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The linear stability of the flows induced in a fluid layer by buoyant convection �due to an applied horizontal
temperature gradient� and by acoustic streaming �due to an applied horizontal ultrasound beam� is studied. The
vertical profiles of the basic flows are determined analytically, and the eigenvalue problem resulting from the
temporal stability analysis is solved by a spectral Tau Chebyshev method. Pure acoustic streaming flows are
found to be sensitive to a shear instability developing in the plane of the flow �two-dimensional instability�, and
the thresholds for this oscillatory instability depend on the normalized width Hb of the ultrasound beam with
a minimum for Hb=0.32. Acoustic streaming also affects the stability of the buoyant convection. For a centered
beam, effects of stabilization are obtained at small Prandtl number Pr for large beam widths Hb �two-
dimensional shear instability� and for moderate Pr �three-dimensional oscillatory instability�, but destabiliza-
tion is also effective at small Pr for small beam widths Hb and at large Pr with a spectacular decrease of the
thresholds of the three-dimensional steady instability. An adequate decentring of the ultrasound beam can
enhance the stabilization. Insight into the stabilizing and destabilizing mechanisms is gained from the analysis
of the fluctuating energy budget associated with the disturbances at threshold. The modifications affecting the
two-dimensional shear instability thresholds are strongly connected to modifications of the velocity fluctuations
when acoustic streaming is applied. Concerning the three-dimensional steady instability, the spectacular de-
crease of the thresholds is explained by the extension of the zone with inverse stratification in the lower half
of the layer.
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I. INTRODUCTION

Directional solidification is used in the processing of
semiconducting and optoelectronic materials, whose perfor-
mance relies on the homogeneity of the crystalline material
�1�. In the horizontal Bridgman technique, the molten crystal
is contained in a crucible which is withdrawn horizontally
from a furnace. Thus, the melt is subject to a horizontal
temperature gradient, which drives endwall convection. In
practice, the flow which is first unicellular evolves with the
increase of the temperature gradient, undergoes bifurcations
and becomes unsteady, and eventually turbulence sets in for
large temperature differences. It is now well known that in-
stabilities in the melt phase adversely affect the quality of the
crystal, as they impose temperature fluctuations at the solidi-
fication front and lead to striations in the crystalline product
�2�. The control of the flows and of the instabilities in the
melt phase has then become an important research objective
for the past decade. Microgravity and more commonly mag-
netic fields have been used for crystal growth applications as
they allow the damping of the convective flow in the melt.
They are, however, costly and heavy technologies. An alter-
native could be the use of ultrasound waves which can reor-
ganize the flow in the melt through the generation of acoustic
streaming. It is this possibility we want to study in this paper.

Acoustic streaming describes a steady flow generated by
an ultrasound wave propagating in a fluid. This effect was
first observed in 1831 by Faraday �3�. It is now well known
that it is a nonlinear effect which owes its origin to the action

of Reynolds stresses �mean momentum flux due to the ultra-
sound wave� and the dissipation of acoustic energy flux.
More precisely, it is the dissipation �or spatial attenuation� of
acoustic energy flux that permits gradients in momentum flux
to force acoustic streaming motions �4,5�. There are two
main types of acoustic streaming: Eckart streaming in which
the dissipation takes place in the main body of the fluid �6�,
and Rayleigh streaming in which the dissipation is associated
with boundary layers at solid surfaces �7�. In our study we
will consider Eckart streaming in which the flow, generated
inside the ultrasound beam, moves the fluid away from the
ultrasound source. Such streaming motions have been used
to move fluids in microfluidic devices �8,9�, induce chaotic
mixing �10�, and even improve the quality of crystals ob-
tained by directional solidification processes �11�.

The main studies concerning the action of acoustic
streaming on directional solidification processes have been
performed experimentally by Kozhemyakin and his co-
workers. The first studies �11–13� have shown that acoustic
streaming was able to decrease or even eliminate the stria-
tions in different single crystals grown by the Czochralski
process. Kozhemyakin �14� then studied the influence of ul-
trasound waves on the convective flows thermally induced in
distilled water. The advantage of distilled water is that it is
transparent and allows easy flow measurements by optical
methods, but also that some of its properties, such as sound
velocity and acoustic spatial attenuation factor, are similar to
that of liquid metals as InSb melts �15�. The experiment
models a Czochralski configuration used for the growth of
GaxIn1−xSb single crystals. It is shown that the ultrasound
waves at high frequency allow to reduce the convection. A
strong reduction of the flow oscillations is also observed
which is shown to be connected to the acoustic standing*daniel.henry@ec-lyon.fr

PHYSICAL REVIEW E 81, 056309 �2010�

1539-3755/2010/81�5�/056309�22� ©2010 The American Physical Society056309-1

http://dx.doi.org/10.1103/PhysRevE.81.056309


waves appearing between the quartz waveguide and the
model solid/liquid interface. More recently, Kozhemyakin et
al. �16� investigated the influence of ultrasound on the
growth striations and electrophysical properties of
GaxIn1−xSb single crystals. They show that the use of ultra-
sound allows to reduce the striations in the single crystals,
which induces an improvement of the crystal properties, e.g.,
an increase of the carrier mobility and the thermal emf, and a
decrease of the resistivity.

Our numerical work on the subject has considered a dif-
ferent crystal growth configuration, namely, the horizontal
Bridgman configuration. More precisely, the numerical stud-
ies have investigated the influence of acoustic streaming on
the convective flows induced by a horizontal temperature
gradient, which are typical of the flows in horizontal Bridg-
man crystal growth configurations. A first study was focused
on the stabilizing influence of the Rayleigh streaming on
convection induced in a three-dimensional cavity �17�. The
other studies were concerned by Eckart streaming. The ac-
tion of the Eckart streaming on the convection instabilities
was first studied in side-heated cavities with thermally insu-
lated boundaries, three-dimensional cavities of different
lengths �15�, or an infinite layer �18�. Preliminary results
have also been obtained in the case of an infinite layer with
thermally conducting boundaries �19,20�. These studies have
shown that Eckart streaming can have a stabilizing effect on
the convective flows, but only in some parameter ranges.

The objective of this work is to precise and extend the
results in the case of the infinite layer with thermally con-
ducting boundaries and to deepen our understanding of the
influence of Eckart streaming on these convective flows typi-
cal of horizontal Bridgman crystal growth configurations. We
will determine the flows induced in such a side-heated fluid
layer submitted to an ultrasound beam and study their stabil-
ity with respect to the dominant instability modes. We will
focus our study on the influence of acoustic streaming on
these instabilities, and for that will largely vary the charac-
teristic parameters, i.e., the beam width and position, and the
intensity of the force created by the ultrasound wave. We will
finally analyze the stabilizing or destabilizing effects induced
by acoustic streaming through energy analyses.

II. GOVERNING EQUATIONS AND BASIC FLOW

We consider an incompressible liquid layer of thickness h
�in the vertical z direction� confined between two infinite
horizontal walls �Fig. 1�. This layer is subject to a horizontal

temperature gradient �T̃ along the longitudinal x direction
and to a radiation pressure caused by an ultrasound beam
generated in the x direction by a transducer. The fluid is
assumed to be Newtonian with constant kinematic viscosity
� and thermal diffusivity �. According to the Boussinesq
approximation, density variations are restricted to the buoy-
ancy term and taken as a linear variation of the temperature,

�=�0(1−��T̃− T̃0�), where � is the thermal expansion coef-

ficient and T̃0 is a reference temperature. The ultrasound
beam, which is applied inside the layer, has a characteristic
width hb �hb�h� in the vertical z direction and is uniform in
the transverse y direction. The divergence of the beam is thus
assumed to be small, which has been shown to be a reason-
able hypothesis in melt configurations �15�. The ultrasound
field is also assumed to be a plane wave of frequency f
traveling in the positive x direction. Since Lighthill �4�, it is
well known that the attenuation of an ultrasound wave in a
viscous fluid gives rise to a body force acting within the
ultrasound beam and equal to the spatial variation of the
Reynolds stress. For a plane wave traveling in the positive x
direction, following Nyborg �5� and Frampton et al. �9�, it
can be shown that the body force is oriented along the x axis
and that its intensity is given by F=��Va

2e−2�x, where � is
the amplitude attenuation coefficient for ultrasound, and Va
is the amplitude of the acoustic velocity oscillation �15�.
Now, provided the attenuation of the wave is sufficiently
weak �estimations in �15� give a few percents�, a body force,
which is constant �F=��Va

2� inside the beam �over a height
hb� and zero above and below the beam, can be defined
�6,8,15,19�. Following Lighthill �4�, this body force can be
introduced in the Navier-Stokes equations which, in our case,
are coupled with an energy equation through the buoyancy

term. If we consider h, h2 /�, � /h, �0�2 /h2, and �T̃h as scales
for length, time, velocity, pressure, and temperature, respec-
tively, the relevant dimensionless equations are

� · V = 0, �1�

�V

�t
+ �V · ��V = − �P + �2V + Gr Tez + A�bex, �2�

�T

�t
+ �V · �T� =

1

Pr
�2T , �3�

where the dimensionless variables are the velocity vector
�V= �U ,V ,W��, the pressure P, and the temperature T. In
these equations, Gr is the Grashof number �Gr

=g�� T̃h4 /�2�, Pr is the Prandtl number �Pr=� /��, and A is
an acoustic streaming parameter defined as A=�Va

2h3 /�2

�15�. �Note that the parameter A does not directly depend on
the sound wave frequency f . This dependence is nevertheless
effective through the acoustic attenuation coefficient � which
is known to vary as f2.� �b is a function of z which is 1 inside
the acoustic beam and 0 outside. The boundary conditions at
the horizontal walls �located at z=−1 /2 and z=1 /2� are no
slip conditions, and perfectly conducting thermal conditions.

