
Resonance of flexible flapping wings at low Reynolds number
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Using three-dimensional computer simulations, we examine hovering aerodynamics of flexible planar wings
oscillating at resonance. We model flexible wings as tilted elastic plates whose sinusoidal plunging motion is
imposed at the plate root. Our simulations reveal that large-amplitude resonance oscillations of elastic wings
drastically enhance aerodynamic lift and efficiency of low-Reynolds-number plunging. Driven by a simple
sinusoidal stroke, flexible wings at resonance generate a hovering force comparable to that of small insects that
employ a very efficient but much more complicated stroke kinematics. Our results indicate the feasibility of
using flexible wings driven by a simple harmonic stroke for designing efficient microscale flying machines.
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Recent rapid developments in microscale fabrication have
stimulated researchers to examine the idea of designing mi-
croscale air vehicles �MAVs� that replicate flapping flight of
winged insects �1–6�. To stay aloft insects generate unsteady
vorticial flows �4,7–10� by flapping their extremely light,
flexible wings that account for only a few percent of insect
body mass �11�. Although remarkably efficient, flapping
techniques used by winged insects are rather sophisticated
and typically involve a combination of pitching and plunging
motions �12�. Thus, the design of flapping MAVs that exactly
mimic an insectlike stroke kinematics is a challenging task.

For MAV applications, it might be advantageous to design
and employ wings with a simple kinematic pattern, such as a
sinusoidal plunging motion. While this stroke can be more
readily implemented practically, pure sinusoidal oscillations
are relatively inefficient in generating lift with rigid wings.
Herein, we examine how wing flexibility can be harnessed to
improve the aerodynamic performance of flapping wings
driven by a simple harmonic stroke. Whereas the effect of
wing flexibility on flapping aerodynamics still remains un-
clear �13–16�, it is known that certain insects employ their
flexible wings at resonance �17�. This indicates that reso-
nance regimes might improve wing performance and, there-
fore, could be useful for designing flapping MAVs �18–20�.

We use fully coupled three-dimensional simulations to ex-
amine the low-Reynolds-number hovering aerodynamics of
flexible wings oscillating at resonance. In these studies, we
do not consider a complex insectlike stroke but rather focus
on elastic wings driven by sinusoidal oscillations and probe
how wing resonance affects aerodynamic forces at hovering.
Our studies reveal that plunging wings at resonance can gen-
erate lift comparable to that of winged insects, thereby, indi-
cating the feasibility of using flexible wings with simple
stroke kinematics for designing efficient flapping MAVs.

In our simulations, we model flexible wings as flat rect-
angular plates plunged vertically according to a sinusoidal
law. When wings are positioned normally to the oscillation
plane, the symmetrical oscillations do not create a steady lift
force. However, when the wings are tilted at an angle � from
the horizontal �Fig. 1�a��, the flow symmetry is broken and

the wings generate lift. We show below that the proper
choice of the wing’s mechanical properties and tilt allows the
design of plunging wings that effectively operate at a low
Reynolds number Re=100.

To capture the dynamic interactions between elastic, flap-
ping wings and a viscous fluid we employ a hybrid compu-
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FIG. 1. �Color online� �a� Schematic of oscillating wings. The
dashed line indicates the wing located beyond the symmetry plane.
�b� Lift coefficient CL and �c� flapping efficiency � versus dimen-
sionless frequency � for elastic wings with different values of the
added mass parameter T. The wing tilt angle is �=40° and Re
=100. The vertical dashed lines in �b� and �c� show frequencies
�CLmax

�0.95 and ��max
�1.25, respectively. The inset in �b� shows

the maximum wing-tip deflection �max as a function of �.
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tational approach �21–26�, which integrates the lattice Bolt-
zmann model �LBM� for the dynamics of incompressible
viscous fluids and the lattice spring model �LSM� for the
mechanics of elastic solids. The two models are coupled
through appropriate boundary conditions at the movable
solid-fluid interface �25,27�.

Briefly, the LBM is a lattice method that is based on the
time integration of a discretized Boltzmann equation for par-
ticle distribution functions �28�. In three dimensions, LBM is
characterized by a set of 19 distribution functions, f i�r , t�,
describing the mass density of fluid particles at a lattice node
r and time t propagating in the direction i with a constant
velocity ci. The hydrodynamic quantities are calculated as
moments of the distribution function, i.e., the density
�=�i f i, the momentum j=�ici f i, and the momentum flux
�=�icici f i.

