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Despite the many works on contagion phenomena in both well-mixed systems and heterogeneous networks,
there is still a lack of understanding of the intermediate regime where social group structures evolve on a
similar time scale to individual-level transmission. We address this question by considering the process of
transmission through a model population comprising social groups which follow simple dynamical rules for
growth and breakup. Despite the simplicity of our model, the profiles produced bear a striking resemblance to
a wide variety of real-world examples—in particular, empirical data that we have obtained for social �i.e.,
YouTube�, financial �i.e., currency markets�, and biological �i.e., colds in schools� systems. The observation of
multiple resurgent peaks and abnormal decay times is qualitatively reproduced within the model simply by
varying the time scales for group coalescence and fragmentation. We provide an approximate analytic treat-
ment of the system and highlight a novel transition which arises as a result of the social group dynamics.
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I. INTRODUCTION

The world recently witnessed a baffling variety of global
outbreak phenomena: the huge fluctuations across the
world’s financial markets, driven in part by the rapid global
spread of rumors �1�; an unexpected global outbreak of
swine flu �2�, driven in part by rapid social mixing �e.g.,
within schools �3��; and even the sudden rise to global fame
of an unknown Scottish singer, driven in part by word-of-
mouth sharing �4–6�. To understand how such phenomena
might arise, consider the following: The number and identity
of the people with whom we are each in instantaneous elec-
tronic or physical contact—and with whom we can therefore
instantaneously exchange information, rumors or viruses—
can change slowly or rapidly within any given day, according
to the activities which we undertake and hence the instanta-
neous social groups within which we happen to find our-
selves. Even on the shortest plane journeys, for example,
passengers find themselves momentarily confined in an en-
closed space with complete strangers for up to an hour or
more, enabling the exchange of respiratory pathogens. On
the blogosphere and on the web, ephemeral groups form
around topics or content and exchange information, opinions,
and social contacts before flickering out of existence. The
transient transnational nature of online discussion groups and
chat rooms, as frequented by financial traders or YouTube
users �1,5,6� provides a vivid illustration. A full description
of such specific transmission processes would likely require
rather sophisticated epidemiological models which incorpo-
rate system-specific details and considerations �e.g., spatial
topology, differential susceptibility�. There are indeed many
sophisticated epidemiological models already under con-
struction and study in the literature �7–16�. Some of these
focus on the well-mixed �i.e., mass-action� limit, some of

these focus on the limit of heterogeneous networks
�10,13–16�—and some attempt to move between the two by
adding patchlike structure to mass-action models or dynami-
cal link rewirings to network models.

In this paper, we focus on the less well understood dy-
namical regime where the group-level dynamics and
individual-level transmission processes can evolve on the
same time scale, and hence the number and identity of a
given individual’s contacts can change abruptly at any given
moment in time �see, for example, Figs. 1�a� and 1�b��. In
Sec. II, we introduce and analyze a simple model which
mimics the dynamical processes of social group formation or
breakup and person-to-person transmission of a virus or in-
formation, allowing them to coexist on comparable time
scales. By varying the probabilities of group coalescence
��coal� and fragmentation ��frag� relative to the standard SIR
�susceptible→ infected→ recovered� probabilities �7,12� for
person-to-person transmission �p� and individual recovery
�q�, the entire range of relative time scales can be easily
explored—from a very slowly changing social network
structure �i.e., essentially a static network with infrequent
rewirings� through to a rapidly changing social network
structure �i.e., essentially a well-mixed population�. Most im-
portantly, this includes the complicated intermediate regime
where both processes coexist on the same time scale. Figure
1 illustrates this intermediate regime, while Fig. 2 shows
how an associated infection profile I�t� is qualitatively very
different from the two limiting cases of the static �or quasi-
static� network, and the well-mixed population. Instead, the
interplay of the group dynamics and individual-level trans-
mission generates epidemic profiles which exhibit a rich
structure �e.g., multiple resurgences and abnormal decay
times, see Fig. 2�. It turns out that such profiles are strikingly
similar to real-world outbreaks across the social, financial,
and biological domains �see Fig. 3 and Sec. III�. While it is
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conceivable that infection profiles similar to Fig. 3 can also
be obtained using alternative, more sophisticated epidemio-
logical models �e.g., by adding spatial topology or differen-
tial susceptibility�, such models will typically have more pa-
rameters and be more system specific. By contrast, our
model only has four stochastic parameters for the probabili-
ties �and hence time scales� of the individual-level transmis-
sion and group dynamics, i.e., p, q for the SIR process, and
�coal and �frag which describe the probability of social groups
coalescing or fragmenting. We find it intriguing that the
qualitative shapes of such a wide range of empirical profiles
�Fig. 3� can be reproduced simply by varying these relative
time scales. While we cannot prove that the empirically ob-
served profiles in Fig. 3 are indeed generated by such a
simple model as ours, it seems that more complex models are
not required in order to reproduce their main features. In Sec.
IV, we offer an approximate analytic analysis of the proper-
ties of our model. Although a detailed theoretical description
of the infection profiles I�t� remains an open future chal-
lenge, we find that the overall properties can be captured by
making a mean-field approximation of the behavior of

connected pairs within the population. In Sec. V, we com-
ment on how our results also suggest a minimally invasive
dynamical method for controlling outbreaks �see Fig. 5�.
Section VI extends the discussion to other types of viral

