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The paper presents the analytic study of energy exchange in a system of coupled nonlinear oscillators subject
to superharmonic resonance. The attention is given to complete irreversible energy transfer that occurs in a
system with definite initial conditions corresponding to a so-called limiting phase trajectory �LPT�. We show
that the energy imparted in the system is partitioned among the principal and superharmonic modes but energy
exchange can be due to superharmonic oscillations. Using the LPT concept, we construct approximate analytic
solutions describing intense irreversible energy transfer in a harmonically excited Duffing oscillator and a
system of two nonlinearly coupled oscillators. Numerical simulations confirm the accuracy of the analytic
approximations.
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I. INTRODUCTION

In this paper, we study irreversible energy transfer arising
due to superharmonic resonance in a system of weakly
coupled nonlinear oscillators. Over the last decades, energy
transfer in both conservative and dissipative systems has
been a subject of growing interest in different fields of non-
linear dynamics. The theory has been developed to describe
energy transfer in multibody systems �1–3�, wave dynamics,
primarily in fluids and plasmas �4–6�, among other novel
applications such as semiconductors �7–9�.

Although most of the analytic and numerical results relate
to energy transfer under the conditions of resonance 1:1, the
superharmonic resonance can also play a significant role in
the occurrence of energy exchange �4�. However, the prob-
lem seemed too complex to obtain an analytical solution and
clarify the mechanism of the superharmonic energy transfer.
The purpose of this paper is to give an analytic description of
complete irreversible energy transfer in a system of coupled
oscillators under the condition of superharmonic resonance.

The approach developed in this paper is based on the
concept of limiting phase trajectories �LPTs� introduced in
�10�. The LPT is defined as a trajectory corresponding to
oscillations with the most intensive energy exchange be-
tween weakly coupled oscillators or an oscillator and a
source of energy; the transition from energy exchange to
energy localization at one of the oscillators is associated with
the disappearance of the LPT. Recently, the LPT ideas have
been used in the analysis of 1:1 resonance in single-degree-
of-freedom �1DOF� �11–13� and two-degree-of-freedom
�2DOF� �13� systems. This paper extends the LPT concept to
the analysis of irreversible energy exchange under condition
of superharmonic resonance.

The paper is organized as follows. The first part �Secs.
I–IV� is concerned with the analysis of a harmonically ex-
cited Duffing oscillator. We construct the LPT �Sec. II� and
obtain the relationships between the parameters guaranteeing

the occurrence of strongly nonlinear oscillations of large am-
plitude in the nondissipative oscillator �Sec. III A�. In Sec.
III B we derive an explicit asymptotic representation of the
LPT. An asymptotic approach to solving a dissipative system
is developed in Sec. IV. In the remainder of the paper �Sec.
V�, we analyze superharmonic energy transfer in a 2DOF
system, in which the initial impulse stands for an external
excitation. We examine beating oscillations of an undamped
system and consider transformations of beating to decaying
oscillations in a system with dissipation.

II. EQUATIONS OF MOTION

The dimensionless equations of the system and the initial
conditions are taken in the form

d2y

d�0
2 + 2��

dy

d�0
+ y + 8��y3 = 2F sin�1

3
+ �s��0,

�0 = 0, y = 0;
dy

d�0
= 0, �2.1�

where �, �, F, and s are positive parameters and ��0 is a
small parameter of the system. We recall that a maximum
possible energy pumping from the source of excitation into
the oscillator occurs if the oscillator is initially at rest. An
orbit, satisfying the zero initial conditions is said to be a
limiting phase trajectory �10�.

For our purposes, it is convenient to separate the har-
monic components in the solution. We present the solution of
Eq. �2.1� in the form

y = y0 + u , �2.2�

in which y0 is a leading-order partial solution of the linear
equation

d2y0

d�0
2 + y0 = 2F sin ���0,

y0 = � sin ���0, � = 9F/4, �� = 1
3 + �s . �2.3�*a.kovaleva@ru.net
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From Eqs. �2.1�–�2.3�, we obtain

du

d�0
− v = 0,

dv
d�0

+ u + 2��
du

d�0
+ 8���u + y0�3 = 0,

�0 = 0, u = 0; v = − �/3. �2.4�

In Eq. �2.4�, the principal harmonics of frequency 1/3 is of
O���; this implies that a generating solution of Eq. �2.4�
includes only superharmonic components of frequency 1.

We analyze the nonstationary dynamics of Eq. �2.4� in
terms of the complex-conjugate variables � and �� �14�

� = v + iu, �� = v − iu; u = −
i

2
�� − ���, v =

1

2
�� + ��� .