Our computational domain has dimensions 4L�6L�6L
in the x, y, and z directions, respectively �Fig. 1�a��. Here, L
is the wing length. We use grid refinement to capture the
salient features of the flow near the oscillating wing. The fine
grid is localized near the wing and has dimensions 2L�3L
�3L and lattice spacing 	xLB=1 �29�. The coarse grid fills
the rest of the computational domain with lattice spacing
	xLBc=2 and is coupled with the fine grid using the volumet-
ric formulation �30�.

The elastic wings are modeled via the LSM that repre-
sents the solid material as a network of harmonic springs
connecting lattice nodes. Since the thickness of the wing is
much smaller than its other dimensions, we use a two-
dimensional triangular lattice with stretching and bending
springs characterized by spring constants ks and kb, respec-
tively. The stretching springs connect neighboring nodes and
give rise to in-plane stiffness, whereas the bending springs
incorporate the interactions between consecutive pairs of
nodes and account for the wing’s bending rigidity. With this
spring arrangement, the solid material is characterized by the
Poisson’s ratio 
=1 /3 and the bending modulus EI
= 3�3

4 kbc�1−
2�, where E is the Young’s modulus and I
=cb3 /12 is the moment of inertia with c and b being the
chord and thickness of the rectangular wing, respectively. In
our simulations, we vary kb to modify the wing bending
properties.

We use the velocity Verlet algorithm to integrate New-
ton’s equation of motion for the lattice nodes, F�ri�
=m�d2ri /dt2�, where F is the total force acting on the node
with mass m=

�3
2 �sb	xLS

2 at position ri. Here, �s is the solid
density and 	xLS is the lattice spacing. The total force in-
cludes the force due to the interconnecting springs and the
force exerted by the fluid at the solid-fluid interface
�23,25,31�.

The flexible wing is formed from 23�11 LSM nodes
with 	xLS=2.325, yielding the wing sizes L=50 and c
=0.4L �Fig. 1�a��. Two rows of nodes are placed beyond the
symmetry boundary at x=0 and serve to impose the wing
vertical oscillations with an amplitude a=0.2L. At the rest of
the outer boundaries, we apply the no-flow condition. Thus,
we effectively model a pair of simultaneously oscillating
wings with a symmetry plane at x=0. We set the flapping
frequency f such that wing oscillations yield a Reynolds

number Re=2�fac /
 equal to 100. For the fluid properties,
we set the density �=1 and the kinematic viscosity 
=2.5
�10−3.

We have previously validated our model in the limit of
Re�1 �23,25,31� and showed that the coupled model is of
second-order accuracy in the spatial resolution �25�. Here,
we further tested the model by simulating three-dimensional
flows around rectangular wings at Re=100. When compared
with the experimental data, we found good agreement with
respect to drag and lift coefficients with errors less than 5%
�32�. We also calculated the drag coefficient on a plate oscil-
lating at low Re ranging from 100 to 750. These results were
found in excellent agreement with previously reported ex-
periments �33,34�. To assess the grid quality, we applied fine
grid for the entire computational domain and doubled the
domain size. In both these tests, the difference in the drag
and lift coefficients between the simulations did not exceed
3%. We also verified that the LSM grid is sufficiently accu-
rate to capture the dynamic deformations of the elastic wing.

The wing dynamic response to aerodynamic loads is de-
fined by the wing geometry and material properties. In addi-
tion to Re, we characterize the flexural oscillations of the
elastic wing in terms of the dimensionless frequency
�= f / f fluid,1 and the parameter T=�c /�sb that indicates the
ratio between added and apparent masses. Here, f fluid,1 is the
fundamental resonance frequency in viscous fluid, which is
found from the linear theory of small amplitude oscillations
of high-aspect-ratio elastic beams, i.e., a�c�L �35�. Note
that f fluid,1 is a function of Re, T, and EI �35�.

We characterize the wing performance by the lift coeffi-

cient CL=2F̄y /cLU0
2 and the wing efficiency �=CL /Cp,

where Cp=2P /cLU0
3 is the power coefficient. Here, F̄y is the

vertical component of a period-averaged hydrodynamic force
on the oscillating wing, P is the power required for flapping
the wing during one period, and U0=2�af is the character-
istic velocity of wing oscillations.

In Fig. 1�b�, we plot the lift coefficient CL as a function of
the dimensionless frequency � for wings tilted at �=40° and
different added mass parameters T. When tilted elastic wings
oscillate at frequencies within the resonance band, the bend-
ing amplitude increases �see inset in Fig. 1�b��. This may
enhance the lift generation. Indeed, the lift coefficient in-
creases significantly at resonance and reaches the maximum
at �CL max

�0.95 for all T. It is rather surprising that a linear
theory can be used for predicting the frequency of the maxi-
mum lift coefficient CL max; in our simulations a=0.5c and
c=0.4L, which are clearly beyond the limits of applicability
of the theoretical model �35�. It is also noteworthy that
�CL max

does not coincide with the frequency of the maximum
wing-tip deflection.

