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Intermittency of surface-layer wind velocity series in the mesoscale range
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We study various time series of surface-layer wind velocity at different locations and provide evidences for
the intermittent nature of the wind fluctuations in mesoscale to large-scale range. By means of the magnitude
covariance analysis, which is shown to be a more efficient tool to study intermittency than classical scaling
analysis, we find that all wind series exhibit similar features than those observed for laboratory turbulence. Our

findings suggest the existence of a “universal” cascade mechanism associated with the energy transfer between
synoptic motions and turbulent microscales in the atmospheric boundary layer.
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I. INTRODUCTION

Atmospheric surface-layer motions are a source of many
challenging problems. The issue of designing a faithful sta-
tistical model of spatiotemporal wind speed fluctuations has
been addressed in various fields such as boundary layer tur-
bulence phenomenology, meteorology, wind power control,
and prediction or climatology. From turbulent gusts to hurri-
canes, breezes to geostrophic wind, the wind process is char-
acterized by a wide range of spatiotemporal scales and all the
above mentioned disciplines mainly focus on a specific sub-
range of scales. The modeling of wind speed behavior in the
mesoscale range is of great interest, for example, in wind
power generation or in order to control polluant dispersion.
In this range of scales extending from few minutes to few
days (~1-1000 km), the properties of wind velocities are
less known than in the range of planetary motions (synoptic
scales) or turbulent motions (microscales) [1,2]. From a
physical point of view, because of the importance of bound-
ary conditions, the heterogeneous and nonstationary nature
of the processes involved, it is well admitted that mesoscale
wind regimes strongly depend on various factors such as
atmospheric conditions and the nature of the terrain, and may
involve periodic variations (caused by diurnal temperature
variations). Unlike microscale Kolmogorov homogeneous
turbulence, mesoscale fluctuations are therefore not expected
to possess any degree of universality [3]. However, during
the past few years, some papers have been devoted to the
analysis of scaling laws and intermittency features at large
scales in many geophysical signals such as temperature, rain-
fall, or wind speeds [4-6]. In Ref. [3], the authors showed
that surface-layer wind velocities recorded at low frequency
using a cup anemometer display multiscaling properties very
much like in the high-frequency turbulent regime. Moreover,
they claimed that random cascade models could be pertinent
to reproduce the observed intermittent fluctuations. Along
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the same line, in [7], a multifractal detrended analysis was
performed on four different hourly wind speed records and
revealed some multiscaling properties of the series. Even if
these studies did not go beyond simple scaling exponent es-
timation and did not consider problems related to the statis-
tical significance of the obtained results, they had the merit
to address questions about the possible intermittent nature of
wind variations in the mesoscale range. As reviewed below,
one of the consequences of multiscaling and intermittency is
that small-scale fluctuations are strongly non-Gaussian and
characterized by “bursty” behavior. In Refs. [8,9], such fea-
tures have been precisely observed on wind variations statis-
tics at largest microscales (or at smallest mesoscales) and
have been shown to be related to a “fluctuating” log-normal
turbulent intensity.

In this paper, we suggest that this “fluctuating turbulent
intensity” results from a random cascading process initiated
at a time scale of few days. Our aim is to show that, in some
sense, “turbulent” cascade models are likely to be pertinent
at larger scales, in the so-called mesoscale regime. As com-
pared to the previously cited papers, our analysis relies upon
the use of magnitude (i.e., logarithms of velocity increments
amplitudes) correlation functions. From a mathematical point
of view, long-range correlated magnitudes have been shown
to be at the heart of the construction of continuous cascade
processes [10,11]. For a practical purpose, magnitude cova-
riance possesses interesting properties as far as statistical es-
timation problems are concerned [12-14]. We show that
these correlation functions can be reliably estimated and are
very similar to those associated with longitudinal velocity
time series of laboratory turbulent experiments. Moreover,
we observe some universal features among the various ana-
lyzed series.

The paper is organized as follows: in Sec. II, we make a
brief review of intermittency and the related notion of ran-
dom cascade models. We emphasize on the interest of study-
ing magnitude correlations and discuss its relationship with
multiscaling properties. We then compare, on an empirical
ground, the relative performances of intermittency estimators
relying upon scaling and magnitude covariance. This section
ends with a review of a recent work of Castaing that has
shown how intermittency in Lagrangian and Eulerian frames
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is “observed” on time series recorded at a fixed spatial posi-
tion. Our main experimental results are then presented in
Sec. III. After a rapid description of various wind data we
have studied, we show that wind surface-layer variations in
mesoscale range have intermittent properties and possess
universal magnitude covariance similar to laboratory turbu-
lent fluctuations. Discussions and prospects are reported in
Sec. IV.

II. INTERMITTENCY: FROM MULTISCALING TO
MAGNITUDE CORRELATIONS

A. Multiscaling and intermittency

Small-scale intermittency is one of the most challenging
problems in contemporary turbulence research. It is gener-
ally associated with two distinctive features: the first one is
that at small scales the probability density functions (pdf) of
velocity variations are strongly leptokurtic (with “stretched
exponential” tails) while they are almost Gaussian at larger
scales. The second one is that the so-called structure func-
tions display multiscaling properties. As we shall see, these
two properties are in fact equivalent within the multiplicative
cascade picture. Let us make a brief overview of these
notions.

We denote X(r) a continuous process (for instance, the
time variations of a velocity field component at a fixed loca-
tion) and let §,X(r) be its increments over a scale 7. 8,X(¢)
=X(t+7)—-X(¢). One usually defines the order g structure
function of X as

S,(D= f |8,X (u)|"du (1)

and the {(g) spectrum as the scaling exponent of S,(7),

S5,(7) ~Orf<4>. (2)

If the function {(g) is nonlinear one says that X(z) is a mul-
tifractal process or an intermittent process. In that case, as
shown, e.g., in [15], {(g) is necessarily a concave function
and the previous scaling holds in the range of small 7; 7
— 0 means precisely 7<<T, where T is a coarse scale called
the integral scale in turbulence (in general associated with
the injection scale). The intermittency coefficient is a posi-
tive number that quantifies the nonlinearity of {(g) and can
be defined’ as, e.g.,

A\ =-{(0). 3)

The most common example of nonlinear {(g) function is the
so-called log-normal spectrum which is a simple parabola,

2

_ A,
{q)=aq- XA (4)

In that case \? corresponds to the constant curvature of {(q).