�2.5�

Multiplying the first equation in Eq. �2.4� by i and adding to
the second equation, we obtain the following �still exact�
equation:

d�

d�0
− i� + ���� + ��� + �i���� − ��� + ��ei���0 − e−i���0��3

= 0, ��0� = −
�

3
. �2.6�

The solution of Eq. �2.6� is sought as a multiple scales
expansion

��t,�� = �0��0,�1� + ��1��0,�1� + ¯ ,

d

d�0
=

�

��0
+ �

�

��1
, �2.7�

with the further selection of resonance terms �15�. In the
leading-order approximation, we obtain

��0

��0
− i�0 = 0, �0��0,�1� = 	0��1�ei�0, �2.8�

where a slow function 	0��1� should be found at the next
step of approximation. Equating the coefficients of order �
leads to the equation

d�1

d�0
+

�	0

��1
ei�0 − i�1 + ��	0��1�ei�0 + 	0

���1�e−i�0�

+ i���	0��1�ei�0 − 	0
���1�e−i�0� + ��ei���0 − e−i���0��3 = 0.

�2.9�

In order to avoid the secular growth of �1��0 ,�1� in �0, we
eliminate the resonance terms from Eq. �2.9�. First, we cal-
culate the component of frequency 1 in the cubic function.
We find

��	0��1�ei�0 − 	0
���1�e−i�0� + ��ei���0 − e−i���0��3

= − �3�		0	2	0 + 2�2	0� − �3e3is�1�ei�0 + Nr.

�2.10�

Here and below, Nr is a shorthand symbol for any nonreso-
nance terms. Let us denote 	=�	0. Inserting Eq. �2.10� into
Eq. �2.9� and summing with all other terms of frequency 1,
we obtain the following equation for 	0:

�	0

��1
+ �	0 − i��2�3�		0	2	0 + 2	0� − e3is�1� = 0,

	0�0� = −
1

3
. �2.11�

We express Eq. �2.11� in real variables by letting

	0 = aei
, 	0
� = ae−i
, a � 0. �2.12�

From Eqs. �2.5� and �2.12�, we obtain the following
asymptotic representation of the solution:

u��0,�� = �a��1�sin��0 + 
��1�� + O��� �2.13�

and, by Eq. �2.2�,

y��0�� = ��a��1�sin��0 + 
��1�� + sin� 1
3 + �s��0� + O���

�2.14�

Substituting Eq. �2.12� into Eq. �2.11� and setting sepa-
rately the real and imaginary parts of the resulting equations
equal to zero leads to the averaged equations

da

d�1
= − �a − � sin � ,

a
d�

d�1
= a�− 
 + 3�a2� − � cos �, � = 
 − 3s�1 �2.15�

with the initial conditions

a�0� = 1
3 , ��0� = − � . �2.16�

Here, �=��2 and 
=3�s−2��2�. System �2.15� is similar to
one derived in �12,13� and thus it can be analyzed in the
same way.

III. ANALYSIS OF THE UNDAMPED OSCILLATOR

In this section, we consider a nondissipative counterpart
of Eq. �2.15� with �=0, namely,

da

d�1
= − � sin � ,

a
d�

d�1
= a�− 
 + 3�a2� − � cos � . �3.1�

A. Fixed points and dynamical transitions in Eq. (3.1)

First, we define the steady state of Eq. �3.1� from the
equations
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da

d�1
= 0,

d�

d�1
= 0

or, by Eq. �3.1�,

a�− 
 + 3�a� = � cos �i, �1 = 0, �2 = − � . �3.2�

Depending on the parameters, Eq. �3.2� may have either
three real solutions or a single real and two complex-valued
solutions. In the first case, system �3.1� has two stable cen-
ters, C−: �−� ,a−�, C+: �0,a+�, and an intermediate unstable
hyperbolic point O: �−� ,a0�; in the second case, there exists
a single stable center C+: �0,a+�. Using the same arguments
as in �11–13�, we obtain two critical relationships determin-
ing the centers of system �3.1� and the direction of the phase
orbits

D1 = �2 −
2
3

81�
. �3.3�

If D1�0, then the LPT encircles the left stable center C−:
�−� ,a−� �Fig. 1�; otherwise, the LPT encircles the right
stable center C−: �−� ,a−� �Fig. 2�; the critical relationship is
D1=0. It follows from Eqs. �2.16� and �3.3� that the condi-
tion D1=0 suggests the following result:

�3�s − 2���3 =
81

2
�3, s = �2 +
3 3

2
�� .