We found that CL max is greater for wings with smaller T
for which the effect of wing inertia is more pronounced.
However, even for the lightest wings considered in our stud-
ies, for which the maximum tip deflections �max is about a
�see inset in Fig. 1�b��, the maximum lift force is about 100
times greater than the lift force produced by tilted rigid
wings with identical geometry driven by a sinusoidal stroke
with amplitude a, in which case CL max�0.02. This result
indicates that the wing elastic deformations are critical for
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enhancing aerodynamic lift at resonance. We conclude that
resonance oscillations are preferable for producing aerody-
namic lift using wings driven by a simple harmonic stroke.

Not only lift but also the aerodynamic efficiency of flap-
ping wings is greatly enhanced at resonance frequencies
�Fig. 1�c��. We found that the maximum efficiency �max in-
creases with increasing T and almost doubles when T
changes from 4/30 to 4/3. This is in contrast to CL max which
decreases with increasing T �Fig. 1�b��. For all T considered
in our simulations, we found that �max takes place at ��max
�1.25 and, therefore, ��max

/�CL max
�1.3. Thus, by changing

the oscillation frequency between �CL max
and ��max

, the wing
performance can be tuned to the regimes leading to the maxi-
mum lift and efficiency, respectively. Furthermore, we found
that �max of flexible wings significantly exceeds the maxi-
mum efficiency of otherwise identical rigid wings equal to
0.01.

To gain insight into the wing aerodynamics at �CL max
and

��max
, we present in Fig. 2 a series of snapshots illustrating

wing elastic deformations and emerging vorticial flows �36�.
For �=�CL max

�Fig. 2�a��, the flexible wing induces two ba-
sic vortices along the opposite wing edges. In this regime,
the wing tip oscillates with a phase lag of � /2 relative to the
root �see Fig. 3�a��. When wing moves downwards, the com-
bination of the inertial forces and fluid drag bends the wing
up such that its surface is roughly normal to the direction of
motion �see Fig. 2�a� for tf =0 and Fig. 2�c��. This enhances
aerodynamic forces experienced by the flexible wing during
downstroke. During the upward stroke, the wing bends to-

ward the vertical axis and slides over the vortices created
during downstroke �see Fig. 2�a� for tf =2 /4�, thus reducing
the aerodynamic resistance. The asymmetry between the
downstroke and upstroke gives rise to the net lift generated
by the wing. The driving amplitude a while not affecting the
resonance frequency sets the magnitude of the relative dis-
placement of the deformed wing during the downstroke and
upstroke and, in this way, controls the magnitude of the net
lift force.

Figures 2�b� and 2�d� show an elastic wing oscillating at
�=��max

. In this regime, the wing tip and root move with a
phase shift of � relative to each other �Fig. 3�a��. As a result
of this out-of-phase motion, the wing does not exhibit a sig-
nificant displacement at L /2 but rather “rotates” around this
nodal line separating the inner and outer wing sections that
effectively oscillate in counterphase �Fig. 2�d��. That is when
the inner section moves downwards, the outer section moves
upwards and vice versa. The out-of-phase oscillations gener-
ate two separated pairs of vortices with opposite rotations,
which are located along the edges of the two wing sections
�see Fig. 2�b� for tf =0 and 2/4� and evolve in time in a
fashion similar to that of vortices at �=�CL max

.
The frequency change between �CL max

and ��max
not only

affects the phase of wing tip oscillations �Fig. 3�a�� but also
alters the instantaneous aerodynamic forces experienced by
the wing. In Fig. 3�b�, we show the time evolution of hori-
zontal Fx and vertical Fy components of the aerodynamic
force. At frequency �CL max