'Notice that one can find different definitions of the “Intermittency
coefficient” or the “intermittency exponent” in the literature (see
[16], for example). However, within the logarithmic-normal cascade
model discussed below they are all equivalent.
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In order to estimate the multiscaling properties and/or the
intermittency coefficient, one can directly estimate partition
functions from the data and obtain the exponent {(g) from a
least-squares fit of S (7) in log-log representation. However,
this method suffers from various drawbacks. First, from a
fundamental point of view, one has to distinguish temporal
(or spatial) averages from ensemble averages. For instance,
in the case of a log-normal multifractal, rigorously speaking,
only the “ensemble” average {|5,X(u)|?) behaves as a power
law with an exponent {(g) as given by Eq. (4). The temporal
or spatial average has an exponent spectrum {(g) that be-
comes linear above some value of ¢ and is no longer para-
bolic [17]. In order to estimate {(g) from moment scaling
over a wide range of g one has to use the so-called “mixed”
asymptotic framework [18]. But the main problem remains
that high-order moment estimates require very large sample
size. Moreover, the scaling behavior can also be altered by
finite-size effects, discreteness, and nonstationarity effects
such as periodic perturbations or periodic modulations of the
data (see below). A more reliable method first introduced in
[12] (see also [19]) relies upon the so-called magnitude cu-
mulant analysis. It simply consists of focusing on the scaling
behavior of partition functions around g=0. According to
this approach, the structure function is written as

o +
Sy =exp| 2 Cun) | (5)
k=1 :

where Cy(7) is the kth cumulant associated with the random
variable w,(u)=1n(|6X(u)|). The logarithm of the increment
will henceforth be referred to as the magnitude of velocity
increments. Note that C; is simply the mean value of @ while
C, is its variance. Thanks to the scaling relationship Eq. (2),
one deduces that all cumulants behave as

Ci(7) = ¢ In(7) + 1y, (6)

where the constants {r;} account for both the integral scale
and the prefactors in the scaling relationship Eq. (2). The
function {(g) can therefore be expressed in terms of a cumu-
lant expansion,

P
dg)=2cp . (7)
In particular one sees that the intermittency coefficient is
directly involved in the behavior of the magnitude variance
as

Cy(n ==\ In(7) +1r,. (8)

Equation (8) has been successfully used to estimate the in-
termittency coefficient of longitudinal velocity fields in
three-dimensional (3D) fully developed regime under vari-
ous experimental conditions. A common value close to \?
=0.025 has been obtained. It is remarkable that this inter-
mittency value appears to be universal [12,19,20].

Let us end this brief review by discussing the relationship
between intermittency and the small-scale bursty behavior of
velocity increments. Indeed, it is well known in turbulence
laboratory experiments that large-scale increment pdf’s are
close to being normal while small scales have larger tails.
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The flatness strongly increases when one goes from large to
small scales. We focus only on the log-normal case, i.e., a
parabolic {(g), extension of our considerations to other laws
being straightforward. Thanks to the structure function mul-
tiscaling interpreted as a moment equality, by simply per-
forming a time scale contraction, 7/=s7 (s<1), one can
write

5X = eM5X, )

where (), is a Gaussian random variable of variance
—\?1n(s) which law is denoted as G,({}). By simply assum-
ing that for 7=T (T being the integral scale), the increments
of X are normally distributed, one obtains the small-scale pdf
of 8X by the well known Castaing formula [21],

Pz =@2m) "2 f G e 240, (10)

This means that, at scale 7, the pdf’s of the increments of the
process X(7) are obtained as a superposition of Gaussian dis-
tributions of variance ¢ ©, where () is itself a Gaussian ran-
dom variable of variance increasing at small scales like
A2 In(7/ 7). The smaller the scale, the larger the variance of
Q) and therefore the larger the tails of the increment pdf
p(z,7). The continuous deformation from Gaussian at large
scales toward stretched exponential like shapes at small
scales, observed in laboratory turbulence experiments, has
been shown to be well accounted by the transformation (10).

B. Random cascades and logarithmic
magnitude covariance

A natural question that arises after the previous analysis is
how can we explicitly build models that possess multiscaling
properties? In other words, since multiscaling is equivalent
to intermittency, how can the variance of the magnitude in-
crease as a logarithm of the scale as described by Eq. (8)?
The answer comes from the self-similarity Eq. (9) that can be
iterated and interpreted as a random cascade: when one goes
from large to small scales, one multiplies the process by a
random variable W =exp({},).

Usually one starts by building a nondecreasing (i.e., with
positive variations) cascade process, denoted hereafter as
M(1), which is often referred to as a multifractal measure
though its variations are not bounded. More general multi-
fractal processes (or multifractal “walks”) can be simply ob-
tained by considering a simple Brownian motion B(¢) (or any
self-similar random process) compounded with the measure
M(t) considered as a stochastic time: X(#)=B[M(#)]. In the
finance literature M(z) is often referred to as the “trading
time” while in turbulence M(¢) can be associated with the
spatial or temporal distribution of energy dissipation. The
statistical properties of X(¢) can be directly deduced from
those of M(z) (see, e.g., [22,23]). Random multiplicative cas-
cades measures were originally introduced as models of the
energy cascade in fully developed turbulence. After the early
works of Mandelbrot [24-26], a lot of mathematical studies
have been devoted to discrete random cascades [27-31]. Let
us summarize the main properties of these constructions, set
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some notations and see how these notions extend to continu-
ous cascades.