Since �=��2, �=9F /4, then D1=0 if

� = �1
� = 0.063

s

F2 �3.4�

�
�0

1

-4 -2 0 2

a

a)

a C+

�
�0

-4 -2 0 2

0.5

1

1.5

2 C+a

-4 -2 0 2

0.5

1

1.5

�

b) c)
FIG. 1. Phase planes �a� �a ,��: ���1

�; �b� �1
�����2

�; �c� ���2
�.
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D2 = ��2

4
−


3

81�
� . �3.5�

If D2�0, then there exist two stable centers, C−: �−� ,a−�,
C+: �0,a+�, and an intermediate unstable hyperbolic point O:
�−� ,a0� �Figs. 1 and 2�; if D2�0, then there exists only a
single stable center C+: �0,a+� �Fig. 3�; the second critical
relationship is D2=0. Arguing as above, we obtain that the
equality D2=0 yields �3�s−2���3= 81

4 �3, s= �2+
3 3
4 ��, or

� = �2
� = 0.068

s

F2 . �3.6�

Typical phase portraits of system �3.1� with different param-
eters � are depicted in Fig. 1.

B. Analysis of nonlinear oscillations

In what follows, we examine strongly nonlinear oscilla-
tions ����2

�� associated with intense energy pumping from
the source of energy into the object. In order to evaluate an

intensity of energy transfer due to superharmonic oscilla-
tions, we compare solutions of Eq. �3.1� obeying the initial
conditions

�I�a�0� = 0, ��0� = − �/2; �II�a�0� = 1
3 , ��0� = − � .

�3.7�

The initial conditions �I� define the LPT of system �2.4� and
thus correspond to motion with a maximum possible transfer
of energy into superharmonic oscillations; the conditions �II�
coincide with Eq. �2.16�. For brevity, we term respective
solutions as solution I and solution II.

Throughout the paper, we take the following parameters
of numerical simulation:

� = 1.35, 
 = 0.3, F = 1; � = 0.007; � = 0 or � = 0.2.

�3.8�

This yields �=0.27, s=2.8, and �2
�=0.187; ���2

�.
As seen in Fig. 2, the phase orbits a��� are close and

similar to that in Fig. 1�c� but Fig. 3 highlights the qualitative
difference between the solutions. In the solution II, the phase
�2��1� is changed by a quasilinear law and the amplitude
a2��1� contains a dominant harmonic component.

To analyze a2��1� and �2��1�, we recall that system �3.1�
conserves the integral of motion

h = − a�
a + 3�a3/2 − 2� cos �� , �3.9�

identifying the phase trajectories in the plane �a ,��. The
LPT corresponds to the contour h=0, as only in this case a
trajectory passes the point a=0; if a trajectory begins at Eq.
�3.2�, then

h =
1

3
�−




3
+

37�

18
� . �3.10�

We employ Eqs. �3.9� and �3.10� to exclude � and reduce
Eq. �2.15� to a single second-order equation. From Eqs. �3.1�
and �3.9�, we obtain

cos���a�� =
1

2�
�3�a3

2
− 
a −

h

a
�,

d�

d�1
= ��a� ,

a1
a2

0

0.2

0.4

0.6

0.8

1

1.2

-3 -2 -1 0 1 2 3

FIG. 2. �Color online� Phase portraits �a ,�� for the initial con-
ditions I �solid� and II �dashed�.
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FIG. 3. �Color online� �a� Temporal behavior of a��1� and �b� principal value of ���i� in the range �−� ,�� for the initial conditions I
�solid� and II �dashed�.
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��a� =
1

2
�9�a2

2
− 
� +

h

2a2 �3.11�

and, therefore,

d2a

d�1
2 + f�a� = 0,

da

d�1
= v ,

f�a� = ��a�� cos���a��

=
a

4
��3

2
�a2 − 
��9

2
�a2 − 
� + 3�h −

h2

a4� ,

�1 = 0:�i�a = 0, v = �; �ii�a = 1
3 , v = 0. �3.12�

The phase portrait of the oscillator �3.11� is given in Fig. 4.
Note that Eq. �3.12� can be interpreted as the equation of

a conservative oscillator with the potential

��a� = 

0

a

f�x�dx =
a2

8
�3

2
�a2 − 
�2

+
3

8
�ha2 −

h

8a2 ,

�3.13�

yielding the integral of energy E=v2 /2+��a�=E0, the initial
energy E0 is determined by the conditions �ii�. The amplitude
of oscillations A= �max a��1� ; v=0� can be found by for-
mula ��A�=E0; under given A, the period of oscillation T�A�
is calculated as �16�

T�A� = 2

0

A da

E0 − 2��a�

. �3.14�

Equalities �3.13� and �3.14� hold for an exact solution of
Eq. �3.1�. However, for our purposes, an approximate con-
sideration suffices. We calculate a��1� and ���1� with help of
the following iterative procedure:

dai+1

d�1
= − � sin �i,

d�i

d�1
= ��ai�, i = 0,1, . . . ,

ai�0� = 1
3 ; �i�0� = − � , �3.15�

where a0=a�0�= 1
3 , �0=��a0�, and

da1

d�1
= − � sin �0,

d�0

d�1
= �0,

a1�0� = 1
3 ; �0�0� = − � , �3.16�

where ��a� is defined by Eq. �3.12�. This yields the follow-
ing leading-order approximation:

a0��1� = 1/3 + ��/�0��1 − cos��0�1��, �0��1� = − � + �0�1.

�3.17�

It follows from Eqs. �3.8� and �3.11� that �0�3.49; this
yields T0=2� /�0�1.8; the amplitude of oscillations A0
=a0�T0 /2��1.1. As seen in Fig. 5, a discrepancy between
the numerical solution of Eq. �3.1� and approximation �3.17�
is about 10%.

Figures 6 and 7 compare the numerical solution y��0� of
the Duffing Eq. �2.1� to its analytic approximation �2.14�; in
this latter case, a and � are calculated by Eq. �3.17�. The
Duffing equation has the parameters �3.8�; in addition, we
take �=0, �=0.007. Figures 6 and 7 demonstrate a fairly
good agreement of the numerical and analytical solutions
despite slight irregularity of high-frequency components in
Fig. 7.

IV. TRANSIENT SUPERHARMONIC OSCILLATIONS OF
THE DISSIPATIVE OSCILLATOR

In this section, we consider the dynamics of dissipative
system �2.1�. Figure 8 depicts a typical behavior of a
strongly nonlinear oscillator with weak dissipation
��=0.2, �=0.007�. The plots in Figs. 6 and 8 agree with the
basic assumption �13�: motion of the damped system is simi-
lar to motion of the undamped system up to an instant of the
first maximum of the envelope of oscillations, then the
damped motion develops into stationary oscillations gener-
ated by external forcing and independent of the initial con-
ditions. This assumption underlies the approximation proce-
dure.

We denote by a���1� a solution of Eq. �2.15� satisfying the
initial conditions �2.16�: by a���1

��, its first maximum at �1
=�1

� �Fig. 9�; by a��1�, a similar solution of Eq. �3.1� in the
absence of damping ��=0�. Using the above assumption,
a���1� is partitioned into two segments: on the interval
�0,�1

��, a���1� is considered as being close to the solution
a��1� of the undamped system �3.1�; on the interval �1��1

�,
the solution a���1� is similar to smooth decaying oscillations
of the dissipative system.

If ��0, the steady state O: �a�
0 ,��

0� is determined by the
equality

a2��
 − 3�a2�2 + �2� = �2 �4.1�

or, for sufficiently small �,

�a�
0 = − � sin ��

0, 
a�
0 − 3��a�

0�3 = − � cos ��
0 ,

0.2 0.4 0.6 0.8 1 1.2 1.4
-1.5

-1

-0.5

0

0.5

1

1.5
v

a

FIG. 4. �Color online� Phase portraits of Eq. �3.12� for the initial
conditions i �solid curve I� and ii �dashed curve II�
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�0 � − �a�
0/� + O��3�, a�

0�
 − 3��a�
0�2� = − � + O��2� .

�4.2�

Using Eq. �3.8�, we find a�
0 �0.73 and ��

0 �−0.54. In ad-
dition, we note that the contribution of nonlinear force in
oscillations near O is relatively small. Under this assump-
tion, on the interval �1��1

�, one can consider the system,
linearized near the steady state a�

0, ��
0,

d�

d�1
+ �� = − ��,

d�

d�1
−

k1

a�
0 � = − �� , �4.3�

where �=a�−a�
0, �=��−��

0, and k1=9��a�
0�2−
. The match-

ing condition at �1=�1
� is

a�
0 + � = a��1

�� = A0,
d�

d�1
= 0. �4.4�

If k1�0, then we obtain from Eq. �4.3�

���1� = c0e−���1−�
1
*� cos ���1 − �1

�� ,
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-3

-2

-1

0

1

2

3

4

5

��

y

FIG. 6. �Color online� Numerical solution of Eq. �2.1�; �=0.
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FIG. 7. �Color online� Analytic approximation �2.14� based on
Eq. �3.17�; �=0.
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FIG. 8. �Color online� Numerical solution of Eq. �2.1�;
�=0.2.
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FIG. 5. �Color online� Numerical solution of Eq. �3.1� �dashed�
and its analytic approximation �3.17� �solid�: �a� temporal behavior
of a��1�; �b� principal value of ���i� in the range �−� ,��.
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���1� = rc0e−���1−�
1
*� sin ���1 − �1