Note that we have not introduced the Rayleigh streaming
influence in our model, despite the fact that the ultrasound
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FIG. 1. Schematic diagram of the laterally heated layer subject
to an ultrasound beam.
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beam could be close to the boundaries. In fact, according to
Frampton et al. �9�, the boundary layer induced streaming is
a very small contributor to the total streaming in large-scale
channels �typically with a size of at least 1 mm�. More pre-
cisely, for a plane traveling wave occupying the whole height
of a channel, it was shown by Nyborg �5� that the ratio of the
maximum of the “Rayleigh force” to the “Eckart force” is
equal to 0.23k /� �where k=2�f /c is the wave number and c
is the sound velocity�, and in water at 20° for a frequency of
1 MHz, the ratio k /� is 1.66	105, indicating a much stron-
ger intensity of the Rayleigh force. The “Rayleigh force”
however occurs over a very small portion of the channel
height �less than 1 
m along the boundaries�, whereas the
“Eckart force” is approximately constant and occurs on the
whole height of the channel. The relative ability of these
forces to generate streaming flows has to be estimated. As an
example, for a plane traveling wave in a channel with open
ends, Nyborg �5� showed that the average Rayleigh stream-
ing velocity is about VR=Va

2 /4c, whereas the average Eckart
streaming velocity �parabolic pattern� is VE=�Va

2h2 /12�. In
water at 20° for a channel height h of 5 cm and a frequency
of 1 MHz, the ratio VR /VE is about 2.9	10−5. The results
for liquid metals are not very different. The ratio k /� is
really similar to that for water �due to similar values of the
dynamic viscosity 
 and attenuation coefficient ��. The ratio
VR /VE can be estimated for gallium with a kinematic viscos-
ity �=2.87	10−7 m2 /s at 346 K �21� in a channel with a
typical height of a few centimeters �h=5 cm, for instance�
and an acoustic frequency of 1 MHz. In such conditions the
ratio VR /VE is still very small, about 9.2	10−6. It is thus
shown that the streaming flow induced by a traveling wave
in not too narrow cavities �as those used for crystal growth
applications� is predominantly generated by Eckart stream-
ing, the Rayleigh streaming contribution being really negli-
gible. As pointed out by Frampton et al. �9�, this is not true
in microfluidic devices.

We now consider the layer as infinitely long in both hori-
zontal x and y directions, but we also assume that there exist
two vertical boundaries �oriented perpendicular to the x di-
rection and located at x= ��� which will allow the flow to
return �inducing a zero flow rate in each section of the layer
at fixed x� without reflecting the ultrasound beam. In that
case, a stationnary parallel flow solution depending only on
the vertical z coordinate can be obtained �19�. This solution
is governed by the following equations:

�2U0

�z2 −
�P0

�x
+ A�b = 0, �4�

−
�P0

�z
+ Gr T0 = 0, �5�

�2T0

�z2 = Pr U0, �6�

with U0=U0�z�, T0=T0�x ,z�=x+Ti�z�, and �zU0dz=0.

In the case of pure acoustic streaming effect, Gr=0, and
from Eq. �5�, P0 is only a function of x. Then, from Eq. �4�,
�P0 /�x is equal to terms only depending on z and must then
be a constant C. Equation �4� will then give

�2Uac

�z2 − C + A�b = 0. �7�

The solution, quadratic in z inside and outside the beam, can
be obtained easily assuming no slip conditions at the walls
�Uac=0�, continuity conditions for Uac and �Uac /�z at the
beam boundary, and mass conservation. In the case where
the beam is centered in the cavity, we get

Uac�z� = −
AHb

8
�z + 0.5��2�Hb

2 − 3�z − �Hb
2 + 1�� for − 1/2


 z 
 − Hb/2,

Uac�z� = −
A

16
�Hb − 1�2�4�Hb + 2�z2 − Hb� for − Hb/2 
 z


 Hb/2,

Uac�z� = −
AHb

8
�z − 0.5��2�Hb

2 − 3�z + �Hb
2 + 1�� for Hb/2


 z 
 1/2,

where Hb=hb /h is the normalized width of the acoustic
source. In the case where the beam is not centered, but with
its center located at z=zb �−1 /2�zb�1 /2�, we obtain

Uac�z� = −
AHb

8
�z + 0.5��2�Hb

2 − 3 + 12zb
2�z − �Hb

2 + 1

+ 12zb
2 − 8zb�� for − 1/2 
 z 
 zb − Hb/2,

Uac�z� = −
A

16
�4„�Hb − 1�2�Hb + 2� + 12zb

2Hb…z
2

+ 16zb�Hb − 1�z − „�Hb − 1�2Hb + 4zb
2�3Hb − 2�…�

for zb − Hb/2 
 z 
 zb + Hb/2,

Uac�z� = −
AHb

8
�z − 0.5��2�Hb

2 − 3 + 12zb
2�z

+ �Hb
2 + 1 + 12zb

2 + 8zb��

for zb + Hb/2 
 z 
 1/2.

In the case of pure buoyancy, A=0, and the governing
equation

�3Ub

�z3 − Gr = 0 �8�

gives the usual cubic profile

Ub�z� =
Gr

24
�4z3 − z� .

In the general case, the solution of the problem can be
written as U0=Ub+Uac+U�. U� is found to verify Eq. �7�
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without forcing term, which gives a quadratic profile C�z2

−1 /4� taking into account no slip boundary conditions. Mass
conservation implies that C=0, and so U�=0 and

U0�z� = Ub�z� + Uac�z� . �9�

When temperature is applied, it is transported by the flow
U0 according to Eq. �6� giving rise to Tb and Tac such that

T0�x,z� = x + Ti�z� = x + Tb�z� + Tac�z� . �10�

The part Tb induced by Ub for thermally conducting bound-
aries is given by

Tb�z� =
Gr Pr

5760
�48z5 − 40z3 + 7z� .

The part Tac induced by Uac for thermally conducting bound-
aries is given in the centered case by

Tac�z� = −
Pr AHb

96
�z + 0.5�3�2�Hb

2 − 3�z − �3Hb
2 − 1�� for

− 1/2 
 z 
 − Hb/2,

Tac�z� = −
Pr A

192
�Hb − 1�2�4�Hb + 2�z4 − 6Hbz2

+
Hb

4
�2Hb + 1�� for − Hb/2 
 z 
 Hb/2,

Tac�z� = −
Pr AHb

96
�z − 0.5�3�2�Hb

2 − 3�z

+ �3Hb
2 − 1�� for Hb/2 
 z 
 1/2,

and when the beam is not centered by

Tac�z� = −
Pr AHb

96
�z + 0.5���z + 0.5�2

„2�Hb
2 − 3 + 12zb

2�z

− �3Hb
2 − 1 + 36zb

2 − 16zb�…

+ 4zb�4zb
2 + Hb

2 − 1�� for − 1/2 
 z 
 zb − Hb/2,

Tac�z� = −
Pr A

192
�4„�Hb − 1�2�Hb + 2� + 12zb

2Hb…z
4 + 32zb�Hb

− 1�z3 − 6„�Hb − 1�2Hb + 4zb
2�3Hb − 2�…z2 + 8zb�Hb

− 1�„4zb
2 + Hb�Hb − 2�…z + �Hb − 1�2Hb

4
�2Hb + 1�

+ 8zb
4 + 3zb

2Hb�4Hb − 3�� for zb − Hb/2 
 z 
 zb

+ Hb/2,

Tac�z� = −
Pr AHb

96
�z − 0.5���z − 0.5�2

„2�Hb
2 − 3 + 12zb

2�z

+ �3Hb
2 − 1 + 36zb

2 + 16zb�… + 4zb�4zb
2 + Hb

2

− 1�� for zb + Hb/2 
 z 
 1/2.

The temperature profiles Tac calculated with conducting

boundary conditions have zero values at the walls, but also
zero second derivatives, in direct connection with Eq. �6� and
the no-slip condition. Moreover, in the case of the centered
beam, the first derivative of Tac is also zero at the walls,
which means that the expression of Tac in this case is also
valid for adiabatic boundary conditions. This zero heat flux
value at the wall is enforced by the symmetry properties of
the flow �dTac�z� /dz must be odd� and heat conservation
�dTac�z� /dz at z=−1 /2 must be equal to dTac�z� /dz at z
=1 /2�.

Some typical velocity profiles for the flows generated in
the layer are shown in Figs. 2 and 3. We first present in Figs.
2�a� and 2�b� the velocity profiles created by Eckart stream-
ing for a centered beam. They correspond to two different
beam widths: Hb=0.3 and Hb=0.8. Positive velocities are
obtained in the center of the layer because of the acoustic
radiation pressure created by the ultrasound beam, and nega-
tive velocities corresponding to the return flow are obtained
along the walls. The location of the velocity zeros is con-
nected to the flow conservation in the section: they are out-
side the acoustic beam for narrow beams and inside for large
beams. These velocity profiles have curvature changes at the
upper and lower boundaries of the beam, and they are sym-
metric with respect to the center of the layer. The velocity
profile generated through buoyancy by the horizontal tem-
perature gradient �Fig. 2�c�� is the classical cubic profile with
an inflection point at the center of the cavity. When the two
effects are combined, the velocity profiles are more complex
and have no more symmetry �Figs. 2�d� and 2�e��. Examples
of velocity profiles obtained by Eckart streaming with a non-
centered beam are shown in Fig. 3. The beam width is fixed
�Hb=0.3�, but four different beam positions have been cho-
sen. In each case, a velocity profile generated by buoyancy is
given for comparison. For the positions zb=0.1 �Fig. 3�b��
and zb=0.35 �Fig. 3�d��, Eckart streaming generates flows
which are rather opposite to those created by buoyancy �par-
ticularly for zb=0.35� so that a kind of braking effect of the
buoyant flow is induced by Eckart streaming. On the con-
trary, for the positions zb=−0.1 �Fig. 3�a�� and zb=−0.35
�Fig. 3�c��, Eckart streaming generates flows which are rather
in the same direction as the buoyant flows, so that in these
cases the buoyant flow is reinforced by Eckart streaming.
Typical temperature profiles Tb and Tac are also shown in
Fig. 4.