FIG. 1. �Color online� �a� Schematic of dynamical grouping of
traders or YouTube users on the Internet. �b� Schematic of our
model, featuring spreading in the presence of dynamical grouping
via coalescence and fragmentation. Vertical axis shows number of
groups of a given size at time t. �c� Instantaneous network from Fig.
1�b� at each time step. �d� Weighted network obtained by aggregat-
ing links over time-window T.

FIG. 2. �Color online� Theoretical profile I�t�. Thick �blue�
curve shows our dynamical group contagion model, with �frag

=0.05, �coal=0.95, p=0.001, and q=0.001. Using same p and q
values, dotted �purple� curve corresponds to stochastic SIR model
on a static network with T→1, i.e., the t=0 network in Fig. 1. Thin
solid �green� curve corresponds to stochastic SIR on a T→�
network.
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FIG. 3. �Color online� Top two rows: empirical activity profile
I�t� in three distinct real-world systems. Third row: results from our
model. Dashed line is a guide to the eyes. Left: YouTube download
activity. Middle: currency trading activity �i.e., absolute value of
price-change, hence the excess demand to buy or sell at each time
step�. Different shades correspond to different currencies. See main
text. Right: fraction of children with colds within a school. Lower
panel: simple example of the repeated self-amplification and sup-
pression processes which spontaneously arise within our model.
When replicated at all scales of group size, these processes generate
a unified quantitative description of the empirical I�t� profiles.
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transmission models which are widely studied in the litera-
ture �e.g., SIS�. Section VII provides a summary and out-
look.

II. OUR MODEL

There are many plausible rules for generating human
group dynamics �17�. The grouping process that we choose
involves simple cluster dynamics at each time step. In terms
of the viral model, our focus will be on individual-level
transmission via SIR because of its dual relevance to real
virus transmission and to the spread of rumors and informa-
tion in a social system. Here SIR means the viral process
susceptible→ infected→ recovered, the person-to-person
transmission probability at each time step is p and the indi-
vidual recovery probability at each time step is q, as de-
scribed in the previous section. Provided that the choice of
social dynamics permits similar intrinsic self-amplification
and suppression processes by sporadically injecting infected
individuals into susceptible groups �see Fig. 1�b� and bottom
of Fig. 3�, the resulting epidemic profiles from alternative
choices of cluster mechanism should exhibit similar
characteristics—in particular, multiple resurgences and ab-
normal decay times �see Figs. 2 and 3�. In Sec. VI we extend
this SIR focus by presenting quantitative results for other
commonly studied viral processes �e.g., SIS�.

Our choice of cluster mechanism features the coalescence
and fragmentation of groups as described below, and illus-
trated in Fig. 1�b�. There is a huge volume of work in the
mathematics, physics and chemistry literature on cluster
models within a many-body population of interacting par-
ticles �18�. For modern social systems, one is typically inter-
ested in mechanisms which mimic the long-range interac-
tions that people can have �either through transport in the
case of transmission of viruses, or communications in the
case of transmission of a rumor or information�. We choose
the rate of coalescence of two groups of size n1 and n2,
respectively, to be proportional to the combinatorial number
of pairwise encounters between individuals, one from each
group, i.e., the rate of coalescence is equal to �coal · �n1 /N�
� �n2 /N�, where �coal�1 is a coalescence probability. Simi-
larly, a given group of n individuals may break up �i.e., com-
pletely fragment� with a total rate equal to �frag · �n /N�, where
�frag�1 is a fragmentation probability with �frag+�coal�1,
reflecting the increasing fragility of large groups �i.e., stan-
dard size effect�. The implementation of this social dynamics
is essentially the same as Ref. �20�, with the generalization
that the coalescence and fragmentation probabilities are gen-
eral �i.e., �frag+�coal�1 but �frag is otherwise unrelated to
�coal, in contrast to Ref. �20��. This specific cluster process
has real-world relevance for several reasons. First, it embod-
ies the rare but dramatic changes of contact networks that
can occur, as mentioned in the introduction. Second, it pro-
duces a distribution of group sizes which is power law with
exponent 2.5 for �coal��frag when time averaged, as shown
in the related model for financial markets �20,21�. This the-
oretical model is therefore consistent with the observation of
Gabaix et al. �19� who found that the distribution of transac-
tion sizes follows a power-law with slope near 2.5 for each

of the three major stock exchanges in New York, Paris, and
London. Third, this power-law exponent 2.5 is also consis-
tent with the distribution of group sizes inferred for terrorists
and insurgent groups based on an analysis of casualty figures
�22�. Fourth, the model is structurally robust in that the
group dynamic rules can be generalized to different positive
power exponents ��1, ��1, 	�1, with coalescence and
fragmentation rates given by �coaln1

��n2
� and �fragn

	, respec-
tively, without losing the main qualitative features of the
dynamics of the number I�t� of infected individuals.