��, �1 − �1
� � 0,

�4.5�

where c0=A0−a�
0, �2=�k1 /a�

0 �0, and r=� /F. Using Eqs.
�3.14� and �4.4�, we obtain �1

��1, A0=1.1, a�
0 =0.73, and

k1=6, and, therefore, c0=0.48 and �=3.35.
Figure 9 demonstrates a good agreement between the nu-

merical solution of Eq. �2.15� �solid line� and the approxi-
mation found by matching the segment �3.17� �dot line� with
the solution �4.5� of the linearized systems �dot-dashed line�
at the point �1

�. Despite a certain discrepancy in the initial
interval of motion, the numerical and analytic solutions ap-
proach closely to the steady state a�

� as �1 increases. This
implies that a simplified model �3.17�, being matched with
the solution �4.5�, suffices to describe the complicated reso-
nance dynamics. Once the approximate solution of Eq. �2.15�
is constructed, the overall response y��0� is calculated by
formula �2.14�.

V. DYNAMICS OF A 2DOF SYSTEM

In this section, we investigate superharmonic energy
transfer in a 2DOF system. The system is designed as a
linear oscillator of mass M with an attached mass m; the
attachment is coupled with the base by a cubic spring �Fig.
10�. We denote by u1 and u2 the displacements of the masses
M and m, respectively; by k1,2,3, stiffness of the linear oscil-
lator �k1�0�, linear coupling between the masses �k2�0�,
and nonlinear coupling between the attachment and the base
�k3�0�; the parameters h1�0 and h2�0 characterize dissi-
pation in the linear oscillator and coupling, respectively �Fig.
10�. An initial impulse applied to the mass M is treated as an
external excitation; the attachment stands for an energy sink.
We suppose that the energy imparted in the system at the
initial time t=0 is partitioned among the principal and super-
harmonic modes but the energy exchange is due to superhar-
monic oscillations.

Under given assumptions, the equations of motion and the
initial conditions have the following form:

M
d2u1

dt2 + h1
du1

dt
+ k1u1 + k2�u1 − u2� + h2�du1

dt
−

du2

dt
� = 0,

m
d2u2

dt2 − k2�u1 − u2� + k3u2
3 − h2�du1

dt
−

du2

dt
� = 0,

t = 0:x1 = x2 = 0;
du1

dt
= v0 � 0,

du2

dt
= 0. �5.1�

In this section, we consider the dynamics of the undamped
system in which h1=h2=0. We assume that m /M =��1,
k2 /k1=�c0, k3 /k1=�k0. Introducing the dimensionless vari-
able t0=�1t, �1=
k1 /M, and taking into account the rela-
tionships between the parameters, system �5.1� becomes

d2u1

dt0
2 + �1 + �c0�u1 = �c0u2,

d2u2

dt0
2 + k0u2

3 + c0�u2 − u1� = 0,

t0 = 0:u1 = u2 = 0,
du1

dt0
=

v0

�1
= V0,

du2

dt0
= 0. �5.2�

A. Reduction of the 2DOF system to a single oscillator

We introduce the independent variable �0=3t0 and rewrite
�5.2� as

d2u1

d�0
2 + ��

2u1 = �cu2,

d2u2

d�0
2 + 8�u2

3 + c�u2 − u1� = 0,

t0 = 0:u1 = u2 = 0,
du1

d�0
= V,

du2

d�0
= 0, �5.3�

where c=c0 /9, �=k0 /72, V=V0 /3; ��
2= 1

9 +�c, and ��= 1
3

+ � 3
2 �c. Then, as in �13�, the 2DOF system is reduced to a

0 2 4 6 8 10 12 14

0.2

0.4

0.6

0.8

1

��

a
1.2

0
���

FIG. 9. �Color online� Numerical and analytic solutions; —:
numerical solution of �2.15�; analytic approximation; ---: segment
�3.17�; -·-: segment �4.5�; �=0.2

m

k2 h2

k3
M

u1

k1 h1
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FIG. 10. Scheme of a 2DOF system.
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single oscillator. The first equation of Eq. �5.3� allows us to
express u1 as a solution of the linear equation with the input
u2,