III. STABILITY APPROACH

The stability of the basic flow solution ��9� and �10�� is
investigated here in a general way by a linear analysis. The
solution of the three dimensional problem is written as

�V,P,T� = �V0,P0,T0� + �v,p,�� ,

i.e., the sum of the basic flow quantities with perturbations.
Substitution into Eqs. �1�–�3� and linearization with respect
to the perturbations yields

� · v = 0, �11�
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�v
�t

+ �V0 · ��v + �v · ��V0 = − �p + �2v + Gr �ez,

�12�

��

�t
+ V0 · �� + v · �T0 =

1

Pr
�2� , �13�

where V0= �U0 ,0 ,0�.
Only boundary conditions in the z-direction �for z=−1 /2

and z=1 /2� are needed because we will use periodic distur-

bances in the horizontal x and y directions. These conditions
are

�a� no-slip boundary conditions: v=0, and
�b� conducting thermal boundary conditions: �=0.
The linear stability study consists, for fixed values of the

Prandtl number Pr and acoustic streaming parameter A, in
the determination of Grc, the critical value of Gr at which the
basic flow loses its stability. For the normal modes analysis,
the set of Eqs. �11�–�13� is transformed by using the follow-
ing disturbances:

�v,p,�� = �v,p,���z�ei�hxx+hyy�+�t, �14�

where hx and hy are real wave numbers in the longitudinal, x,
and transverse, y, directions, respectively, and �=�r+ i�i is
a complex eigenvalue. The real part of � represents an am-
plification rate and its imaginary part an oscillation fre-
quency. These modes are elementary perturbations from
which a general perturbation is obtained by superposition.
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FIG. 2. Basic velocity profiles obtained for a centered ultrasound beam: flow due to the Eckart streaming for �a� Hb=0.3 and �b� Hb

=0.8 �A=1000�; flow due to the temperature gradient for �c� Gr=500 �A=0�; flow due to the combined effect of the temperature gradient and
the Eckart streaming for �d� Hb=0.3 and �e� Hb=0.8 �Gr=500, A=1000�.
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FIG. 3. Basic velocity profiles obtained for a noncentered ultra-
sound beam �Hb=0.3, A=1000�; the velocity profiles due to Eckart
streaming �Uac, solid lines� are given for different beam positions,
�a� P1−�zb=−0.1�, �b� P1+�zb=0.1�, �c� P2−�zb=−0.35�, and �d�
P2+�zb=0.35�, and compared to the velocity profile due to the tem-
perature gradient �Ub, dashed lines� �Gr=500�.
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An eigenvalue problem is then obtained: LX=�MX, where
X= �v�z� , p�z� ,��z��, L is a linear operator depending on hx,
hy, Pr, Hb, zb, A, and Gr, and M is a constant linear operator.
This generalized eigenvalue problem is solved with the spec-
tral Tau Chebyshev method by means of a numerical proce-
dure using the QZ eigenvalue solver of the NAG library �22�.
From the thresholds Gr0�Pr,Hb ,zb ,A ,hx ,hy� �values of Gr
for which an eigenvalue has a real part equal to zero whereas
all the other eigenvalues have negative real parts�, the critical
Grashof number Grc can be obtained after minimization
along hx and hy. In fact, Grc was obtained for perturbations
where either hx or hy was equal to zero, i.e., pure longitudinal
or transverse waves. It is known that in the pure thermal
case, there is no smaller minimum for perturbations with
both hx�0 and hy �0 �23�. We have verified to our best that
it is the same in our situation.

The critical Grashof numbers were determined by ex-
panding the variables in the z direction in a Chebyshev series
with 80 collocation points. In fact, 20–30 collocation points
were sufficient for an accurate determination of the linear
stability characteristics for the pure buoyancy case �A=0�,
but more points were necessary when acoustic streaming is
effective because of the strong gradients generated at the
limits of the acoustic beam. Note that in the pure acoustic
streaming situation, the critical parameter is the acoustic
streaming parameter A, but the determination of its critical
value is similar to what has been explained for Gr. In the
following, we will first consider the stability of the pure
acoustic streaming flow and then study the effect of the
acoustic streaming on the stability of the laterally heated
layer.

IV. STABILITY RESULTS FOR THE PURE ACOUSTIC
STREAMING FLOW

The flows considered in this section are those created by
Eckart streaming in a layer. Typical velocity profiles for
these flows �denoted as Uac� have been shown in Figs. 2�a�
and 2�b� �centered beam� and Fig. 3 �noncentered beam�. In
these cases, the linear stability analysis gives the critical
value of the acoustic streaming parameter, Ac, above which
the acoustic streaming flow becomes unstable. Results have
first been obtained in the case of a centered acoustic beam
for different beam widths Hb, and then, at constant beam
width, for different positions of the beam across the layer.

The critical stability curve giving the evolution of Ac as a
function of Hb for a centered beam is shown in Fig. 5�a�.
These thresholds correspond to two-dimensional instabilities
�hx�0, hy =0� developing in the plane of the basic flow pro-
file �plane xOz�. The critical curve separates the stable zone
�small values of A� and the unstable zone �large values of A�.
The influence of the beam width on the thresholds is found to
be strong. The critical curve has a minimum, Ac=5143, for
Hb�0.32, which means that the acoustic streaming flow ob-
tained with such a beam width is the more unstable �the
associated critical parameters are hxc

=4.5 and �c=21�. �This
value of Hb is close to, but smaller than the values which
give either the maximum velocity variation �Umax−Umin�
�Hb=0.388� or the maximum shear �Hb=0.366� in the basic

velocity profile.� The thresholds increase for both smaller
and higher values of Hb. The increase for large Hb is particu-
larly strong, indicating that the streaming flows induced by
large width beams �close to the height of the layer� are par-
ticularly stable. The two-dimensional instability involved in
these streaming flows is hydrodynamic: the basic velocity
profile is symmetric with two shear zones at the limits of the
acoustic beam �see Fig. 2� which destabilize the flow. These
shear zones move toward the walls when Hb is increased.
The instability is oscillatory and associated with a single
complex eigenvalue �no complex conjugate eigenvalue�. The
critical angular frequency is positive, indicating a right trav-
eling wave. This frequency is weak for small values of Hb
and increases with Hb �Fig. 5�c��. This increase becomes
very strong beyond Hb=0.6, which leads to high oscillation
frequencies for the large beam widths. The variation of the
critical wave number hxc

is shown in Fig. 5�b�. hxc
decreases

as Hb is increased, which corresponds to an evolution toward
larger wavelengths for the instabilities. This decrease is al-
most linear for 0
Hb
0.6 but becomes steeper when Hb is
further increased.
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FIG. 5. �a� Critical acoustic streaming parameter Ac, �b� wave
number hxc

, and �c� angular frequency �c as a function of the acous-
tic beam width Hb for an isothermal layer and a centred acoustic
beam. In �a�, the flow is unstable above the curve and stable below
the curve.
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We now consider that the acoustic beam has a fixed width
�Hb=0.3�, but that its position inside the layer is changed.
Figure 6�a� shows the variation of the critical thresholds Ac
as a function of the position of the beam center zb. We see
that for opposite positions of the beam �zb= �k�, the same
thresholds Ac are obtained. This is due to the fact that the
flows obtained are symmetric one of the other with respect to
the center of the layer and are thus completely equivalent.
For zb=0, the threshold is that found previously for a cen-
tered beam. When the beam is moved away from the center,
the thresholds Ac first decrease, until the positions 	zb�0.2	
beyond which they increase. These instabilities are oscilla-
tory, and, as shown in Fig. 6�c�, the critical angular fre-
quency �c evolves with 	zb	 from the positive value obtained
for a centered beam toward negative values which are
reached for 	zb	�0.18. This change of sign corresponds to a
transition from right to left traveling waves. It occurs at po-
sitions of the beam which are close to those corresponding to
the minimum values of the thresholds. The critical wave
number of the instabilities, hxc

, decreases monotonically

when 	zb	 increases, i.e., when the beam gets closer to the
walls.

Note that we have also considered the case where the
perturbations are three dimensional �hy �0�. In any case, the
thresholds have been found larger than those obtained for
hy =0. In particular, for hy �0 and hx=0 �i.e. when the insta-
bilities develop in the transverse yOz plane�, no finite thresh-
olds have been found, which corresponds to eigenvalues with
always negative real parts. The acoustic streaming flow is
then linearly stable with respect to these three-dimensional
perturbations with hx=0, this result being valid for any posi-
tions of the beam.

V. STABILITY RESULTS FOR THE LATERALLY HEATED
FLUID LAYER SUBJECT TO ACOUSTIC STREAMING

In this section, we will study the effect of acoustic stream-
ing on the linear stability of the flow induced in a fluid layer
by a horizontal temperature gradient. In the pure buoyancy
situation, i.e., without acoustic streaming �see the velocity
profile in Fig. 2�c��, steady two-dimensional instabilities of
dynamical origin �transverse rolls� prevail for very small
Prandtl number values �typically, Pr
0.14�, whereas oscil-
latory and then steady three-dimensional instabilities �longi-
tudinal rolls� prevail when the Prandtl number is further in-
creased. These instability thresholds are shown as thick lines
in Fig. 7 for 0.004
Pr
1. We will first see how the insta-
bility thresholds in this Pr range globally evolve with acous-
tic streaming. We will then more precisely analyze the influ-
ence of acoustic streaming on the different instabilities at
fixed values of Pr.

A. Global effect of acoustic streaming on the thresholds

The global effect of acoustic streaming on the thresholds
of the different instabilities is presented in Fig. 7 for a beam
width Hb=0.8 and for two values of the acoustic streaming
parameter, A=5	104 and 105. The two-dimensional insta-
bilities obtained in the domain of low Prandtl numbers are
steady for A=0, but they become oscillatory as soon as
acoustic streaming is applied. For these instabilities, an in-
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FIG. 6. �a� Critical acoustic streaming parameter Ac, �b� wave
number hxc

, and �c� angular frequency �c as a function of the po-
sition of the beam center zb for an isothermal layer and a fixed beam
width Hb=0.3. Identical results are obtained for a decentring to-
wards the top of the layer �zb�0� and a decentring towards the
bottom �zb�0�.
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crease of the thresholds is found for A=5	104. There is,
however, a limitation of the acoustic streaming parameter in
this case due to the destabilization of the pure acoustic
streaming flow for Ac=82 641. The thresholds of the oscilla-
tory three-dimensional instabilities also increase with the
acoustic streaming parameter A. This increase is quite strong
for 0.2
Pr
0.4; it decreases for smaller values of Pr and
becomes negligible for Pr
0.05. The effect of acoustic
streaming is the strongest on the steady three-dimensional
instabilities, but it is now a decrease of the thresholds which
is found when A is increased. A monotonous effect of the
acoustic streaming is thus found for the three-dimensional
instabilities, i.e., an increase of the oscillatory thresholds and
a decrease of the steady thresholds. This corresponds to a
stabilization of the basic flow with respect to the oscillatory
instabilities and a destabilization with respect to the steady
instabilities.

