�a ,��=c0��a�+cj��a�Pj�cos �� in this case �see Eq.
�4��. Inserting Eqs. �14�–�16� into Eq. �6� and equating the
time-varying terms, we obtain

a�2	
l�1

blPl

l
= 	

l�1
�c0��a� + cj��a�Pj� +

T

�a2 �l − 1��l + 2��blPl.

�17�

The product PlPj appearing on the right-hand side �RHS� of
this equation can be expanded as a sum of Legendre polyno-
mials �15�, which, for our purposes, is most conveniently
written PlPj =	p=�j−l�

j+l Q�l , j , �j+ l− p� /2�Pp, in which �15�

Q�l, j,s� =
A�l − s�A�s�A�j − s�

A�j + l − s� �2j + 2l − 4s + 1

2j + 2l − 2s + 1
� �18�

for integer s and we define Q�l , j ,s�=0 for half-integer s;
A�n�=1�3�5� ¯ � �2n−1� /n!. Equating the coefficients
of Pl, we obtain

�2bl =
c0��a�l

a
bl +

T

�a3 l�l − 1��l + 2�bl

+
cj��a�l

a
	

p=�j−l�

j+l

bpQ�p, j,�j + p − l�/2� . �19�
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FIG. 4. Values of the j=0 �spherically symmetric� and j=2,3
�quadrupole and octopole� coefficients cj� in a multipole expansion
of the potential well gradient, Eq. �4�, at B0=16.5 T �in nitrogen
atmosphere�. Note, c1�=0 �see text�. The values were determined
from the magnetogravitational potential �Eq. �2�� shown in Fig. 1.
The c0� line is the same as that shown by the dotted line on Fig. 3.
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This equation has the form of an eigenvalue problem �2bl
=Hl�b�= �Hl�

�0�+Vl��b� �using the summation convention, l
�1�, where H�0�, representing the first two terms on the RHS
of Eq. �19� is a diagonal matrix and V, representing the third
term on the RHS is not, in general, diagonal. Treating V as a
perturbation, the first-order correction �� j

2��1�=bl
�0�Vl�b�

�0� due
to a harmonic component j can be computed analytically to
obtain the eigenfrequencies �2=�T

2 +�0
2+ �� j

2��1�+¯. For a
quadrupole harmonic j=2 we obtain

�� j
2��1� =

c2��a�
a

l2�l + 1�
�2l + 3��2l − 1�

. �20�

For an octopole harmonic j=3 and all odd j, �� j
2��1�=0. This

explains why our spherical-well approximation works so
well in predicting the eigenfrequency spectrum of the drop-
let: we have minimized c2� by careful adjustment of B0 and
we expect, from the above analysis, that the effect of the
octopole harmonic c3� �which is comparable to the spherically
symmetric component c0�� on the measured eigenfrequencies
in our experiment, to be minimal. Figure 6 shows the eigen-
frequencies determined by using a computer to solve the
eigenvalue problem numerically �i.e., beyond first order�.
The eigenfrequencies of an a=7.5 mm droplet, for various
c2� and c3�, are shown �thick lines�, along with the first-order
result Eq. �20� for comparison �thin lines�. In addition, we
plot the eigenfrequencies of modes with m�0 �broken
lines�; the calculation of the frequency of these modes is
outlined in the Appendix. The lower plot of Fig. 6 shows that
the effect of the octopole harmonic c3� on the measured
eigenfrequencies is minimal for all m for �c3���1. For a quad-
rupole harmonic c2�, the eigenfrequencies depend strongly on
m, as shown in the upper plot of Fig. 6. However, since we

have reduced �c2�� to smaller than �0.05 as described above
and since our method of exciting the oscillations tends to
excite only the m=0 modes, this does not alter our explana-
tion of why the spherical-well approximation works so effec-
tively.