u1��0� = �cJu2
��0� + ��

−1V sin����0� , �5.4�

where Ju2
��0��0

�0sin�����0−r��u2�r�dr.
Here and below, the subscript denotes the function to be

integrated. Substituting Eq. �5.4� into Eq. �5.3� and introduc-
ing the parameter � to underline the superharmonic dynam-
ics, we reduce Eq. �5.4� to the following form:

d2u2

d�0
2 + u2 + ����c − 1�u2 + 8�u2

3� − �c2Ju2
��0�

= c��
−1V sin����0� ,

�0 = 0:u2 = 0, v2 =
du2

d�0
= 0, �5.5�

in which �=1 /�; the parameter �� suggests that the sum in
the parenthesis is small compared to all other terms of order
1.

By analogy with Eq. �2.2�, the solution of Eq. �5.5� is
represented as

u2 = u + y0, �5.6�

where the low-frequency component y0 is defined as a
leading-order solution of the equation

d2y0

d�0
2 + y0 − �c2Jy0

��0� = c��
−1V sin����0� , �5.7�

where Jy0
��0� is obtained from Eq. �5.5� by substituting y0

for u2. In order to separate the resonance harmonics, we find
the eigenfrequencies of Eq. �5.7� from the characteristic
equation

�s2 + 1��s2 + ��
2� − ���c2 = 0. �5.8�

This gives �s1,2�2=−��1,2�2, where

�1 = 1 + ��1, �2 =
1

3
+ ��2; �1 =

3

16
c2; �2 =

3c

2
�1 −

3

8
c� .

It follows from Eq. �5.7� that the sought solution of fre-
quency �2 is y0��0�+O���, where

y0��0� = �1 sin��2�0�, �1 =
27cV

8
. �5.9�

We will show that transformations �5.6� and �5.9� elimi-
nate harmonic components of frequency �= 1

3 +O��� from
the leading-order equation for u and thus prevents from the
resonance divergence of the successive approximations. Note
that �2=1 /3+��2 is the eigenfrequency of the 2DOF linear
subsystem of Eq. �5.3�, whereas ��= 1

3 + � 3
2 ��c is the partial

frequency of the linear oscillator.
Inserting Eq. �5.6� in Eq. �5.5� and ignoring insubstantial

terms, we obtain the following equation:

d2u

d�0
2 + u + ��f�u + y0� − �c2Ju��0� = 0,

�0 = 0:u = 0, v =
du

d�0
= −

�1

3
, �5.10�

where f�u�= �c−1�u+8�u3; Ju��0� is obtained from Eq. �5.5�
by substituting u for u2. It is obvious that the generating
subsystem of Eq. �5.10� ��=0� yields the solution of super-
harmonic frequency 1 and thus representation �5.6�, �5.9�
leads to the partition of spectral constituents.

We analyze �5.10� in terms of the complex-conjugate vari-
ables � and �� �2.5�

� = v + iu, �� = v − iu . �5.11�

Substituting Eq. �5.11� into Eq. �5.10�, we obtain the equa-
tion similar to Eq. �2.6�

d�

d�0
− i� + ��f�−

i

2
�� − ��� + y0� − �c2I� = 0,

��0� = −
�1

3
,

0 1 2 3 4 5 6
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6 a

�1

a)

0 1 2 3 4 5 6
-3

0

1

2

3

��

�

-2

-1

b)

FIG. 11. �Color online� Numerical solution of �5.19� �dashed�
and its analytic approximation �5.21� �solid�; �a� temporal behavior
of a��1�; �b� principal value of ���i� in the range �−� ,��.
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I� = −
i

2



0

�0

sin�����0 − r�����r� − ���r��dr . �5.12�

The solution of Eq. �5.12� is sought in the form �2.7�. Using
the previous arguments, we obtain �0 satisfying the equation

��0

��0
− i�0 = 0, �0��0,�1� = 	��1�ei�0, 	�0� = −

�1

3
.