B. Effect of acoustic streaming on the different instabilities
at fixed Pr

We now focus on the precise evolution of the thresholds
Grc as we vary the acoustic streaming parameter A and the
beam width Hb at fixed values of the Prandtl number. We
will calculate the thresholds of the two-dimensional instabil-
ity for Pr=0.01 and those of the three-dimensional instabili-
ties for Pr=0.1. In each case, we will first consider the situ-
ation where the acoustic beam, of variable width �0.1
Hb

0.8�, is centered, and then, for Hb=0.3, we will consider
the effect obtained when the acoustic beam is decentered.

1. Steady two-dimensional instabilities for Pr=0.01

The action of acoustic streaming on the two-dimensional
instabilities is shown for a centered beam in Fig. 8�a�
through the critical curves giving the evolution of Grc with A
for different values of Hb. For A=0 �no acoustic effect�, the
flow is thermally induced, and the instability is steady and
appears for Grc=8076. The evolution of Grc with A depends
on the acoustic beam width Hb. For values of Hb lower than
0.6, Grc continuously decreases with the increase of A, indi-
cating a destabilizing influence of acoustic streaming,
whereas for values of Hb greater than 0.6, Grc first increases
with the increase of A, then reaches a maximum, and even-
tually decreases. For large acoustic beam widths, it is then
possible to find a range of acoustic streaming parameter val-
ues where acoustic streaming has a stabilizing influence on
the basic thermally induced flow. The extent of this param-
eter range and the stabilizing effect induced increase with the
increase of the beam width. In any case, the curves of Grc
eventually decrease to zero. The value Grc=0 is reached for
values of A which, as expected, are those already obtained in
the pure acoustic streaming situation �Fig. 5�a��. The insta-
bility seems hydrodynamic as it evolves, with the increase of
A, from an instability connected to the shear of the thermally
induced flow in the center of the layer, toward an instability
connected to the shear of the acoustic streaming flow at the
limits of the acoustic beam.

The curves giving the evolution of the critical wavelength
hxc

with A are shown in Fig. 8�b�. An increase of hxc
is

observed, from hxc
=2.68 corresponding to the pure buoyancy

situation �A=0� to the values of hxc
corresponding to the pure

acoustic streaming situation �A=Ac�. This increase is con-
tinuous, except for Hb=0.8 �case with the strongest stabili-
zation� where a slight initial decrease is found.

Finally, as shown in Fig. 8�c�, the critical angular fre-
quency �c �which is zero for A=0� strongly increases with A
until a maximum is reached and then decreases down to the
value corresponding to the pure acoustic streaming situation.
The maximum value reached by �c increases with the acous-
tic beam width Hb. These curves show that the two-
dimensional instabilities become oscillatory as soon as
acoustic streaming is applied. Moreover, the positive values
of �c indicate the onset of right traveling waves in these
cases.

The influence of the beam position on the thresholds of
the two-dimensional instabilities is shown in Fig. 9�a�. This
figure displays the variation of Grc with the acoustic stream-
ing parameter A for a beam of fixed width Hb=0.3 located at
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FIG. 8. �a� Critical Grashof number Grc, �b� wave number hxc
,

and �c� angular frequency �c for the two-dimensional instabilities
as a function of the acoustic streaming parameter A for a centered
beam of different widths Hb and Pr=0.01. The critical curves in �a�
intersect the axis Gr=0 at values of A which are the critical values
shown in Fig. 5�a�.
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different positions inside the layer. The results obtained for a
centered beam �position P0�zb=0�� are compared with those
obtained for symmetric positions with respect to the center of
the layer, P1−�zb=−0.1�, P1+�zb=0.1� and P2−�zb=−0.35�,
P2+�zb=0.35�. Note that all the thresholds are oscillatory, ex-
cept, indeed, for A=0. Figure 9 highlights the strong influ-
ence of the beam position. For the positions P1−�zb=−0.1�
and P2−�zb=−0.35�, where acoustic streaming rather rein-
forces the thermally induced flow �see Figs. 3�a� and 3�c��,
the thresholds decrease monotonically with A as for the cen-
tered position of the beam, but more quickly, and they reach
Grc=0 at the values of Ac already obtained in the pure acous-
tic streaming situation �Fig. 6�a��. For these positions, the
acoustic streaming strongly destabilizes the basic flow. On
the contrary, for the positions P1+�zb=0.1� and P2+�zb
=0.35� where acoustic streaming rather opposes the ther-
mally induced flow �see Figs. 3�b� and 3�d��, the thresholds

first increase with the increase of A which indicates a stabi-
lization of the basic flow by acoustic streaming. The critical
curves then reach a maximum and decrease down to the val-
ues of Ac for pure acoustic streaming �the same values as for
the symmetric positions, as already shown in Fig. 6�a��.
These critical curves, however, have a particular shape: in-
deed, they evolve until values of A larger than Ac �up to a
limit value Al� so that the last portion of curve is associated
with decreasing values of A. Moreover, the stable zone in
these cases is the zone delimited by the critical curve and
containing the origin. A specific evolution is then induced
when Gr is increased for values of A larger than Ac and
smaller than Al. The flow, first unstable for the small values
of Gr, is stabilized beyond a first threshold and becomes
again unstable beyond a second threshold. This behavior is
depicted in Figs. 10 and 11 for the position P2+ of the acous-
tic beam. Figure 10 shows the neutral curve Gr0 as a function
of the wave number hx for different values of A, A=8000,
9000, 10 000, and 10 678, the last value being close to the
disappearance of the critical curve. For each value of A, two
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FIG. 9. �a� Critical Grashof number Grc, �b� wave number hxc
,

and �c� angular frequency �c for the two-dimensional instabilities
as a function of the acoustic streaming parameter A for different
positions of the ultrasound beam �P2−�zb=−0.35�, P1−�zb=−0.1�,
P1+�zb=0.1�, and P2+�zb=0.35��. The beam width is equal to Hb

=0.3 and Pr=0.01. The stable zone in �a� is the zone delimited by a
critical curve and containing the origin. The critical curves in �a�
intersect the axis Gr=0 at values of A which are the critical values
shown in Fig. 6�a� �same values for opposite zb�.
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neutral curves are obtained, an upper convex curve above
which instability is triggered and where Grc appears as a
minimum, and a lower concave curve below which instabil-
ity is triggered and where Grc appears as a maximum. Be-
tween these curves, there exists indeed a stable zone, which
is confirmed by the plot of the dominant eigenvalue as a
function of Gr for A=10 500 and h=4.48 in Fig. 11 where
we see that the real part of this dominant eigenvalue be-
comes negative in an intermediate range of Gr values. More-
over, Fig. 10 clearly shows that the stable zone shrinks as A
is increased and eventually disappears when the minimum of
the convex curve becomes smaller than the maximum of the
concave curve.

Finally, Figs. 9�b� and 9�c�, respectively, depict the varia-
tions of the critical wave number hxc

and angular frequency
�c as a function of the acoustic streaming parameter A. We
see that the critical curves obtained for symmetric positions
of the beam join at values of hxc

and �c corresponding to the
pure acoustic streaming situation. Figure 9�c� confirms that,
except for A=0, all the thresholds are oscillatory. �c evolves
toward positive values for the position P0 �centered beam�
and the positions P1− and P1+ �	zb	=0.1� indicating the onset
of right traveling waves, whereas it evolves towards negative
values for the positions P2− and P2+ �	zb	=0.35� indicating
the onset of left traveling waves. Note the strong increase of
the angular frequency for the position P1+ of the acoustic
beam corresponding to zb=0.1.

2. Three-dimensional instabilities for Pr=0.1

The effect of acoustic streaming on the thresholds of the
three-dimensional instabilities is first shown for Hb=0.8 and
Pr=0.1 and for a centered acoustic beam in Fig. 12. For A
=0, two instabilities are found: an oscillatory instability cor-
responding to a pair of complex conjugate eigenvalues �onset
of a symmetry degenerate left or right traveling wave� which
appears for Grc=20 466 and a steady instability which ap-
pears much later for Grc=91 000. For small values of A, the
oscillatory thresholds, slightly increasing, are indeed the true
critical thresholds. The steady thresholds, however, which
were very high for A=0, strongly decrease with the increase
of A and eventually become the true critical thresholds be-
yond a value of A which, for Hb=0.8 and Pr=0.1, is esti-

mated at around 60 000. This crossing of the oscillatory and
steady thresholds is highlighted for different values of Hb
and Pr=0.1 in Fig. 13�a� where only the lower thresholds are
plotted. We see that, for 0.3
Hb
0.8, the value of A at
which the transition occurs increases with Hb, whereas the
corresponding value of Grc is almost constant, around Grc
=23 000. For values of A below the transition, the oscillatory
thresholds slightly increase with A, for any value of Hb, con-
firming the stabilizing effect of acoustic streaming on the
oscillatory three-dimensional instability. For values of A
above the transition, we observe that, for any value of Hb, the
steady thresholds decrease very strongly with the increase of
A and go asymptotically to zero as A−1, which confirms the
stability of the pure acoustic streaming flows �Gr=0� with
respect to three-dimensional instabilities.

The critical wave number hyc
and angular frequency �c of

these three-dimensional instabilities are depicted in Figs.
13�b� and 13�c�. The critical angular frequency of the oscil-
latory instability �which is still associated with a pair of com-
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FIG. 13. �a� Critical Grashof number Grc, �b� wave number hyc
,

and �c� angular frequency �c for the steady �solid curve� and oscil-
latory �dashed curve� three-dimensional instabilities as a function of
the acoustic streaming parameter A for a centered beam of different
widths Hb and Pr=0.1. Only the portions of the critical curves cor-
responding to the first threshold are shown. The stable zone in �a� is
the zone delimited by a critical curve and containing the origin.
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plex conjugate eigenvalues� slightly increases with A, in a
similar way as the critical thresholds. For larger values of A,
the instability is steady and �c=0. The critical wave number
hyc

is almost constant �around 2� for the oscillatory instabil-
ity, whereas it is stronger but decreases with the increase of
A for the steady instability and asymptotically approaches a
limiting value �close to hyc

=3� which seems independent of
the beam width Hb.