VI. DISCUSSION AND CONCLUSION

Although the forces at the droplet’s surface are dominated
by the surface tension, we can clearly observe the influence
of the magnetogravitational potential trap on the eigenfre-
quencies. We have demonstrated that the effect of the trap on

a = 7.5 mm
a = 5.0 mm

a = 10 mm

0.2

0.4

0.6

0.8

Γ (ms−2)

0.2

0.3

0.4

0.5

Γ (ms−2)
0.15

0.2

0.25

0.3

Γ (ms−2)

z

FIG. 5. The three spheres show the computed magnitude of the
vector �=−�U on the surface of three droplets, radius a=5.0, 7.5,
and 10.0 mm at B0=16.5 T �in nitrogen atmosphere�; the length
and direction of the radiating lines show the direction and magni-
tude of the �inward pointing� � at the surface; � was determined
from the magnetogravitational potential �Eq. �2�� shown in Fig. 1.
The variation in ��� over the surface of the droplet is due to the
octopole component of the potential trap.
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FIG. 6. Top: effect on the eigenfrequencies of an a=7.5 mm
water droplet of adding a quadrupole harmonic c2� to the shape of
the magnetogravitational potential well �c0�=0.36 m s−2, all other
cj�=0�. The thick black lines show the eigenfrequencies �squared� of
the m=0 modes �i.e., the eigenvalues �2 of Eq. �19�� corresponding
to l=1–5; the eigenvalues of Eq. �19� were computed using MAT-

LAB. �Note that we have plotted �2−�T
2 for clarity�. The thin lines

show the first-order approximation �Eq. �20�� departing from the
numerically computed frequencies at �c2���1. Long-dash, medium-
dash, short-dash, dot-dash, and dotted lines show the frequencies of
the �m�=1–5 modes, respectively �the treatment of the m�0 modes
is summarized in the Appendix�. Bottom: effect on the eigenfre-
quencies of an a=7.5 mm water droplet of adding a harmonic c3� to
the shape of the well �c0�=0.36 m s−2, all other cj�=0�.
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the eigenfrequencies closely approximates that of a spheri-
cally symmetric potential well. Although the potential well
has a significant octopole component in additional to the
spherically symmetric component, we have calculated that
the effect of the octopole component on the eigenfrequencies
is small and verified this experimentally. The small differ-
ence between the values of c0� calculated from the solenoid
geometry and the measurement of c0� from the measured
droplet oscillations may be due to a small error in the calcu-
lated value: the calculation of the field profile B�x ,z�, per-
formed by numerical integration of the Biot-Savart equation,
is based on a thin-shell approximation of the current density
in the solenoid coils. We note that the discrepancy cannot be
explained by the octopole component of the trap since this
only marginally reduces the eigenfrequencies �Fig. 6�, which
would only reduce the measured value of c0� slightly. Experi-
ments have shown that nonlinear effects become significant
for oscillation amplitudes greater than approximately 0.1a
�16�. In our experiments, however, the oscillation amplitude
is smaller than this, and we do not observe these nonlinear
effects.

We have shown how to minimize the quadrupole har-
monic of the potential trap by adjusting the solenoid current.
This allowed us to use the relatively simple formula Eq. �11�
to calculate the effect of the trap on the eigenfrequencies.
This opens up the possibility of using diamagnetic levitation
to accurately determine the surface tension of diamagnetic
liquids �for example, water, and many water-based and or-
ganic solutions�: subtracting the contribution of the trap to
the eigenfrequencies reveals the Rayleigh-frequency spec-
trum, from which the surface tension can be obtained di-
rectly. A contactless measurement technique has many ad-
vantages, for example, the ability to measure highly reactive
liquids and to achieve significant supercooling of the liquid,
as demonstrated in experiments on electromagnetically levi-
tated liquid metals �17�. Acoustic levitation and the oscillat-
ing drop method can be used to measure surface properties of
small drops �radius �2 mm� of water and organic liquids
�e.g., �18,19��. Suspension of small drops in air flow is also
possible �20�. However, since the equilibrium droplet shape
is distorted significantly from spherical in both of these tech-
niques, it is necessary to make accurate measurements of the
equilibrium shape in order to correct for the distortion, which
introduces additional significant experimental uncertainty
�18–21�. Drops can be bounced on a solid surface or a vi-
brating liquid bath, the drop and surface being separated by a
thin layer of air �22,23�. In this case, the eigenfrequency
spectrum deviates from the Rayleigh spectrum due to the
periodic forcing by the oscillating surface �24,25�. An ex-
pression, similar to Rayleigh’s, for the eigenfrequencies of
vibrating drops in continuous point contact with a surface
has been determined �25� but there remains some uncertainty
over the spectrum of bouncing drops �25�. Although free fall
can be used to obtain the Rayleigh frequencies directly �for
example, in a drop tower �26��, we have shown how diamag-
netic levitation could offer an alternative accurate method of
measuring these frequencies; the levitated droplets are near
spherical at rest and the eigenfrequency spectrum is very
close to Rayleigh’s, as shown in Fig. 2. The relatively small
shift to higher frequency due to the potential trap can be