The simplest multifractal discrete cascades are the dyadic
cascades defined by the following iterative rule: one starts
with some interval of constant density and splits this interval
in two equal parts. The density of the two subintervals is
obtained by multiplying the original density by two (posi-
tive) independent random factors W of same law. This opera-
tion is then repeated ad infinitum. The integral scale corre-
sponds to the size of the starting interval. A log-normal
cascade corresponds to W=exp({2) where () is normally dis-
tributed. Peyriere and Kahane [27] proved that this construc-
tion converges almost surely toward a stochastic nondecreas-
ing process M., provided (W In W) < 1. The multifractality of
M., (hereafter simply denoted as M) and of X(t)=B(M(r))
[B(7) being a Brownian motion] has been studied by many
authors (see, e.g., [29]) and it is straightforward to show that
the spectrum of X(z) is

{(q) = q/2 — Iny(W?). (11)

The self-similarity Eq. (9) for dilation factors s=2" can also
be directly deduced from the construction.

Because the discrete cascade construction involves dyadic
intervals and a “top-bottom” construction it is far from being
stationary. In order to get rid of theses drawbacks, continu-
ous cascade constructions have been recently proposed and
studied on a mathematical ground [11,22,23,32-34]. They
share exact multifractal scaling with discrete cascades but
they display continuous scaling and possess stationary incre-
ments [11,22,23,33]. Without entering into details, we just
want to stress that these constructions rely upon a family of
infinitely divisible random processes €),(¢). The process M(z)
is obtained as the weak limit, when [—0, of [ f)enl<”)dv. In
the log-normal case, (), is simply a Gaussian process defined
by a covariance function that mimics the behavior of discrete
cascade. In Refs. [10,35] it has been shown that such a cor-
relation function decreases slowly as a logarithm function,

def
p(Ar) = cov[Q(u), Q) (u + A1) ]

Ar+1
=_\? ln(T) for lags Ar=T. (12)

The integral scale T where cascading process ‘“‘starts” can
therefore be interpreted as a correlation length for the varia-
tion logarithmic amplitudes of X(¢). Notice that the regular-
ization for Ar=/, represented by the offset /, can be slightly
modified without changing the final results [23]. The so-
called multifractal random walk (MRW) process introduced
in Ref. [11] consists of constructing a log-normal multifractal
process X(¢)=B[M(r)] where B(t) is a Brownian motion and

t
M(7) = lim f ey, (13)
1—0%tJ0

where (),(1) is a Gaussian process with a logarithmic cova-
riance as given in Eq. (12). In Figs. 1(a) and 1(b) are plotted,
respectively, a sample of a log-normal measure M(dr) (dt
=1) and a path of a MRW process X(¢) corresponding to
A\2=0.025 and T=512.
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FIG. 1. Estimation of the intermittency coefficient for (a) a log-
normal MRW multifractal measure and (b) a log-normal MRW pro-
cess. In both cases the sample size is 32 768 points, A>=0.025, and
T=512. In (c) are plotted the magnitude covariance (@) and mag-
nitude variance (O) as a function, respectively, of the logarithm of
the lag and the logarithm of the scale. The slope of both curves
provides an estimation of 2. One can see that for measure M(dt),
the errors in the estimation are comparable. In (d) are displayed the
same plots as in (c) but for the magnitude of the MRW process.
Because of the additive noise and the small number of independent
points at large scales, the estimation relying upon the magnitude
variance turns out to be much more altered.

The studies devoted to continuous versions of discrete
cascades have mainly shown that multifractal processes are
related to exponential of logarithmic correlated random pro-
cesses. The magnitude covariance function has been proven
to be at the heart of the notion of “continuous cascade.” As
we shall see below, it also allows one to estimate the inter-
mittency coefficient in a more reliable way than methods
based on scaling properties.

C. Intermittency coefficient estimation issues

As far as the problem of the intermittency coefficient es-
timation is concerned, it results from previous discussion that
this coefficient, originally defined as the curvature of {(q),
can be estimated either from the behavior of magnitude vari-
ance across scales [Eq. (8)] or from the slope of the time
magnitude covariance in lin-log coordinates [Eq. (12)]. In
fact, the two methods we would like to compare rely upon
two different interpretations of the self-similarity Eq. (9).
Indeed, for a continuous cascade (MRW) process X(7), this
equation can be shown to be an equality in law for all finite
dimensional distributions (f.d.d.). By taking the logarithm,
one gets

), (14

o (u)=In(|6X(w)]) = Q. (u) +1In(|e(u)
fd.d.

where Q. (u) is a logarithmic-correlated Gaussian random
variable [Eq. (12)], which variance behaves like in Eq. (8)
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while e(u) is a standardized normal white noise independent
of Q.. All “scaling” methods [such as Eq. (8) or (10)] consist
of interpreting the previous equality at a given fixed location
u for various scales 7. Since & does not depend on 7, N is
estimated by a linear regression of var(w,) as a function of
In(7). Alternatively, the method relying on Eq. (12) consists
of exploiting the temporal dependence of Eq. (14) at a fixed
7 value. Since In(|¢|) is a white noise, \? can be obtained as
the slope of the estimated covariance of w, as a function of
the logarithm of the lag In(Au). Let us discuss why magni-
tude covariance based estimation (hereafter referred to as
method II) is much more reliable than scaling magnitude
cumulant analysis (referred to as method I) in the case of
multifractal random walks.

The precise computation of the properties of these estima-
tors is a difficult task so we only aim at obtaining a rough
estimate of the relative performance of each method. In Ref.
[36], it has been shown that a generalized method of mo-
ments relying on the magnitude correlation function provides
an unbiased and consistent estimator of \. Estimators rely-
ing on Eq. (8) have been precisely discussed within the con-
text of atmospheric turbulence in Ref. [19] where the authors
showed that it allowed one, by means of a bootstrap method
called “surrogate analysis,” to estimate \> and distinguish
intermittent from non intermittent time series.