The influence of the beam position on the thresholds of
the three-dimensional instabilities is shown in Fig. 14�a�. The
beam width and beam positions are the same as those already
used for the two-dimensional instabilities in Fig. 9�a�. The
displacement of the beam has different consequences on the
oscillatory and steady three-dimensional instabilities. Com-
pared to the centered position P0, the positions P1+ and P2+,
which strongly stabilized the two-dimensional instabilities,
also stabilize the oscillatory three-dimensional instabilities,

but they induce a steeper decrease of the thresholds of the
steady three-dimensional instabilities. In contrast, for the po-
sitions P1− and P2−, we get a destabilizing effect for the
oscillatory three-dimensional instabilities, whereas the
steady thresholds decrease more slowly.

We now consider the global effect of the beam position on
the true critical thresholds of the three-dimensional instabili-
ties. For the positions P1+ and P2+, the stable zone extends
until larger values than in the centered case: for the position
P2+, for example, values of Gr around 42 000 are reached,
whereas, in the centered case, for any beam width Gr is less
than 23 000. This would show that, to get a better stabiliza-
tion, it is better to adequately move the beam than to increase
its width. This stable zone, however, has a particular shape
so that both values of A and Gr have to be adjusted to get a
stabilizing effect. When A is too strong, above a limiting
value which decreases when Gr gets smaller, the flow be-
comes unstable with respect to the steady three-dimensional
instability which is triggered for very small values of Grc.
For the positions P1− and P2−, the stable zone reaches
smaller values of Grc than in the centered case, but it extends
until larger values of A because of the slower decrease of the
steady three-dimensional instability thresholds. Besides, for
the position P1−, because of this weak decrease, only the
oscillatory three-dimensional instability is involved in the
critical thresholds in the range of A shown �A
60 000�.

Finally, Figs. 14�b� and 14�c�, respectively, depict the
variations of the critical wave number hyc

and angular fre-
quency �c as a function of the acoustic streaming parameter
A. We see that for any position of the beam, the wave num-
ber for the oscillatory instability is almost constant and close
to hyc

=2. In contrast, the wave number for the steady insta-
bility depends on both the beam position and A. For large A,
hyc

asymptotically tends to a limiting value which depends
on the beam position �note however that the positions P1+
and P2+ give the same limiting value�. Concerning the angu-
lar frequency, it increases with A, but this increase depends
on the beam position.

VI. ENERGY ANALYSES

In order to better understand the stabilizing or destabiliz-
ing mechanisms which affect the convective flows when
acoustic streaming is applied, we performed energy analyses
for the different instabilities involved. The equations of en-
ergy budget associated with the fluctuating kinetic energy
and thermal energy can be derived from the linear stability
equations �12� and �13�: Eq. �12� is multiplied by v*, Eq.
�13� by �*, and the real parts of the resulting equations are
taken �Re and the superscript � denote the real part and the
complex conjugate, respectively�.

The equation expressing the rate of change of the fluctu-
ating kinetic energy �defined as k=vv* /2� is given by

�k

�t
= �r�uu* + vv* + ww*� = ks + kd + kb + kp, �15�

where ks=Re�−w
�U0

�z u*� represents the production of fluctu-
ating kinetic energy by shear of the basic flow, kd=Re�−�hx
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FIG. 14. �a� Critical Grashof number Grc, �b� wave number hyc
,

and �c� angular frequency �c for the steady �solid curve� and oscil-
latory �dashed curve� three-dimensional instabilities as a function of
the acoustic streaming parameter A for different positions of the
ultrasound beam �P2−�zb=−0.35�, P1−�zb=−0.1�, P1+�zb=0.1�, and
P2+�zb=0.35��. The beam width is equal to Hb=0.8 and Pr=0.1.
Only the portions of the critical curves corresponding to the first
threshold are shown. The stable zone in �a� is the zone �for Gr�0�
delimited by a critical curve and containing the origin.
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+hy
2��uu*+vv*+ww*�+ �2u

�z2 u*+ �2v
�z2 v*+ �2w

�z2 w*� represents the
viscous dissipation of fluctuating kinetic energy, kb

=Re�Gr �w*� represents the production of fluctuating kinetic
energy by buoyancy, and kp=−Re��ihxu*+ ihyv*�p+ �p

�z w*�
represents the redistribution of fluctuating kinetic energy by
the pressure fluctuations. We can also define the total �or
volume integral� fluctuating kinetic energy as K=�zkdz. The
rate of change of K is given by an equation similar to Eq.
�15�, which involves the volume integral energy terms �de-
noted by K�,

�K

�t
= Ks + Kd + Kb. �16�

Note that the volume integral pressure term is zero and has
therefore not been included in Eq. �16�. At threshold, the
critical eigenvector is associated with an eigenvalue of zero
real part. This implies that �k /�t and �K /�t are both equal to
zero at marginal stability. Kd is stabilizing by nature and is
thus a negative term. We choose to decompose Kd in two
contributions such that Kd=Kd
 +Kd� �similarly, we can write
kd=kd
 +kd��. Kd
 is the contribution involving the velocity
components in the plane of the perturbation �plane xOz for
the two-dimensional instabilities and plane yOz for the three-
dimensional instabilities� and Kd� is the contribution related
to the direction perpendicular to this plane. The kinetic en-
ergy equations are then normalized by 	Kd
	. At threshold,
and if the normalized terms are denoted with a prime, we get

ks� + kd�� + kd
� + kb� + kp� = 0, �17�

and

Ks� + Kd�� + Kb� = 1. �18�

Finally, according to Eq. �9�, the basic flow can be decom-
posed in its buoyant and acoustic parts, these two parts being
proportional to Gr and A, respectively. We can then write
U0=Ub+Uac=Gr Ub0+AUac0, which allows to write the
shear terms as ks�=ksb

� +ksac
� =Gr ksb

� +Aksac
� and Ks�=Ksb

� +Ksac
�

=Gr Ksb
� +AKsac

� .
The equation expressing the rate of change of the fluctu-

ating thermal energy �defined as e=��* /2� is given by

�e

�t
= �r���*� = ev + eh + ed, �19�

where ev=−Re�w
�T0

�z �*� represents the production of fluctu-
ating thermal energy by vertical transport of temperature,
eh=−Re�u

�T0

�x �*� represents the production of fluctuating
thermal energy by horizontal transport of temperature, and
ed=Re� 1

Pr�−�hx
2+hy

2��+ �2�

�z2 ��*� represents the dissipation of
fluctuating thermal energy by conduction. We can also define
the total fluctuating thermal energy as E=�zedz. The rate of
change of E is given by an equation similar to Eq. �19�,
which involves the volume integral energy terms �denoted by
E�,

�E

�t
= Ev + Eh + Ed. �20�

At threshold, and with a normalization with respect to 	Ed	,
we get

ev� + eh� + ed� = 0, �21�

and

Ev� + Eh� = 1. �22�

According to Eq. �10�, Ev� can also be split in two terms
related to buoyancy and acoustic streaming, respectively,
which gives: Ev�=Evb

� +Evac
� .

For any instability at its critical threshold, the calculation
of all the individual total energy contributions �Eqs. �18� and
�22�� by using the corresponding critical eigenvector enables
us to determine which term plays a dominant role in trigger-
ing the instability through production of fluctuating energy.
The corresponding spatial fields �Eqs. �17� and �21�� can in
turn be analyzed to locate the production regions.

In the case of the two-dimensional instabilities �consid-
ered for Pr=0.01�, we will analyze two cases, the case Hb
=0.3 where acoustic streaming has a destabilizing influence
and the case Hb=0.8 where acoustic streaming has a stabi-
lizing influence in a large range of A. In the case of the
three-dimensional instabilities �considered for Pr=0.1�, we
saw that the results do not depend much on Hb and that
acoustic streaming has only a weak influence on the oscilla-
tory instabilities. As a consequence, we will only analyze the
steady three-dimensional instabilities and choose a given
beam width, Hb=0.8. All these analyses will be performed
for a centered acoustic beam.

A. Energy budgets for the two-dimensional instability

We recall that without acoustic streaming, the two-
dimensional instability is connected to the shear of the basic
flow at the center of the fluid layer, and the temperature
fluctuations will play a negligible role, particularly for the
small values of Pr as Pr=0.01. As a consequence, we will
only consider the kinetic energy budgets in this case, and we
will analyze how these budgets evolve when the acoustic
streaming parameter A is increased for the two beam widths,
Hb=0.3 and Hb=0.8. For this two-dimensional instability,
there is no velocity perturbation in the transverse direction y
which implies that Kd=Kd
, Kd�� =0, kd�=kd
� , and kd�� =0.

1. Total energy budgets

For Hb=0.3 �destabilizing influence of acoustic stream-
ing�, the evolution with A of the different terms of the total
kinetic energy budget is shown in Fig. 15�a�. We see that
whatever is A, the shear term Ks� is the dominant destabiliz-
ing term with values close to 1 indicating that this term al-
most balances the dissipation term. The buoyancy term Kb� is
very weak: slightly stabilizing for A=0, it goes to 0 when the
instability is purely acoustic at A=Ac=5152. The decompo-
sition of the shear term Ks� shows that with the increase of A
the system evolves from an instability due to the shear of the
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buoyancy generated flow, Ksb
� , to an instability due to the

shear of the acoustic streaming flow, Ksac
� . This transition is

very regular, with a continuous increase of Ksac
� from 0, as-

sociated with a continuous decrease of Ksb
� which reaches 0

at A=Ac=5152.
For Hb=0.8 �stabilizing influence of acoustic streaming�,

the evolution with A of the different terms of the total kinetic
energy budget is shown in Fig. 15�b�. As for Hb=0.3, the
shear term Ks�, around 1, is responsible for the destabilization
and the stabilizing buoyancy term is very weak. The main
difference concerns the evolution of the shear contributions,
Ksb

� and Ksac
� . Ksac

� is first slightly negative, indicating an ini-
tial stabilizing effect, before a strong increase. Correspond-
ingly, Ksb

� slightly increases before the strong decrease lead-
ing to 0 at A=Ac=82 641. The maximal stabilizing effect of
Ksac

� �which corresponds to the maximal destabilizing effect
of Ksb

� � is obtained for A�20 000, and the strong evolutions
of these terms are only observed beyond A=30 000 which
roughly corresponds to the end of the stabilizing effect of
Ksac

� .