Individual connectivities within our model may change
significantly on the same time scale as the SIR process,
thereby mimicking individuals participating in YouTube
viewing, financial systems, and schools, who sometimes ex-
hibit rapid moves among peer groups either online or in real
space, while simultaneously picking up and spreading ru-
mors or pathogens. A discrete illustration of our model over
six time steps is shown in Figs. 1�b� and 1�c�. Figure 1�d�
contrasts the short-time group structure between individuals
with the long-term linkage between them: as time increases
without bound, by ergodicity, all individuals will have even-
tually been part of some common group. While the latter
long-time network structure is the one usually emphasized in
models of epidemic processes on complex networks, the
short-time limited linkage is essential to understand the com-
petition between individual isolation �which tends to stop an
epidemic� and group coalescence which amplifies its spread-
ing. In short, this model provides us with a simple frame-
work within which to explore and quantify the interaction of
these group dynamical processes and conventional SIR dy-
namics.

In the numerical implementation of the model, we run the
above coalescence-fragmentation dynamics until the time-
averaged distribution of group sizes has become stationary.
Then, at some instant taken at the origin of time t=0, one
group is selected, and an arbitrary individual in this group
becomes infected, and hence the infection profile unfolds
according to the SIR process within each group, with all the
groups undergoing at the same time the coalescence-
fragmentation dynamics according to the two rates �coal and
�frag. A typical simulation is shown in Fig. 2, and is com-
pared with the popular approach that models spreading on
static networks: �i� an instantaneous network �T=1� and �ii� a
global network formed by time-aggregating instantaneous
contacts over long times �T→��. SIR spreading dynamics
on fixed networks obtained at different intermediate T gives
curves that lie in the shaded area of Fig. 2. Our model can
generate not only this type of dynamics, but also qualita-
tively new regimes that arise from adjusting the coalescence-
fragmentation rates: the large fluctuations, resurgences, and
abnormally long decay time which are observed in our model
�as illustrated in Fig. 2 �thick curve�� are generated by self-
amplification and suppression processes due to the
coalescence-fragmentation group dynamics at all group-size
scales.

III. THEORETICAL AND EMPIRICAL RESULTS

Figure 3 provides a comparison between two of the em-
pirical profiles that we have collected from each of three
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distinct real-world domains, and the theoretical infection
profiles I�t� produced by our model. By providing two em-
pirical profiles for each real-world system, our aim is to give
confidence that the empirical features observed are not sim-
ply the result of some irreproducible external noise. We
could generate a number of metrics for comparing the em-
pirical and theoretical profiles �e.g., number of peaks, time
interval between peaks, peak-to-trough ratio� as is our inten-
tion for future studies when additional data is available—but
for now, the message that we wish to convey is a visual one,
i.e., that our simple model manages to capture the main
qualitative features for each of these three distinct empirical
systems.

The sociological example �left column of Fig. 3� shows
downloads for two similar YouTube clips �5,6�. Such down-
loads are typically driven by YouTube users absorbing and
spreading opinions as they share information in their social
groups �6�. The two downloads appealed to similar age
groups, and were measured close together in time, implying
that a similar pool of users accessed them both, in line with
our model’s assumptions. Our model accounts well for the
long memory and aftershocklike decay. The top-left panel
corresponds to “Gettin’ Enough” from http://
www.youtube.com/watch?v
AiXxMrkeklg. This video was
uploaded to the site on 8 November, 2006 at 13:33:12 GMT.
The first record of a download is 9 November, 2006 at
17:21:35 GMT, with a view count of 5708. The last record is
24 May, 2007 at 21:34:30 GMT, with a view count of
257 759. The video’s length is 225 s. The middle-left panel
shows downloads of music video “Borat” from http://
www.youtube.com/watch?v
b1xXERFt_Zg. The video was
uploaded to the site on 3 November, 2006 at 11:04:15 GMT.
The first record of a download was 7 November, 2006 at
10:35:57 GMT with a view count of 20 745. The last record
is 24 May, 2007 at 22:29:25 GMT, with a view count of
254 918. The video’s length is 154 s. These two music down-
loads are similar in terms of appeal, age group, total number
of downloads, and lack of any public or global announce-
ment, news, or advertisement, and are hence consistent with
spreading through contagion. The bottom-left panel shows
our model’s output with �frag=0.05, �coal=0.81, p=0.001,
and q=0.001.