If one denotes by & and &£, the estimation error of \?
associated with, respectively, methods I and II, we show in
the Appendix that

, 2T\* 16T

£ —, 15

'~ N " NinT)? (13)
2T\ 1

=" — 16

N +N(1nT)3 (16)

where N is the overall sample size, T is the integral scale,
and \? is the intermittency coefficient. The two terms in the
r.h.s are the estimation errors associated with, respectively,
Q (u) and the “noise” In(|e(u)|) in Eq. (14). The difference
between the two methods is clearly caused by the presence of
the noise term. As illustrated in Fig. 1(c) where both estima-
tors are computed from a sample of a log-normal multifractal
random measure M [Fig. 1(a)], when one has directly access
to O, (Q(u)=In M([u,u+7])), both estimators (methods T
and II) are roughly equivalent. This is obviously not the case
in the presence of the noise term in Eq. (14), i.e., when one
studies the increments of a MRW process X(¢) [Fig. 1(d)]. It
can be seen in Egs. (15) and (16) that the error associated
with In(g) is greater in the case of method I. The two meth-
ods will have errors of the same magnitude order only when

4=

(In 7)*" (17)

For a typical integral scale value In T=6 (see below) this
gives N2=0.2. Consequently, when \>=0.2, the method re-
lying on the estimated covariance provides better results than
the estimation from the scaling of the variance. Let us define
the ratio between the errors of the two methods as
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FIG. 2. Comparison of the two estimation methods of the inter-
mittency coefficient for a log-normal MRW process (a) Error ratio
r=&;;/&; as a function of \? for T=256 and N=8192. (b) Error ratio
r=E&y/ £ as a function of T for A>=0.03 and N=8192. In (a) and (b)
the errors have been estimated using 2048 Monte Carlo samples.
Symbols (@) represent the observed error ratios while the solid line
stand for the analytical expressions derived from Egs. (15) and (16).
(c) Histograms of estimated values of A using method I (solid line)
and method II (bars) for N>=0.02, T=512, and N=8192. (d) Same
plots as in (c) for A>=0.2.

En

r= g (18)
This expression can be computed as a function of 7 and A2
In Figs. 2(a) and 2(b) we have plotted the value of r as a
function of \? for a fixed value T7=256 and as a function of
T for N>=0.03, respectively. We see that the observed ratio r
is an increasing function of N> and T rather close to the
prediction we get from expressions (15) and (16). For \?
=0.02, a typical value observed in many applications, we
have r=0.1, i.e., method I has an error more than ten times
greater than method II. This is confirmed Fig. 2(c) where we
have reported the histogram of the estimated > with both
methods over 2048 experiments. The histogram obtained
with method II is sharply peaked around the expected value,
while the estimates of method I are spread over a large in-
terval. For greater \?, one sees in Fig. 2(d) that the two
histograms have comparable widths (\?=0.2).

D. Squared logarithmic magnitude covariance as the result
of Lagrangian and Eulerian intermittency

In most fluid mechanics experiments, one usually records
one or several components of the velocity field using an
anemometer, so one has only access to the values of the field
at a fixed spatial position as a function of time. In order to
make inferences on the spatial properties of the velocity, i.e.,
the Eulerian field, one generally invokes the Taylor frozen
hypothesis or, when the turbulence rate is large, the Tenekes
sweeping argument according to which small-scale velocity
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fluctuations are mainly caused by Eulerian variations ad-
vected by large-scale random motions [37]. However, as ex-
plained below, for some functions, single point measure-
ments cannot be linked so easily to their Eulerian
counterpart. Hereafter, we reproduce the argument of Casta-
ing [38,39] in order to understand the shape of the single
point magnitude covariance if one supposes that both Eule-
rian and Lagrangian velocity fluctuations are given by a con-
tinuous cascade as described previously.

Let us denote (x,7) the magnitude at time ¢ and position
x. It is important to notice that Q(x,7) is a local field that
does not depend on any spatial or time scale (for example in
turbulence, )(x,#) can be considered as the logarithm of the
dissipation field or of the velocity increments at a scale
smaller than the Kolmogorov dissipation scale). Our goal is
to compute

cov[Q(x,1),Q(x,1+ Ar)], (19)

as a function of the time lag Ar for a fixed value of x.
If one supposes that both Eulerian and Lagrangian fields
Q) are logarithmic correlated, i.e., well described by a con-
tinuous cascade model, then
=
r+n.)

cov[Qx(1),1),Qx(t + Af),t + Ap)] = u? ln(

cov[Q(x,1), Q0 + r,1)] = N> 1n<

At‘l‘ 7][)’

where Ar and r are time and space lags, 7, and 7, are small-
scale spatial and temporal cutoffs (i.e., the Kolmogorov
scales in turbulence), L and T are spatial and temporal inte-
gral scales and \?, u? are Eulerian and Lagrangian intermit-
tency coefficients.

Let us suppose that the fluid particle at position x at time
t+Ar was at position x” at time 7. Thanks to the above cova-
riance formula, one can write,

Qx,t+ A1) = p, QX' 1) + €, (20)
where ¢ is a random variable independent of Q(x’,7) and
T
s
_ ﬂ (21)
pr= var()) '

But (at least from a statistical point of view) r=|x’—x]|
=VAt, where V is a “typical” velocity (the mean or rms
velocity) so that, if one assumes that L= VT,

Qx',1) = pQx,0) + €, (22)
where €' is a random variable independent of (x,7) and
VT
euf )
B VAt + 7, (23)
p2= var(Q) '

Then, if € and € are uncorrelated, since the correlation
coefficient between Q(x,r) and Q(x,7+Ar) is the product
p1P2, We have
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TABLE 1. Main features of the time series.