2. Local energy budgets and structure of the perturbations

For the two cases Hb=0.3 and Hb=0.8, we will analyze
the spatial structure of the different fluctuating kinetic energy
contributions in connection with the spatial structure of the
basic flow and perturbations. The analysis will be performed
at the thresholds of the two-dimensional instability for se-
lected values of A.

The plots of the basic velocity profile U0�z�, the z profiles
of the local energy contributions �ks�, kd�, kb�, and kp��, and the
perturbation velocity field in the vertical longitudinal xOz
plane are shown in Fig. 16 for Hb=0.3 and A=0, 4000, and
A=Ac=5152. We first see the progressive modification of the
basic flow as A is increased, from the classical cubic profile
of the side-heated flow toward the symmetric, piecewise
parabolic profile of acoustic streaming. Concerning the en-
ergy contributions, for A=0 we see the strong destabilizing
contribution of the shear at the center of the layer, around the
inflection point of the basic flow, the negligible values of the
buoyancy term, the stabilizing contribution of the viscous
dissipation, principally along the walls, and finally the pres-
sure contribution which allows the transfer of energy from
the production zones at the center of the layer toward the
dissipation zones principally along the walls. When A is in-
creased, the different terms are modified. Note the shift of
the shear energy peak toward the upper part of the layer,
before the growth of a second peak in the lower part of the
layer, the two peaks becoming symmetric in the pure acous-
tic streaming situation at A=Ac. These two peaks are at the
limits of the acoustic beam at 	z	�0.15, and a strong viscous
dissipation appears in the same zones. The buoyancy term
remains weak and the pressure term, by transfer of energy,
allows the local kinetic energy equilibrium. Concerning the
perturbations, note first that they evolve from a symmetry
with respect to a transverse axis at the center of the layer for
A=0 toward an antisymmetry with respect to the horizontal
midplane for A=Ac so that the perturbations for the interme-
diate states have no symmetry. The perturbation velocity
field corresponds to oblique rolls for A=0 and has the shape
of an ogive head for A=Ac. In the following, we will see the
importance of the zones with an oblique flow, where the
perturbations u and w are well correlated: these zones are
located for A=0 at the middle of the layer over a large part of
the height, and for A=Ac on both sides of the midplane.

The plots corresponding to the case Hb=0.8 are shown in
Fig. 17 for A=50 000 �maximum of Grc� and A=Ac
=82 641 �the results for A=0 are those already given for
Hb=0.3�. Note that because of the large values of A, the
basic velocities are larger than for Hb=0.3. Concerning the
contributions to the kinetic energy budget, their evolution is
quite similar to that obtained for Hb=0.3. The shear energy
peaks related to acoustic streaming �A=Ac�, however, are
located closer to the walls and a large zone where the shear
energy term is very weak exists at the center of the layer.
These modifications are connected to those of the perturba-
tions: the perturbation velocity field of the pure acoustic
streaming situation has now almost vertical velocities at the
center of the layer and velocities with an oblique direction
only exist in two intermediate zones between the central re-
gion and the boundary layers.

3. Energetic contributions to the critical Grashof number

To understand the differences between the evolution of
the critical curves for Hb=0.3 and Hb=0.8, we propose an-
other approach based on the expression of the critical
Grashof number as a function of energetic contributions. For
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FIG. 15. Variation of the different terms of the total fluctuating
kinetic energy budget �Kb�, Ks�, Ksb

� , and Ksac
� � for the two-

dimensional instabilities at threshold as a function of the acoustic
streaming parameter A for �a� Hb=0.3 and �b� Hb=0.8. The beam is
centered and Pr=0.01.
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that, we use the fact that both Ksb
� and Kb� linearly depend on

Gr. At the threshold, we can write

Ksb
� = GrcKsb

� ,

Kb� = GrcKb�.

From Eq. �18� �with Kd�� =0�, we get

Grc�Ksb
� + Kb�� = 1 − Ksac

� ,

which, for A=0, i.e., in the pure buoyancy case, gives

Grc0
�Ksb0

� + Kb0
� � = 1,

where the subscript 0 refers to the case A=0. Finally the ratio
of these two equations gives

Grc

Grc0

=
�1 − Ksac

� �

Rac

� Ksb
� + Kb�

Ksb0

� + Kb0
� �

Rb

,

�23�

which indicates that the variation of Grc with A can be ex-
pressed through the ratio of the two quantities, Rac and Rb,
the first quantity being connected to the shear of the basic
flow due to acoustic streaming and the second quantity to the
shear of the basic flow due to buoyancy �we already saw that
the buoyancy energy term remains very weak�. For A=0, Rac
and Rb are equal to 1 and Grc=Grc0

. These quantities will
also eventually decrease, as they tend to 0 for A=Ac. The
evolution with A of these two quantities Rac and Rb, together
with Grc /Grc0

, are shown in Fig. 18 for Hb=0.3 and Hb

=0.8.
For Hb=0.3 �Fig. 18�a��, Rac and Rb continuously de-

crease from 1 for A=0 to 0 for A=Ac=5152, but the decrease
of Rac is stronger than that of Rb. The values of Rac are then

-60

-40

-20

0

20

40

60

-0.4 -0.2 0 0.2 0.4
z

U0

-4

-2

0

2

4

6

-0.4 -0.2 0 0.2 0.4

E
ne

rg
y

di
st

ri
bu

tio
n

z

k,
s

k,
d

k,
p

k,
b

-60

-40

-20

0

20

40

60

-0.4 -0.2 0 0.2 0.4
z

U0

-4

-2

0

2

4

6

-0.4 -0.2 0 0.2 0.4

E
ne

rg
y

di
st

ri
bu

tio
n

z

k,
s

k,
d

k,
p

k,
b

-60

-40

-20

0

20

40

60

-0.4 -0.2 0 0.2 0.4
z

U0

-4

-2

0

2

4

6

-0.4 -0.2 0 0.2 0.4

E
ne

rg
y

di
st

ri
bu

tio
n

z

k,
s

k,
d

k,
p

k,
b

A = 0

A = 4000

A = Ac = 5152

FIG. 16. Spatial structure of the basic flow, the perturbations, and the contributions to the fluctuating kinetic energy budget, for the
two-dimensional instabilities at threshold for different values of A. The beam of width Hb=0.3 is centered and Pr=0.01. For each value of
A, the basic velocity profile U0�z�, the z profiles of the local energy contributions �ks�, kd�, kb�, and kp��, and the perturbation velocity field in
the vertical longitudinal xOz plane are successively plotted.
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smaller than those of Rb, which explains that Grc is always
less than Grc0

and that there is no stabilizing effect in this
case. In contrast, for Hb=0.8 �Fig. 18�b��, Rb decreases quite
strongly with the increase of A whereas Rac because of the
slight initial stabilizing effect of the shear term connected to
acoustic streaming �Ksac

� �0 for A�30 000�, first slightly in-
creases for A
20 000, and then decreases with a progressive
increase of the slope. The values of Rac remain larger than
those of Rb in a large range of A, which explains the increase
of Grc beyond Grc0

, i.e., the stabilizing effect. It is only
around A=78 000 that the two curves eventually cross
�which corresponds to Grc=Grc0

�, which allows the ultimate
decrease of Grc toward 0 for A=Ac=82 641. The differences
between the cases Hb=0.3 and Hb=0.8 are better shown in
Fig. 19 where the evolutions of Rac and Rb in both cases are
plotted as a function of A /Ac. We see that Rb decreases more
quickly for Hb=0.8 than for Hb=0.3, and that, in contrast,
Rac has stronger values for Hb=0.8 than for Hb=0.3.

4. Shear energy analysis at threshold

The variation of the critical thresholds has been shown to
depend on the evolution of Rac and Rb which are directly

connected to Ksac
� and Ksb

� , respectively. A detailed analysis of
these shear energy terms may then be useful. Ksac

� and Ksb
�

are, respectively, the integrals of the spatial fields ksac
� and ksb

� ,
which can be decomposed as a product of two terms, one
related to the basic flow, �−�Uac /�z� for ksac

� and �−�Ub0
/�z�

for ksb
� , and the other related to the velocity perturbations at

the critical threshold Grc, �Re�wu*� / 	Kd	�. The z profiles of
�−�Ub0

/�z�, and those of �−�Uac0
/�z� for Hb=0.3 and Hb

=0.8 are given in Fig. 20. Note that these profiles are
uniquely defined because they do not depend on Gr and A,
but to get �−�Uac /�z� involved in ksac

� , we will have to mul-

tiply �−�Uac0
/�z� by A. The z profiles of �Re�wu*� / 	Kd	�, ksb

� ,
ksac
� and ksac

� for Hb=0.3 and Hb=0.8 are given in Fig. 21 for
increasing values of A from 0 to Ac. For convenience, the
profiles for A=0 are plotted as thick solid lines and those for
A=Ac as thick dashed lines.
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FIG. 17. Spatial structure of the basic flow, the perturbations, and the contributions to the fluctuating kinetic energy budget for the
two-dimensional instabilities at threshold for different values of A. The beam of width Hb=0.8 is centered and Pr=0.01. For each value of
A, the basic velocity profile U0�z�, the z profiles of the local energy contributions �ks�, kd�, kb�, and kp��, and the perturbation velocity field in
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Concerning the velocity derivatives �Fig. 20�, we first see
the different symmetries: symmetry with respect to z=0 for
�−�Ub0

/�z� and antisymmetry for �−�Uac0
/�z�. �−�Ub0

/�z�
�Fig. 20�a�� has positive values at the center of the layer
�around the inflection point of the buoyant velocity profile�
and negative values close to the boundaries, whereas
�−�Uac0

/�z� �Figs. 20�b� and 20�c�� also change sign from
the central part to the boundaries, but because of the anti-
symmetry, there is also a change of sign between the upper
and lower parts of the layer, which imposes a zero value at
the center of the layer. If we now compare the profiles of
�−�Uac0

/�z� for Hb=0.3 �Fig. 20�b�� and Hb=0.8 �Fig. 20�c��
and consider for example the upper part of the layer, we see
that the negative values reached at the boundaries are similar
in both cases, but that the positive values are very different:
for Hb=0.3, they are quite strong �slightly stronger than the
negative values� with a maximum at the limit of the acoustic
beam at z=0.15, so quite close to the center of the layer,
whereas for Hb=0.8, they are weaker �four times less� and
the maximum is at z=0.4, so rather close to the wall.