obtained using a simple spherical-well approximation �Eq.
�11��. Diamagnetic levitation can levitate cm-size drops �up
to �3 cm diameter in our magnet� �3,4,27� enabling the
droplet volume to be measured easily and precisely. Cur-
rently, there is interest in the temperature dependence of the
surface tension of supercooled water �28�. The lowest-
temperature achieved so far, which used a contact technique,
is 245 K �29�; nucleation sites on the container walls trigger
freezing before colder temperatures can be reached. We pro-
pose that diamagnetic levitation and the oscillating drop
technique could be used to obtain measurements of surface
tension at temperatures less than 245 K.

It is interesting to consider an analog between the oscil-
lations of the levitating droplet and that of an object in a
gravitational field. We can consider the magnetogravitational
force on a unit mass of water, �=−�U, as being an effective
gravitational field acting on the liquid. Reid obtained an ex-
pression for the eigenfrequencies of a gravitating body com-
posed of a solid spherical core radius R1 and density �1 cov-
ered by an inviscid liquid “mantle” of radius R2, density �2
�30� �see also Ref. �31��:

�2 =
4

3
�G�̄l�l + 1�

1 − �2l+1

1 + l�1 + �2l+1��1 −
3

2l + 1

�2

�̄
� ,

�21�

where �=R1 /R2, �̄=�3�1+ �1−�3��2 is the mean density,
and G is the gravitational constant. Interestingly, Reid’s ex-
pression becomes equivalent to Eq. �11� if we let �2→0 and
R1→0 since this allows the surface effective gravity 	�a� to
be equated with a fictitious point mass m= �4 /3��a3�̄
=	�a�a2 /G�1�108 kg �approximately the mass of 1 mm3

of nuclear-density material�. In this sense, we can view our
magnetically levitated droplet as a “toy model” of an incom-
pressible gravitating body �possessing surface tension�, com-
posed of a small-diameter massive core �the fictitious mass�
and a low density outer region �the water�. Note that this
result differs from that of a uniform-density self-gravitating
body, �G= ��8 /3��G�l�l−1� / �2l+1��1/2 �32�. Bastrukov
recently obtained a similar spectrum for a self-gravitating
liquid droplet with radially varying density distribution
��r�a��1 /r, having a singular density at the center �33�.

By adjusting the current in the magnet �i.e., B0� we can
change the quadrupole �c2�� component of the trap. Although
we have sought to minimize this component in this paper, it
would be interesting to investigate the effect of this quadru-
pole component on the oscillation frequencies experimen-
tally and compare it with the result we derive above. Unlike
the odd harmonics, the even order harmonics have a signifi-
cant effect on the eigenfrequencies to first order. Using the
analogy with a model “star,” adding a quadrupole component
to the effective gravity � is equivalent to deforming the
shape of the core mass from spherical to oblate, perhaps due
to rotation, for example.
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APPENDIX

We consider the effect of a trap component cj� on an arbi-
trary shape oscillation

r = R��,�,t� = a + � sin �t	
l�1

	
m=−l

l

bl
mYl

m��,�� . �A1�

The corresponding velocity potential is

��r,�,�� = − �� cos �t	
l�1

	
m=−l

l

bl
mrll−1a−l+1Yl

m��,�� .

�A2�

Inserting Eqs. �A1� and �A2� into Eq. �6� and equating the
time-varying terms, we obtain

a�2	
l�1

	
m=−l

l
bl

mYl
m

l

= 	
l�1

	
m=−l

l �c0� + cj�Pj� +
T

�a2 �l − 1��l + 2��bl
mYl

m.

�A3�

The product Yl
mPj =Nl

meim�Pl
mPj

0 can be expanded as
Nl

meim�	p=�j−l�
j+l Q�0, j ;m , l ; p�Pp

m, where the Q in this case are
Gaunt coefficients, as defined in Ref. �34�, Pl

m are associated
Legendre functions, and Nl

m are the corresponding normal-
ization factors. Equating the coefficients of Yl

m, we obtain
2l+1 eigenvalue problems, i.e., one for each m, similar to
Eq. �19�.
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