PHYSICAL REVIEW E 81, 056308 (2010)

Location Latitude  Longitude Dates Sampling freq. Site

Vignola (Ajaccio) 41°56’N 8°54'E 1998-2003 1 min 50 m, coastal, high hills

Ajaccio 41°55’'N 8°47'E 2002-2006 1h 5 m, coastal, plain, airport

Bastia 42°33'N 9°29'E 2002-2006 1h 10 m, coastal, plain, airport

Calvi 42°31'N 8°47'E 2002-2006 1h 57 m, coastal, hills

Conca 41°44'N 9°20'E 2002-2006 lh 225 m, high hills

Figari 41°30'N 9°06'E 2002-2006 1h 21 m, plain, airport, hills

Renno 42°11’'N 8°48'E 2002-2006 1h 755 m, mountains

Sampolo 41°56'N 9°07'E 2002-2006 lh 850 m, mountains

Eindhoven 51°44'N 5°41'E 1960-1999 1h 20 m, plain

1. J. Muiden 52°46’'N 4°55'E 1956-2001 1h 4 m, coastal, plain

Schiphol 52°33'N 4°74'E 1951-2001 1h —4 m, plain, airport

cov[Q(x,1),Q(x, 1+ Ar)] = var(Q) p; p,» (24) III. RESULTS: INTERMITTENCY IN MESOSCALE WIND
FLUCTUATIONS
and by taking into account the fact that var({))

=u* In(T/ 1)=N* In(L/ 77,) one obtains finally, to the first or-
der, in the limit of lags Ar such that VAr> 7, and Ar> 7,

cov[Q(x,1),Q(x,t + Ar)]

A2 A ( [ * h
- 1n2(—t) 1+0| —2— (25)
T T T
ln<—> At ln(—)
771 L L At 1)
2 At ( [ " h
K 1n2(—> 1+0| —2Z—|l. (26)
ln(i) T At ln<1>
e L L At/ ]

where 7*=max( nI,V‘l_qe).

By representing vcov as a function of In(7), if one ne-
glects the small corrections O(%"/[Af In(T/Ar)]), one ex-
pects a straight line of slope,

(27)

If one knows the “Reynolds numbers” L/ 7, and T/, the
intermittency coefficients can be estimated from the slope r

as,
T
A =r? ln(—) ,
Ui

L
wr=r’ 1n<—> .
e

We see that, by taking into account both Eulerian and
Lagrangian fluctuations on single point measurements, one
should observe a squared logarithm magnitude covariance
instead of the logarithmic behavior of Eq. (12). This peculiar
shape of magnitude covariance has indeed been precisely
observed on laboratory fully developed turbulence data in
Ref. [12].

(28)

(29)

A. Data series

The results reported in the following are based on differ-
ent wind velocity time series. The first data set consists of
horizontal wind speeds and directions that have been re-
corded every minute during 5 years (1998-2002) at our labo-
ratory in Ajaccio-Vignola at a height of 10 m by means of a
cup anemometer. We also study hourly wind speed and di-
rection data (10 min averages) for seven different sites in
Corsica (France). The length of these series is also 5 years.
These data have been measured and collected by the French
Meteorological Service of Climatology (Meteo-France) us-
ing a cup anemometer and wind vane at 10 m above ground
level. Finally, we also consider potential winds from KNMI
HYDRA PROJECT available online [40]: they represent se-
ries of hourly (1 h average), 10 m potential wind speed gath-
ered during several years at various locations in Netherlands.
More specifically we consider the series recorded at three
different sites over a long period of several decades. Table I
summarizes the main characteristics of the studied series.

In the sequel, v(#) will denote the modulus of the velocity
horizontal vector while v,(#) and v(¢) will stand for its two
components along arbitrary orthogonal axes x and y. We
have by definition,

v(1) = Vo, (1) +v,(0)*.
Because there is no well defined constant mean velocity di-
rection with a small turbulent rate, we have chosen to study
v, and v, separately instead of considering meaningless lon-
gitudina[ and transverse components.

The power spectrum analysis is one of the most common
tools for analyzing random functions and is at the heart of a
wide number of studies of wind velocity statistics. Since the
pioneering work of Van Der Hoven [41,42], the shape of a
typical atmospheric wind speed spectrum in the atmospheric
boundary layer is still matter of debate. It is relatively well
admitted that it possesses two regimes separated by low en-
ergy valley called the “spectral gap” located at frequencies
around few minutes. This gap separates the microscale re-
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FIG. 3. Power spectrum density of v, wind components 10 min
rate Vignola series (solid line) and hourly Eindhoven series (dotted
line) in log-log representation. (a) One clearly identifies the peaks
associated with diurnal oscillation superimposed to an overall scal-
ing regime where P(f) ~ f~# with 8= 1.6. This regime roughly ex-
tends from few days to few minutes. (b) Plot of the same spectra
where the estimated additive local seasonal components have been
removed.

gime, where turbulent motions take place, from the mesos-
cale range. In the homogeneous turbulent regime, it is well
known that the spectrum associated with the velocity field
behaves like E(k)~k™ as predicted by Kolmogorov in
1941 [1] (k is the spatial wave number). In the mesoscale
range, for time scales greater than few minutes, the shape of
this spectrum appears to depend on various factors. If some
experiments suggest that a k™>* spectrum can extend up to
synoptic scales [43,44] in the free atmosphere, things are
different in the surface layer [45]. Some authors suggest that
statistics a priori depend on local conditions (orographic,
atmospheric, etc.) and one does not expect the same degree
of universality as in the microscale regime (let us mention
that, as far as turbulence is concerned, it is commonly known
that some quantities such as the mean velocity value or the
turbulent rate are strongly dependent on local conditions).
For example, in Ref. [3], it is shown that the spectrum expo-
nent may depend on the atmospheric stability conditions and
also on the topography.