, both the horizontal and vertical
forces exhibit similar profiles with a phase shift of � relative
to each other. A nonzero period-averaged Fy gives rise to the
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FIG. 2. �Color online� Snapshots in panels �a� and �b� illustrate
the elastic deformations and vorticial flows arising around flexible
wings oscillating at �CLmax

and ��max
, respectively. Color surfaces

�dark gray� indicate the isovorticial surfaces with the vorticity mag-
nitude 
=8f in �a� and 
=2f in �b�. The dashed contours in �a� and
�b� show the initial position of an undeformed wing. Panels �c� and
�d� show wing profiles for, respectively, �CLmax

and ��max
. The pro-

files for downstroke are shown by the solid green lines, whereas the
upstroke profiles are shown by the dashed blue lines. The wing
parameters are �=40°, T=2 /15, and Re=100.
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FIG. 3. �Color online� �a� Wing-tip deflection and �b� aerody-
namic forces during one period of wing oscillations. The triangle
and circle symbols are for �=�CLmax

and �=��max
, respectively. In

�a�, the dashed line indicates the wing root position. In �b�, the solid
and dashed lines show, respectively, the vertical and horizontal
components of aerodynamic force on the oscillating flexible wing.
The wing parameters are �=40°, T=2 /15, and Re=100.
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lift force F̄y, whereas the period-averaged horizontal force F̄x
creates side flows that transport the vortices away from the
wing �see Fig. 2�a� for tf =1 /4�.

At �=��max
, the vertical force Fy is directed upward for

the entire oscillation period and its fluctuations are relatively
small �Fig. 3�b��. This behavior is a consequence of the
paired vorticial structure emerging at ��max

that distributes
the aerodynamic load more uniformly between the inner and
outer wing sections. Compared to �CL max

, fluctuations of Fy

at ��max
decrease from 5.2 to 2.6 relative to the average

value. Furthermore, F̄x is practically nil in this regime, and
thus, the wing produces relatively weak flows normal to the
oscillation plane. The later seems to contribute to overall
greater efficiency at ��max

where the vortices stay localized
near the flapping wing.

When it comes to designing MAVs, an important param-
eter is the ratio between the lift generated by a wing and the
wing’s weight L /W. This ratio indicates the amount of load
that could be carried by a winged flyer. For insects, this ratio
is typically greater than 20 �11�. In Fig. 4, we plot L /W as a
function of T for 5 mm wings with different tilt angle �,
oscillating in the air with a frequency of f �125 Hz. We set
the wing elasticity such that �=�CL max

. We found that L /W
is maximum at �=40°, which is also the optimum angle for
lift generation. More importantly, L /W significantly exceeds
unity and, for larger T, approaches the values typical for
insects. In other words, plunging elastic wings at resonance
can lift loads many times heavier than their own weight.
There are, however, limitations to the practical values of T
imposed by the mechanical properties of materials. Typical
polymer density is about �s�1000�, in which case a wing

with rectangular cross-section and T=1 yields the thickness
b�2 �m and the bending rigidity EI�10−10 N m2, leading
to the modulus E�75 GPa. These parameters are still in the
range of experimentally realistic values �37�; however the
use of wings with larger T may require the development of
new materials with enhanced modulus �38�.

In summary, we used three-dimensional computational
modeling to examine the hovering aerodynamics of flexible
plunging wings at Re=100. Our simulations revealed that at
resonance tilted elastic wings driven by a simple harmonic
stroke generate lift comparable to that of small insects that
employ a significantly more complex stroke �4,11,12,39�.
Such simple oscillations can be more readily adapted for
designing flapping MAVs. Furthermore, we showed that just
by changing wing elasticity, the lift force can be increased by
two orders of magnitude indicating the drastic effect that
elasticity may play in flapping flight. We found that elastic
wings at resonance yield a high lift-to-weight ratio and effi-
ciency. We identified two oscillation regimes leading to dif-
ferent wing bending modes that maximize the lift and effi-
ciency, respectively. These two regimes take place at
frequencies that differ by approximately 30%. Therefore,
they can be dynamically changed by altering the flapping
frequency. This could be useful for regulating the flight of
flapping-wing MAVs since high lift is typically needed only
during takeoff, while the improved aerodynamic efficiency is
essential for a long-distance cruise flight.

Finally we note that in the present studies, we focused on
the hovering flight with flexible wings at resonance. To em-
ploy the resonance flapping in practical MAV applications it
will be necessary to examine how this approach can be
adapted for thrust generation in forward flight and how the
resonant wings behave and can be effectively controlled in
different flow conditions including unsteady gusty environ-
ments. With respect to the former, a thrust force can be gen-
erated by using flapping wings with a nonzero angle of inci-
dence. Furthermore, here we examined flexible wings with a
fixed aspect ratio and uniform mechanical properties. Al-
though these simple wings could be more readily manufac-
tured, the use of wings with an optimized geometry, nonuni-
form structural and anisotropic mechanical properties, and
asymmetric stroke kinematic may further enhance the reso-
nance performance of flapping wings. These studies are cur-
rently underway.

This work was supported in part by the NSF through
TeraGrid computational resources.
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