�5.13�

The first-order equation collecting the �-order terms is

d�1

d�0
− i�1 +

d	

d�1
ei�0 − c2I0� + i����0 − �0

� + 
0�

+ �����0 − �0
�� + 
0�3 = 0, �5.14�

where �= �1−c� /2, 
0=�1��ei��0/3+�2�1�−e−i��0/3+�2�1���, I0� is
obtained from I� by substituting �0 for � and �1 in the inte-
grand is considered as a fixed parameter. In order to avoid
the secular growth of �1��0 ,�1� in �0, we eliminate the terms
proportional to ei�0 from Eq. �5.14�. Note that I0� does not
involve resonance terms, as the kernel sin ����0−r� has the
frequency ��= 1

3 +O��� but the functions �0 and �0
� are of

frequency 1. The calculation of the component ei�0 in the
functions �= ��0−�0

�+
0� and �3 gives

� = 	��1�ei�0 − 	���1�e−i�0 + �1�ei��0/3+�2�1� − e−i��0/3+�2�1��

= 	��1�ei�0 + Nr,

�3 = �	��1�ei�0 − 	���1�e−i�0 + �1�ei��0/3+�2�1�

− e−i��0/3+�2�1���3 = − �3�			2	 + 2�1
2	� − �1

3e3i�2�1�ei�0

+ Nr. �5.15�

Let us denote 	=�1	0. Inserting Eq. �5.15� into Eq.
�5.14� and summing with all other terms of frequency 1, we
obtain the following equation for 	0��1�:

d	0

d�1
− i���1

2�3		0	2	0 − e3i�2�1� + i��1	0��1� = 0,

	0�0� = −
1

3
, �5.16�

where �1=�−6��1
2. The change of variables 	0=aei
, 	0

�

=ae−i
 reduces Eq. �5.17� to the form

da

d�1
= − ���1

2 sin � ,
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FIG. 12. �Color online� Displacement u1: �a� numerics, �b�
theory; �=0.0675, c0=6, k0=4, V0=1.
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FIG. 13. �Color online� Displacement u2: �a�: numerics, �b�:
theory; �=0.0675, c0=6, k0=4, V0=1.
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a
d�

d�1
= − 
a + ���1

2�3a3 − cos �� , �5.17�

where �=
−3�2�1 and 
=��1+3�2. We now rewrite Eq.
�5.17� in the form similar to Eq. �3.1�

da

d�1
= − � sin � ,

a
d�

d�1
= a�− 
 + 3�a2� − � cos � ,

a�0� = 1
3 , ��0� = 
�0� = − � , �5.18�

where �=���1
2. With these notations, system �5.18� can be

investigated in the same way as in the previous sections. In
particular, we obtain the following leading-order approxima-
tions of the solution of Eq. �5.5� �cf. Eq. �2.16��

u2��0,�1� = �1�a��1�sin��0 + 
��1�� + sin� 1
3�0 + �2�1�� ,

v2��0,�� = �1�a��1�cos�1 + 
��1��� +� 1
3cos� 1

3�0 + �2�1�� .

�5.19�

After the solution u2 is found, the response u1 can be
calculated by Eq. �5.4�. Hence, the solution of the averaged
system �5.18� suffices to determine the overall response of
system �5.1�.

B. Numerical analysis of motion

We present computational results for the system with the
parameters �=0.0675, c0=6, k0=4, and V0=1. To justify the
choice of the parameters, we evaluate the right-hand side of
Eq. �5.17�. By definition, the right-hand side must be O�1�;
the above parameters give �=1.39 and 
=1.92, and thus the
required transformations are not contradictory. Note that the
chosen parameters satisfy the second critical condition �3.5�,
that is the system exposes large nonlinear oscillations.

Reproducing the transformations of Sec. III, we obtain
that the leading-order approximation to the solution of Eq.
�5.18� is similar to Eq. �3.17�

a0��1� = 1/3 + ��/�0��1 − cos��0�1��, �0��1� = − � + �0�1,

�5.20�

in which �0=2.56 and � /�0=0.52. The analytic approxima-
tion �5.20� is shown by solid curves in Fig. 11; dashed curves
in Fig. 11 depict the numerical solution of Eq. �5.18�. Note
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FIG. 14. �Color online� Velocity v1=du1 /dt0: �a� numerics, �b�
theory; �=0.0675, c0=6, k0=4, V0=1.
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FIG. 15. �Color online� Velocity v2=du2 /dt0: �a� numerics, �b�
theory; �=0.0675, c0=6, k0=4, V0=1.
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that a discrepancy between numerics and the analytic ap-
proximation is about 3%.

Figures 12–15 compare the results of numerical simula-
tions of the original system �5.2� to the theoretical results.
The solution u2 is calculated by Eqs. �5.19� and �5.20�; the
solution u1 is found from Eq. �5.4�, in which u2 is taken from
Eqs. �5.19� and �5.20�. For the computational purposes, we
use the time scale t0=�0 /3 introduced in Eq. �5.2�. As seen in
Figs. 12 and 13, the number and the distribution of the peaks
of the envelope, the periods, and the magnitudes of the nu-
merical and analytic solutions are very close, despite a slight
irregularity of the analytic approximation u1; moreover, the
time positions of local minima of u1 and v1 corresponds to
the positions of local maxima of u2 and v2 both for numerical
and theoretical results. This confirms the existence of energy
exchange between the oscillators and the sink.