In Fig. 3 are plotted the power spectrum of the v, com-
ponent of two series: the “high-frequency” (10 min rate) se-
ries of Vignola and the hourly series recorded at Eindhoven.
These two spectra, which do not cover the same energy
range, have been shifted by an arbitrary multiplicative factor
in the y direction in order to have comparable values. Series
associated with the v, component or corresponding to other
sites have similar features. One can see that, up to the mains
peaks associated with diurnal wind oscillations (see below),
these spectra are well described by a power law P(f) ~f# in
a frequency domain which corresponds to time scales from
few minutes to a characteristic time of few days (note that
the low-frequency behavior is much more reliable in the
Eindhoven series since it covers a period close to ten times
longer than the Vignola series). The value of the exponent is
B=1.6 for both sites. Within the framework of self-similar
Gaussian processes [46], the fact that B8>1 for all series
indicates that the signal process v.(z) has continuous paths.
Since at low frequency the spectrum becomes flat, this
means that the process appears regular at small scales and
more “noisy” at larger scales. This feature is illustrated in
Fig. 4 where we have plotted two samples of the component
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FIG. 4. Time fluctuations of the v,(r) component of the Vignola
velocity field (original data). (a) At large time scales, one does not
see any structure; we are in the flat (white noise) regime of the
power spectrum. (b) At a finer time resolution, the series appears as
a superposition of turbulent gusts and a more regular component.

v,(#) of Vignola wind series over two different time intervals.
At very large scale, the signal looks like a highly irregular
“white noise” that corresponds to the power-spectrum low-
frequency flat behavior [Fig. 4(a)] while a zoom over a finer
time interval reveals more regular variations [Fig. 4(b)]. No-
tice that one can also observe a daily oscillating behavior and
high-frequency turbulent gusts superimposed to these regular
random variations.

Since our goal is to study the stationary random compo-
nents of the velocity field, we have preprocessed all time
series in order to remove the additive seasonal components.
In fact the diurnal oscillations S, , are not really periodic but
vary during the year according to the sun position. We have
used a local harmonic parametrization of these components
and computed the parameters by minimizing an exponential
moving average of a quadratic error (see [47,48] for more
details). In order to study the fluctuations in these deseason-
alized series and an eventual intermittency, we can compute,
as in the turbulence literature, its increments. Notice that one
can alternatively study velocity component wavelet coeffi-
cients or, if one wants to account for the low-frequency be-
havior, the error in the one step forward prediction of a
Langevin like modeling of v,(7) and v,(7) [48],

Uy (t+ 1) =8, 1+ 1) + (1= Y)[v, () =S, (D] +w, (1),
(30)

where the friction coefficient 7y is estimated to be vy
=1 day™', S, () stands for the seasonal additive component
of the wind velocity, and w, (t) is the error (noise) term.
Whatever is the precise definition used to compute the local
fluctuations, the results presented in the next section remain
unchanged.

B. Evidences for a mesoscale cascade

As recalled in the Introduction, unlike inertial subrange
turbulence, few papers have been devoted to the study of
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FIG. 5. Semilogarithmic representation of standardized velocity
increment pdf at various scales. From top to bottom one goes from
small to coarse time scales. All graphs have been vertically shifted
for the sake of clarity. (a) Logarithm of the pdf of the deseasonal-
ized wind velocity increments Sv, for the Eindhoven wind series.
Time scales 7 go from 1 h to 5 days. (b) Same plots as in (a) but for
the increments of the longitudinal velocity field d,v; in a high Rey-
nolds number turbulence experiment (see text). Scales 7 extend
from the Kolmogorov scale to the integral scale.

scaling properties of atmospheric fields from moderate to
large scales. In Ref. [4], the authors found that cloud satellite
data display multiscaling over the range 1-5X 10° km and
suggest the existence of a (anisotropic) cascade process from
planetary scales down to the microscales. As far as scaling
properties of surface-layer wind speed are concerned, some
studies focus on (multi)scaling properties. In Ref. [7], the
authors used detrented fluctuation analysis on various hourly
averaged wind series and provided evidences of a crossover
between two scaling regimes separating mesoscale range
from very-large-scale range. The scale of the crossover was
found to be T=35 days and the author conjectured the pos-
sibility of the existence of multiscaling for scales below this
scale. In that case the scale 7" could be identified to some
integral (injection) scale. In Refs. [3,49], Lauren et al. per-
formed an analysis and a modeling of atmospheric wind in
both mesoscale and microscale (turbulent) regimes. They
showed that the concepts of multiscaling and cascades are
also pertinent for characterizing and simulating low-wave
numbers properties of surface-layer winds.

Although the above mentioned studies provide hints for
the existence of intermittency in wind fluctuations at large
scales, as explained in Sec. II, because of diurnal oscilla-
tions, discreteness of the data, limited size of the scaling
range, and for purely statistical considerations, the reported
estimations of (multi)scaling properties of mesoscale wind
data are far from being reliable. A more direct and convinc-
ing illustration of the intermittent nature of mesoscale wind
variations is provided in Fig. 5(a) where we have plotted the
normalized pdf of the increments of (deseasonalized) wind
components v, of the Eindhoven site in logarhitmic scale.
One sees that increment distributions go from “stretched ex-
ponential” like functions (with large tails) to Gaussian-like
behavior (parabola) when going from 1 h to few days time
scales. This behavior is very similar to the features observed
in fully developed turbulence laboratory experiments. In Fig.
5(b), for comparison purpose, we have plotted in the same
logarithmic scale the standardized pdf of longitudinal veloc-
ity increments computed from experimental data obtained by
Chabaud and Castaing in a low-temperature gaseous helium
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jet experiment [50] (the Taylor scale based Reynolds number
is Ry =929). As the scale 7 varies from the dissipation to the
integral scale, one observes the same deformation of the pdf
from large tailed shape to Gaussian-like shape. As explained
is Sec. IT A [Eq. (10)], such a variation of the pdf behavior
across scales is usually associated with the existence of an
intermittent cascade. Let us notice that the smallest time
scales we considered correspond to scales greater than or
equal to the “injection” largest scale of atmospheric bound-
ary layer turbulence. Consequently, according to our obser-
vations, velocity increment statistics at large (atmospheric
surface-layer) turbulent scales are characterized by a strong
kurtosis. This contrasts with the situation in laboratory ex-
periments where the distribution are nearly Gaussian at large
scales [as illustrated by the bottom graph in Fig. 5(b)]. Simi-
lar observations have been performed in [8,9]. In [8], the
authors interpret the intermittency of large-scale atmospheric
turbulence by the fluctuations of the turbulence intensity at
this scale. The velocity mean is no longer constant but sto-
chastic. Similar observations on the vorticity field have been
made in [9]. In the following, we suggest that these fluctua-
tions of turbulence intensity can be interpreted as the result
of a cascading process starting at a larger time scale.