We now consider the term related to the perturbations,
�Re�wu*� / 	Kd	�, which is plotted in Fig. 21�a�. We see that its
evolution from the bell-shaped profile at A=0 is very differ-
ent for Hb=0.3 and Hb=0.8. Note that this profile at A=0 is
strictly positive �with a maximum close to 0.01� and sym-
metric with respect to z=0, whereas the final profiles at A
=Ac are antisymmetric and have mainly positive values in
the upper part of the layer and negative values in the lower
part. Moreover the profiles at A=Ac for the two values of Hb
are very different: for Hb=0.3 �still considering the upper
part of the layer�, we get a positive peak with an intensity of
0.008 around z=0.15, so quite close to the center of the layer,
and this peak decreases to zero at the center of the layer and
at z=0.4; for Hb=0.8, the peak has a lower intensity �around
0.0026�, it is located closer to the wall at z=0.34, and its
width is quite small so that a zone with almost zero values is
found at the middle of the layer for 	z	
0.2. These particular
properties of the profiles for A=0 and A=Ac explain the
variations of �Re�wu*� / 	Kd	� with A. For Hb=0.3, with the
increase of A, the buoyant centered peak first increases and
moves toward the upper part of the layer �toward the position
of the positive acoustic peak�. The negative acoustic peak
then grows in the lower part of the layer whereas the profile
in the upper part decreases in order to eventually fit the posi-
tive acoustic peak. For Hb=0.8, the evolution is very differ-
ent: the initial buoyant peak regularly decreases, almost cen-
tered at the beginning �with however a slightly quicker

decrease in the upper part of the layer� and with a shape
which is first flattened and then modulated by the appearance
of the two acoustic peaks close to the walls.

The evolution with A of the shear energy profiles due to
the basic buoyant flow, ksb

� , looks similar to the evolution of
�Re�wu*� / 	Kd	�, and the same differences between the cases
Hb=0.3 and Hb=0.8 are observed �Fig. 21�b��. Indeed, the
large values of �Re�wu*� / 	Kd	� in the core of the layer are
multiplied by the positive values of �−�Uth0

/�z�, whereas the
weaker values at the boundaries of the layer, which are mul-
tiplied by negative values of �−�Uth0

/�z�, give negligible
contributions. The evolutions with A of ksb

� observed in Fig.
21�b� can be summarized as a quite regular decrease of the
buoyant peak for Hb=0.8 and as a shift of this peak toward
the upper part of the layer with a slight increase, before its
decrease combined with the growth of a negative peak for
Hb=0.3. If we remember that Ksb

� is the z integral of ksb
� , these

evolutions allow to understand the strong regular decrease of
Ksb

� �and of Rb�Ksb
� /Ksb0

� � for Hb=0.8 and the almost con-

stant initial evolution leading to a delayed decrease for Hb
=0.3. Note that the zero value of Ksb

� for A=Ac comes from
the antisymmetry of the ksb

� profiles, the zones with negative
values counterbalancing the zones with positive values.

The evolution with A of the shear energy profiles due to
the basic acoustic streaming flow, ksac

� and ksac
� , which are

obtained by multiplying �Re�wu*� / 	Kd	� by �−�Uac0
/�z� and

�−�Uac /�z�, respectively, are shown in Figs. 21�c� and 21�d�.
Concerning the profiles of ksac

� , we see that the values of
�−�Uac0

/�z� near the boundaries are associated with weak
values of �Re�wu*� / 	Kd	� and do not give significative con-
tributions to ksac

� . Only the two peaks of �−�Uac0
/�z� in the

core �the positive peak in the upper half of the layer and the
negative peak in the lower half� will have an influence. As a
result, ksac

� is found to evolve from two peaks with opposite
signs �and zero integral� for A=0 �i.e., the two peaks of
�−�Uac0

/�z� modulated by the bell-shaped profile of
�Re�wu*� / 	Kd	�� toward the two positive peaks of the acous-
tic streaming shear �correlation between same sign peaks of
�Re�wu*� / 	Kd	� and �−�Uac0

/�z��. Due to the observed varia-
tions of �Re�wu*� / 	Kd	�, the positive peak first increases for
Hb=0.3, whereas it decreases for Hb=0.8 and the negative
peak clearly decreases for Hb=0.3 whereas it evolves more
slowly for Hb=0.8. In fact, we are interested by the profiles
of ksac

� �Fig. 21�d�� where the linear dependence with A of
�−�Uac /�z� is taken into account. Nevertheless, the evolution
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of ksac
� allows us to understand that for ksac

� �which starts from
zero for A=0� the increase of A will induce both the initial
growth of the negative peak and the growth of the positive
peak. For Hb=0.3, however, the negative peak will quickly
regress and will always be dominated by the positive peak
�Ksac

� will then be always destabilizing�, whereas for Hb

=0.8, the negative peak is initially stronger than the positive

peak which induces an initial stabilizing contribution of Ksac
� .

This explains the slight initial increase of Rac=1−Ksac
� for

Hb=0.8 and the direct decrease for Hb=0.3, and, as a conse-
quence, the slower global decrease for Hb=0.8 than for Hb
=0.3.

This analysis has shown the key role played by the evo-
lution of the velocity perturbations �through the term
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�Re�wu*� / 	Kd	�� in the evolution of both shear energy terms
induced by buoyancy or acoustic streaming, and, through
these terms, in the evolution of the critical thresholds for the
steady two-dimensional instabilities.

B. Energy budgets for the steady three-dimensional instability

For the three-dimensional instabilities, which have a wave
number hy in the y direction and develop in the transverse
yOz plane, it is interesting to distinguish what occurs for the
perturbations in the yOz plane and what occurs in the x di-
rection, perpendicular to this plane. Note first that the shear
term is in the equation along x because it is the direction of
the basic flow, and that the buoyancy term is in the equation
along z. Moreover, the pressure is not present in the equation
along x because �p /�x= ihxp=0. If we consider the local
kinetic energy equation, we may distinguish the contribu-
tions coming from the velocity equation along x, ks�, and kd��
which equilibrate, and the contributions coming from the ve-
locity equations in the yOz plane, kb�, kp�, and kd
� . If we now
integrate along z, we have the equilibrium between the shear
and viscous contributions coming from the x direction, Ks�
and Kd�� , and the equilibrium between the buoyancy and vis-
cous contributions in the yOz plane which may be written as
Kb�=1 because the pressure integral is zero and the equations
have been normalized by the viscous dissipation in the yOz
plane, 	Kd
	.

The steady three-dimensional instabilities are of
Rayleigh-Bénard type and are mainly connected with what
occurs in the yOz plane �classical equilibrium between buoy-
ancy and viscous dissipation with a coupling with the tem-
perature perturbation equation�, but the flow along x gener-
ates a shear term and the corresponding viscous dissipation,
in this direction. To better see the couplings between the
equations, it is useful to develop the temperature perturbation
equation in our case. We get

��

�t
= w

�T0

�z
+ u

�T0

�x
+

1

Pr
�− hy

2� +
�2�

�z2 � .

Note first that the classical Poiseuille-Rayleigh-Bénard situ-
ation with a Poiseuille flow along x and a Rayleigh-Bénard
instability which develops in the yOz plane is somewhat
similar to our case but simpler. In this situation, the basic
thermal field depends linearly on z, and we have then
�T0 /�x=0 and �T0 /�z=const. The temperature perturbation
equation is thus only coupled to the velocity perturbations in
the yOz plane, and the basic flow velocity U0 only appears in
the velocity perturbation equation along x which is com-
pletely decoupled from what occurs in the yOz plane. Then,
whatever large is the basic flow velocity, the kinetic energy
budget in the yOz plane and the thermal energy budget are
unchanged and the critical threshold as well, despite the fact
that the total kinetic energy budget is modified because of the
growth of the energy components along x in connection with
the growth of the basic flow.

In our case, the couplings are different because, on one
side, �T0 /�z depends on the basic flow U0, which implies
that the threshold will also depend on U0, and, on the other
side, �T0 /�x is different from zero, which implies that the

temperature perturbation � �which is involved in the buoy-
ancy term� is no more independent of the velocity perturba-
tion u along x and that there is a coupling between what
occurs in the x direction and what occurs in the yOz plane. In
the following, we present the evolution with A of the total
and local energy budgets for the steady three-dimensional
instability for Hb=0.8.

1. Total energy budgets

The evolution of the different terms of the kinetic energy
budget for the steady three-dimensional instability is shown
in Fig. 22�a�. We have Kb�=1 which corresponds to the ki-
netic energy equilibrium in the yOz plane. In the x direction,
there is an equilibrium between the shear term Ks� and the
viscous dissipation term Kd�� , but these terms have much
stronger values. These terms first remain quite constant when
A is increased, because the increase of the Ksac

� contribution
is compensated by the decrease of the Ksb

� contribution. A
sudden change, however, occurs around A=60 000, i.e., in
the zone of strong decrease of the stability thresholds �Fig.
12�. Beyond this value of A, we approach an asymptotic
behavior: the term Ksb

� quickly reaches a negative constant
value, which indicates a stabilizing contribution �this contri-
bution is weak with respect to the other terms�, whereas the
terms Ks�, Ksac

� , and 	Kd�� 	 strongly increase and reach a A2

law �this law is highlighted in the inset in Fig. 22�a� where
the evolution of Ks� is plotted in a log-log scale�. The thermal
energy budget given in Fig. 22�b� shows that both thermal
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energy transport terms, Ev� and Eh�, are destabilizing terms,
but Eh� is the dominant term. A change is also observed
around A=60 000: before this value, we see an increase of Eh�
and a decrease of Ev�, whereas beyond this value both terms
quickly tend towards an asymptotic value which is 0.9 for Eh�
and 0.1 for Ev�. Finally, the decomposition of Ev� into its two
contributions allows to see how this term evolves from initial
values mainly determined by Evb

� to final values mainly de-
termined by Evac

� .
The transition around A=60 000 is associated with the

fact that the basic velocity profiles change very quickly at
this value, from profiles dominated by Gr to profiles domi-
nated by A. This occurs because, for the initial values of A,
the values of Grc are strong, which masks the acoustic
streaming contributions, whereas, around A=60 000, the
very strong decrease of Grc allows the acoustic streaming
contributions to become suddenly dominant. Beyond this
value of A, �−�U0 /�z� and ��T0 /�z� vary proportionally to A,
whereas ��T0 /�x� is still constant. Asymptotic behaviors are
also found for the different perturbations, 	v	 / 	w	
O�1� and
	u	 / 	w	
	�	 / 	w	
O�A�, and also for the threshold, Grc

1 /A, whereas the characteristic dimensions y and z be-
come constants. As a consequence, the normalized kinetic
energy contributions in the yOz plane vary as O�1�, and
those in the x direction vary as O�A2� �the negligible Ksb

�
contribution vary as O�1��. These asymptotic variations per-
fectly agree with the evolutions observed in the kinetic en-
ergy budgets presented in Fig. 22�a�. Concerning the thermal
energy contributions, if they were normalized by 	Kd
	 as for
the kinetic energy budgets, they would vary as O�A2�, except
the negligible vertical transport of temperature due to buoy-
ancy which would vary as O�1�. These variations, however,
are not visible in Fig. 22�b� because the contributions have
been normalized by one of the terms of the budget, the dis-
sipation term by conduction.