C. Transient dynamics of a 2DOF system

Here we give a brief description of the resonance dynam-
ics in a weakly dissipated system �5.1�. We recall that, if t
→�, the transient process in Eq. �5.1� does not turn into
stationary oscillations; it vanishes at rest O1: �u1=u2
=0 , v1=v2=0�. To describe transient oscillations, one can
use the same arguments as in Sec. IV. The trajectory is sepa-
rated into two parts; motion is assumed to be close to
strongly nonlinear undamped oscillations over the interval
�0,�1

��, then the orbit approaches the rest state O1 with an
exponentially decreasing amplitude of oscillations.

For simplicity, we let h1=0 in Eq. �5.1�. Thus, the system
under consideration is

M
d2u1

dt2 + k1u1 + k2�u1 − u2� + h2�du1

dt
−

du2

dt
� = 0,

u1
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FIG. 16. �Color online� Temporal evolution of displacements and velocities in the dissipative system: �a� u1, �b� u2, �c� v1, �d� v2.
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m
d2u2

dt2 − k2�u1 − u2� + k3u2
3 − h2�du1

dt
−

du2

dt
� = 0,

t = 0:x1 = x2 = 0;
du1

dt
= v0 � 0,

du2

dt
= 0. �5.21�

After introducing the variable t0=�0t, �0=
k1 /M, system
�5.21� becomes

d2u1

dt0
2 + �1 + �c0�u1 + �2�0�du1

dt0
−

du2

dt0
� = �c0u2,

d2u2

dt0
2 + k0u2

3 + c0�u2 − u1� + ��0�du2

dt0
−

du1

dt0
� = 0,

t0 = 0:u1 = u2 = 0,
du1

dt0
= V0,

du2

dt0
= 0, �5.22�

where �2�0=h2 /
k1M. Since the contribution of nonlinear
force in oscillations near O1 is negligibly small, then the
resonance construction of Sec. V is incorrect if �1 is large
enough. In order to describe motion near rest O1: �x1=x2
=0 , v1=v2=0�, one can consider system �5.22� linearized
near O1.

Let �1 and �2 denote small deviations of x1, x2 from O1. A
corresponding linearized system takes the form

d2�1

dt0
2 + �1 + �c0��1 + �2�0�d�1

dt0
−

d�2

dt0
� = 0,

d2�2

dt0
2 + c0��2 − �1� + ��0�d�2

dt0
−

d�1

dt0
� = 0. �5.23�

Formally, one can reduce Eq. �5.23� to a single integrodiffer-
ential equation. However, a system of low dimensionality
enables a straightforward investigation.

The solution near O1 can be written as

�1�t0,�� � C11e
−�2��t0−t

0
*�/2 sin ���t0 − t0

�� + �2 . . . ,

�2�t0,�� � C21e
−���t0−t

0
*�/2 sin �0�t0 − t0

��

+ C22e
−�2��t0−t

0
*�/2 sin ���t0 − t0

�� + � ,

�5.24�

where �0=c0
1/2 is the partial frequency of the nonlinear sink;

t0
� is a matching point defined as in Sec. IV. It follows from

Eq. �5.24� that the rate of decay of the harmonic component
with frequency �0 vastly exceeds decrement of oscillations
with frequency �� and thus the convergence to rest obeys the
low �1,2�t0 ,���e−�2��t0−t

0
*�/2 sin ���t0− t0

�� for both compo-
nents as t0� t0

�. The results of numerical simulations �Fig.
16� demonstrate the disappearance of beating and the fast
decay of superharmonic oscillations, transforming into
slowly decaying resonance 1:1. The parameters of simula-
tions are �=0.0675, c0=6, k0=4, V0=1, and �0=1 /3.

VI. CONCLUSION

In this paper, we obtained an analytic description of the
superharmonic energy exchange. First, a periodically excited
Duffing oscillator was considered. We proved that for certain
values of the parameters, the incoming energy is partitioned
among the principal and superharmonic modes but the en-
ergy exchange is due to intense superharmonic oscillations.
Using the LPT concept, we constructed an explicit
asymptotic solution describing the energy transfer from the
source of energy into the oscillator. The LPT concept was
extended to a system consisting of a linear oscillator weakly
coupled with a nonlinear energy sink. We developed a pro-
cedure of reducing the system to a single oscillator and then
analyzed superharmonic energy transfer in the reduced oscil-
lator.
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