As advocated in Sec. II C, the best way to reveal the
presence of an underlying random cascade and to estimate
the intermittency coefficient is to study the magnitude corre-
lations functions associated with velocity small-scale varia-
tions. If one writes Eq. (14) for the small-scale increments
of, respectively, v, and v, (where the seasonal components
have been removed) one can define two magnitude processes
and two processes (), and ()

w, 1) =In(|80,(0)]) = Q, (1) + In(le,(1)

),

, (1) = In(|8p,(1)]) = Q, (1) + In(|)]).

If one assumes that the noises €, and €, are independent
Gaussian white noises, then thanks to the fact that
var[In(|€])]=1.23, one can compute the correlation coeffi-
cient of (), and (), from the correlation of w, and w,. The
obtained results for all data series are summarized in Table
II. One clearly sees that the correlation coefficient of magni-
tude processes is for all series close to 20% while the esti-
mated coefficients for the ) components are close to 1.2 This
result strongly suggests that the processes (), and (), are
identical and therefore () is a scalar quantity. One thus has
(up to season components)

S, (1) = e e (1),

Sv,(t) = eQT(’)ey(t).

The scalar ¢®” is simply the (stochastic) amplitude of ve-
locity fluctuation vector at scale 7.

’Notice that estimated coefficients greater than 1 are probably due
to our hypothesis concerning the normality of &, ,; such an assump-
tion can only be a rough approximation for some series because of
finite-size and granularity effects.
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TABLE II. Correlation coefficients of magnitude components
for the different sites.

Location w correlations Q) correlations
Vignola (Ajaccio) 0.19 1.16
Ajaccio 0.22 1.31
Bastia 0.20 1.10
Calvi 0.14 1.10
Conca 0.22 1.07
Figari 0.17 1.32
Renno 0.21 0.71
Sampolo 0.11 0.68
Eindhoven 0.22 1.01
1. J. Muiden 0.22 0.99
Schiphol 0.21 0.98

According to these findings, in the following we compute
a surrogate of the scalar process ()(z) as follows:

)= S0 50,7 + 5,(), G1)

which is less noisy than individual magnitudes w, or w,. Let
us notice, as already mentioned, that if one replaces in pre-
vious analysis dv, , with the error term in a Langevin model
of v, as in Eq. (30) or by small-scale wavelet coefficients,
all the results remain unchanged [48]. Since the results pre-
sented below do not depend on the chosen small scale 7 (we
focus on properties involving mainly lags greater than 7), we
omit any reference to this scale and denote w(r) the local
“magnitude” estimated at small scale according to Eq. (31).
The process w(z) also possesses a seasonal component
which means that seasonal effects manifest not only through
an additive (locally) periodic component but also through a
diurnal modulation of the velocity stochastic amplitude. This
multiplicative seasonal component has been estimated using
the same local least-squared method as for the additive com-
ponents [48]. In the following, we assume that all seasonal
effects have been removed from the estimated field w(z).
Along the line of the method described in Sec. II C, we
have estimated the magnitude w(f) correlation functions
p(Ar)=cov[w(r), w(t+Ar)] for all the time series. As illus-
trated in Fig. 6, when one plots p'>(Af) as a function of
In(Ar) one observes, for all series, a decreasing linear func-
tion that becomes zero above some lag T (notice that, be-
cause of the arbitrary shift we made for presentation purpose
in Fig. 6, the zero value of correlations corresponds, for each
graph, to the value of the plateau observed at large lags). It is
striking to observe that all slopes are close to each other and
that the “correlation” scale (integral scale) is roughly the
same for all sites. In order to handle less noisy curves, we
have plotted in Fig. 7(b), within the same representation, the
mean correlation function over all sites in Corsica, over all
sites in Netherlands and for the high-frequency series at Vi-
gnola [in Fig. 7(a) the same graphs are displayed using a
linear representation]. Up the some remaining bump around
the lag of 1 day due to the nonperfect removing of the sea-
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FIG. 6. Square root of magnitude covariance functions esti-
mated for all wind series (additive and multiplicative seasonal com-
ponents have been removed). The three bottom graphs correspond
to Netherlands hourly series while the top graph is correlation of
magnitudes associated with the “high-frequency” Vignola data se-
ries. All the graphs have been arbitrary shifted vertically for clarity
purpose. One can observe comparable values of the parameters 8
and T (see text).

sonal components, one observes a well defined linear depen-
dence on a range [In(7),In(7)]. This means that for all wind
series, the covariance of w(f) reads (Ar>7)

T
Ar) = ln2<—).

p(Ar) = A
In Sec. II D, we have explained how such a square logarith-
mic dependence of the single point covariance can be the
result of logarithmic-correlated Eulerian and Lagrangian
fields. This feature has also been observed on various labo-
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FIG. 7. Mean magnitude correlation functions associated with
wind series in Corsica (O) and Netherlands (@) (all seasonalities
have been removed). The solid line represents the magnitude cova-
riance of the Vignola series (10 min rate). (a) The graphs are in
linear scales. (b) The square root of the covariances are represented
as function of the logarithm of the time lag Ar.
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ratory turbulence data [12,38]. These observations are there-
fore direct evidences that a random cascade mechanism can
be involved in the energy transfer at scales much greater than
the usual turbulent microscale. Let us remark that the value
of the integral scale we found is 7=35 days in Holland and
Corsica and the value of the slope 8=0.07. In order to de-
duce Eulerian (or Lagrangian) value of the intermittency co-
efficients, one would need to know the value of 7—T7, where 7 is
a small time scale cutoff above, which Lagrangian variations
are no longer intermittent. For example, if one sets T
=35 days and one chooses 7 to be a typical time scale sepa-
rating microscale and mesoscale, i.e., =10 min, according
to Eq. (28) one gets an Eulerian intermittency coefficient
N=0.03, ie., very close to the value found for fully devel-
oped turbulence (see, e.g., [12,19,20]).