2. Local energy budgets

The local energy budgets for the steady three-dimensional
instability are shown in Fig. 23 for four values of A, A=0,
20 000, 60 000, and 100 000. We also give the z profiles of
the basic velocity U0 and temperature Ti and the perturbation
velocity field in the vertical transverse yOz plane. For A=0
�Fig. 23�a��, we see that, in the yOz plane, the buoyancy term
kb� is destabilizing in two zones close to the walls where the
basic temperature field is inversely stratified, which confirms
that the instability is of Rayleigh-Bénard type. But the situ-
ation is more complex than the usual Rayleigh-Bénard situ-
ation because the temperature perturbation � is not only con-
nected to the vertical transport of the temperature but is also
connected to the horizontal transport of the temperature
through the constant temperature gradient ��T0 /�x� and the u
velocity perturbation in the x direction. In this x direction,
the kinetic energy contributions are very strong: we mainly
find two destabilizing shear peaks near the walls balanced by
stabilizing viscous dissipation peaks. The thermal energy
budget also gives destabilizing peaks of ev� and eh� near the
walls. Finally, the perturbation velocity field shows that the
instability takes the form of counter-rotating rolls of

Rayleigh-Bénard type which develop in each of the two
zones with inverse stratification near the walls. The rolls
have the same direction of rotation in the upper and lower
zones, and the descending velocities �w�0� in the center are
associated to negative temperature perturbations � in order to
get a destabilizing buoyancy term. Finally, note that the ro-
tating motion inside the rolls is modulated by the longitudi-
nal velocity perturbation u, the descending velocities in the
yOz plane �w�0� being mainly correlated with positive lon-
gitudinal velocities �u�0�.

When A becomes different from zero �Figs. 23�b�–23�d��,
the two inverse stratification zones are no more symmetric
and the instability only develops in the lower zone which
becomes dominant �the development of the instability in the
upper zone would need a larger value of Grc�. For moderate
values of A, the energy contributions and the perturbations
look similar to those obtained for A=0, but they only exist in
the lower half of the layer, and, in particular, counter-rotating
rolls are only obtained near the bottom wall. Note that, com-
pared to the case A=0, the intensity of the energy peaks has
doubled. In fact, these terms are normalized with respect to
the total dissipation terms �	Kd
	 for the kinetic energy and
	Ed	 for the thermal energy� which have been reduced by half
because they now only integrate contributions in the lower
part of the layer. When A is increased, the perturbation zone
at the bottom of the layer extends in connection with the
extension of the inverse stratification zone at the bottom,
which favors the onset of instability in this zone despite the
slower stratification effect �note that the effective Gr depends
on the cube of the effective height, but its dependence on the
effective �T is only linear� and leads to a decrease of Grc.
When A is increased beyond the transition value around A
=60 000, the basic profiles become dominated by acoustic
streaming, and the temperature field, in particular, is in-
versely stratified on the whole lower half of the layer �Fig.
23�d��. For larger A, the extent of this zone with inverse
stratification does not change, but the intensity of the strati-
fication linearly increases with A �Tb�Tac and Tac propor-
tional to A�, which induces the decrease of Grc as 1 /A. In
this asymptotic domain �Fig. 23�d� for A=100 000�, even
though the inverse stratification is limited to the lower half of
the layer, we see that the perturbations and, in particular, the
counter-rotating rolls extend on almost the whole height of
the layer. Moreover, we have seen that the u velocity scales
as O�A� compared to the velocity components involved in
the rolls, v and w. As a result, the rotating motion along the
roll is strongly modulated by the u velocity perturbation,
which generates three-dimensional trajectories with large
variations in the x direction. Finally, as we know that the
wavelength of the perturbation corresponds to the horizontal
space occupied by two counter-rotating rolls and that, in the
Rayleigh-Bénard situation, the rolls are almost circular, the
observed increase of the wavelength with A may be ex-
plained by the increase of the size of the rolls which only
occupy four tenths of the height for A=0 but occupy almost
the whole height for A=100 000.

Although we mainly based our analysis on the inverse
vertical stratification of temperature, we recall that this insta-
bility is not purely of Rayleigh-Bénard type and that in the
thermal energy budget, beside the classical vertical transport
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of temperature, is also involved, even in a large manner
�90% of the thermal energy production in the asymptotic
domain�, the horizontal transport of temperature connected
to the horizontal temperature gradient ��T0 /�x� and to the
strong perturbation velocity u.

VII. CONCLUDING REMARKS

Our linear stability analysis of the flows induced in a fluid
layer by buoyant convection and acoustic streaming has
given interesting information on the instabilities which de-
velop in such flows and on the way they are modified when
acoustic streaming is enhanced.

First, pure acoustic streaming flows are sensitive to a
shear instability which develops as a right traveling wave in
the plane of the flow �two-dimensional instability� and is due
to the strong shears present in these flows at the limits of the
ultrasound beam. The thresholds Ac �critical value of the
acoustic streaming parameter� for this oscillatory instability
depend on the normalized width Hb of the ultrasound beam,
with a minimum for Hb=0.32. If the ultrasound beam of
fixed width is decentered, the thresholds first decrease and
then increase when the beam gets closer to one of the walls.
This change of variation is associated with a transition from
right to left traveling waves.
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FIG. 23. Spatial structure of the basic flow, the perturbations, and the contributions to the fluctuating energy budgets for the steady
three-dimensional instabilities at threshold for different values of A. The beam of width Hb=0.8 is centered and Pr=0.1. For each value of
A, the basic velocity profile U0�z� and thermal profile Ti�z�, the perturbation velocity field in the vertical transverse yOz plane, and the z
profiles of the local fluctuating contributions to the kinetic energy budget in the yOz plane �kd
� , kp�, and kb�� and in the x direction �ksb

� , ksac
� ,

and kd�� � and to the thermal energy budget �ev�, eh�, and ed�� are successively plotted.
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Acoustic streaming also affects the stability of the buoy-
ant convection. The two-dimensional steady shear instability,
which is dominant for the small values of the Prandtl number
Pr, becomes oscillatory when acoustic streaming is applied.
Depending on the width of the beam, the thresholds Grc
�critical value of the Grashof number� will first decrease with
the increase of the acoustic streaming parameter A �small
widths� or increase �large widths�. A stabilizing effect is then
obtained for large width beams, but, for any width, the
thresholds will eventually decrease and reach Gr=0 at the
value of Ac obtained for a pure acoustic streaming flow. The
three-dimensional oscillatory instability, which prevails for
intermediate values of Pr, is regularly stabilized when acous-
tic streaming is applied. Finally, the three-dimensional steady
instability of Rayleigh-Bénard type, which occurs at large Pr,
is strongly destabilized when the acoustic streaming param-
eter A is enhanced, with thresholds eventually decreasing
asymptotically to zero with a 1 /A law. The decentring of the
beam is another way to modify the thresholds: it is found that
a stabilizing influence can be obtained when the beam is

decentered in such a way that the streaming induced by the
beam opposes the buoyant flow.

In order to understand the stabilizing or destabilizing
mechanisms involved when acoustic streaming is applied, an
analysis of the fluctuating energy budget associated with the
disturbances at threshold was performed. The modifications
affecting the two-dimensional shear instability thresholds are
strongly connected to modifications of the velocity fluctua-
tions which enter the destabilizing shear energy term as a
product. This velocity fluctuation product evolves, when
acoustic streaming is applied, from a peak contribution at the
center of the layer �buoyant flow� to two peak contributions
at the limits of the ultrasound beam �acoustic streaming
flow�. Depending on the beam width, the two “acoustic
streaming” peaks will be close one to the other �small
widths� or separated by a no-fluctuation zone �large widths�,
and that will induce strongly different evolutions of the ve-
locity fluctuation product with the increase of the acoustic
streaming parameter. Such different evolutions are a key fac-
tor to explain the either destabilizing �small widths� or sta-
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FIG. 23. �Continued�.
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bilizing �large widths� effect induced by acoustic streaming
on the two-dimensional shear instability. Concerning the
three-dimensional steady instability of Rayleigh-Bénard
type, the spectacular decrease of the thresholds induced by
acoustic streaming is explained by the extension of the zone
with inverse thermal stratification at the bottom of the layer.
When the influence of Grc �after its strong decrease� is domi-
nated by that of the acoustic streaming parameter A, the basic
profiles become close to acoustic streaming profiles, with, in
particular, a zone with inverse stratification extending over
the whole lower half of the layer. Further increase of A will

not change the size of this zone, but will amplify the strati-
fication proportionally to A, which explains the asymptotic
variation of the thresholds Grc as 1 /A.

These results clearly show that no systematic stabilizing
effect of the buoyant convection is obtained by applying
acoustic streaming. Stabilizing effects may, however, be ob-
tained through an adequate choice of the beam width, beam
position, and acoustic intensity. And destabilizing effects can
also be promoted for applications which would need more
fluctuating flows. All this indicates that acoustic streaming
has to be used with care.
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