IV. CONCLUSION AND PROSPECTS

The goal of this paper was to provide evidences that the
surface-layer wind fluctuation statistics in the mesoscale to
large-scale range are, very much like microscale turbulent
statistics, characterized by strongly intermittent properties.
We have first reviewed how the intermittency of continuous
random cascades can be advantageously studied using mag-
nitude correlation analysis as compared to standard scaling
or magnitude cumulant estimations. Within this framework
and using various wind velocity and direction time series in
Corsica (France) and Netherlands, we have shown that one
can define a scalar magnitude field that displays universal
squared logarithmic correlation functions. Such a peculiar
shape of time correlation functions at a fixed position is
shown to result from a continuous cascade (with logarithmic-
correlated magnitude) that governs the fluctuations in both
Eulerian and Lagrangian frames. The same behavior has
been observed in laboratory turbulence experiments. The ex-
istence of some mesoscale “energy cascade” and other simi-
larities with the 3D isotropic turbulence properties raises
various fundamental questions. Unlike synoptic circulations,
mesoscale motions can be associated with a wide variety of
phenomena covering a large range of characteristic scales
from thunderstorms, mountain waves to front dynamics. In
that respect, the universal features discussed in this paper
have to be confirmed using further experimental data. Let us
note however that a characteristic time scale of few days is
usually associated with front dynamics [2] and some compa-
rable typical time scales have been already reported in the
literature [5,7]. From a practical point of view our findings
lead to a better characterization of the statistical properties of
wind fluctuations. The framework of intermittent statistics
and random cascade models can be applied to address prob-
lems related to wind resources assessing, extreme events
characterization or to design a simple stochastic model in
order to perform short-term wind predictions [48,51].
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APPENDIX: ERRORS IN INTERMITTENCY
COEFFICIENT ESTIMATION

In this appendix, we provide some auxiliary computations
related to the discussion on errors in the estimates of \? of
Sec. I C. The estimation relies upon Eq. (14) and one can
either performs a regression of the variance of w, as a func-
tion of In(7) according to Eq. (8) (method I) or, according to
Eq. (12), a fit of the estimated covariance of w, (at fixed 7) as
a function of the logarithm of the lag (method II) Let £ and
5 be the square estimation errors of N> when using, respec-
tlvely, methods I and II. We will denote by &; 1q (respectively,

&} ) the square error associated with the 0, term in Eq. (14)
with method T (respectively, method II) and by 5 . (respec-
tively, & 11.e) the square error related to the noise term In(|e])
with method T (respectively, method IT). We have, obviously,

E=£+&. (A1)

Each error is related to the estimation of the slope of a
linear regression of V, as a function of [;, where V; can be,
according to method I or II, the variance or covariance of w,
and / is the logarithm of scale 7 or the logarithm of the lag.
C0n51stently w1th previous notations, e,Q and e,F (respec-
tively, e,, q and e,, ) stand for the square errors in the deter-
mination of V,’s with method I (respectively, method II) as-
sociated with first and second terms in Eq. (14). If one
assumes that these errors do not depend on k (this assump-
tion is not true but one can consider the maximum error
value over all V, in order to get an upper bound of the final
error) and if one denotes by N, the number of points used in
the fit and by D, the mean-square variation of /;’s, we have
(whatever are the subscripts)

&= (A2)

ND;
For the sake of simplicity and since we only want a rough
estimation of the errors, we suppose that, in both methods,
the fit is performed over a domain of order of the integral
scale T, so that D,~(In 7)>. We also choose uniformly
sampled [, values, i.e., Ny~In T. The former linear regres-
sion error becomes

2
0 e

= m (A3)

It then remains to compute the error terms e%,, associated
with the estimation of V,’s. Since (), is a Gaussian process
with a slowly decaying covariance, the estimation error of
the variance or the covariance of (). is of the same magni-
tude order (i.e., e, 0= e” o) and is proportional to mean
square deviation of Q2 [~\*(In 7)2] divided by the number
of independent samples in the signal. If N is the overall
sample size, for a correlated process of correlation function
p(i), the effective number of independent data is [52]
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-1

N
N'= N“+%E (N=i)p(0) (A4)
N i=1

Since, for the process Q, p(i)=In(T7/i) if i=T [p(i)=0, oth-
erwise] it turns out after a little algebra that for N>T> 1, we
have

» N
Nf=——, (AS)
2TIn T

which leads finally to

2T\ In(T)?
2 2

€ro= e~ N (A6)

The value of ei depends on the method one considers. In

method 1, this error is related to the variance of [In(|e|)]* at

the scale 7=T which is roughly
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2 T var[In(|e])?]  16.5T
bre ™ N N

(A7)

while the error according to method II only involves the
scale 7=1 and, since € is a white noise, is proportional to the
variance of In(|gl),

o valln(e)] 12

=~ A8
€lle N N (A8)

If one summarizes our findings, we see that the estimation
error of method I is

, 2T\* 16.5T
&= + 3, (A9)
N N(nT
while the error associated with method II is
2T\ 1.2
&= f ——— A10
TN " NInT)> (A10)
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