The financial example �middle column of Fig. 3� shows
foreign exchange movements as a result of a specific rumor
spreading among traders concerning revaluation of the Chi-
nese Yuan currency. This same rumor circulated twice in the
space of a few months. The fact that the currency pairs fol-
low a similar dynamical pattern in each case suggests that
the same underlying group dynamics developed in line with
our model. Note that this financial epidemic is characterized
by the largest coalescence rate �coal and much larger infec-
tivity parameter p among the three examples, reflecting the
efficiency of the information cascade among currency trad-
ers. The top-center panel corresponds to the CNY �Chinese
currency� revaluation rumor as detected from trader chat-
rooms by HSBC bank �courtesy of S. Williams�. Specifically,
we show the absolute returns on the time scale of 1 min
intervals for the JPY �Japanese currency� exchange rates
from 08:22 to 08:53 GMT, on 11 May 2005. The middle-
center panel corresponds to the CNY actual revaluation. Ab-

solute returns on the time scale of 1-min intervals are shown
for JPY �Japanese currency� exchange rates from 11:03 to
11:34 GMT, on 21 July 2005. Since the CNY was not one of
the directly traded currencies, its effects on the JPY-X rates
�where X is another currency� are indirect in both cases, sug-
gesting influence through contagion of the rumor or informa-
tion. There was no public announcement or global news to
trigger this activity, which also supports spreading through
contagion. The bottom-center panel shows our model output
with �frag=0.05, �coal=0.95, p=0.009, and q=0.002. Since
data are on 1 min scale, but prices can change on 1 s scale,
we show an averaged output by providing value at regular
equispaced intervals, mimicking 1 min.

The biological example �right column of Fig. 3� shows
incidences of a cold among first grade students in two
schools in Bogota, Colombia. These data come from an on-
going monitoring experiment carried out by members of our
team, in conjunction with the Universidad de Los Andes,
Bogota, based on weekly surveys of all students and staff at
Colegio Nueva Granada �CNG� and Marymount School. The
schools’ locations at the top of the Andes guarantee that sea-
sonal temperature variations are minimal. In addition, the
student population of each approximates to a closed system
due to local issues of security and social segregation. Given
the unchanging climatic conditions of this part of Colombia,
we argue that the microbes responsible for colds remain
present in the environment of children, hence successive
bursts can be expected to follow similar dynamics. Within
our approach, the school cold dynamics are found to be best
described by the lowest fragmentation rate �frag and highest
recovery parameter q, mirroring the more rigid structure of
interchildren contacts and the crucial role of multiple recu-
perations. The bottom-right panel shows our model output
with �frag=0.001, �coal=0.5, p=0.001, and q=0.004. The
model output is smoothed, to mimic fact that data are re-
corded on the one-week time interval.

The sociological example corresponds to the regime of
�coal values where the group dynamics dominate, hence the
strong observed clustering effect in I�t�. Large values of �coal
do indeed make sense for social online systems, given the
ease and rapidity with which people can now be exposed to
new information and rumors through virtual communities.
The financial example corresponds to the regime of large
transmission probability per time step p, thereby promoting
both the spread and survival of the information “virus” and
hence leading to persistently noisy �but remarkably repro-
ducible� fluctuations. The biological example seems to lie in
between, since it has more peaks as compared with socio-
logical example and larger fluctuations as compared with the
financial example. We stress that more complex explanations
of each empirical profile in Fig. 3 are undoubtedly
possible—and may even be deemed as more realistic by spe-
cialists within each field. However, our purpose here is to
focus on a minimal description of common dynamical fea-
tures and to highlight the fact that a common minimal de-
scription is indeed possible. Although we have only pre-
sented three examples of our model’s output, each of which
has a quite distinct visual form, it turns out that this subset of
three broadly encompasses the full range of I�t� profile be-
haviors observed across the entire parameter space of our
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model. One might speculate whether other empirical ex-
amples chosen from social, financial, and biological do-
mains, might also fall crudely into one of these three classes
of infection profile behavior shown in Fig. 3. A casual obser-
vation of similar types of empirical data available on the web
suggests that this might indeed be the case �6,24�.

IV. APPROXIMATE ANALYTIC ANALYSIS

A. Limiting case relationship with mass-action epidemiological
theory

A full analytic description of the I�t� profiles generated by
our model represents a fascinating open challenge for the
community. However some important features can be cap-
tured straight away by suitably generalizing existing epide-
miological machinery. A key quantity is the probability �SI�t�
that a particular link instantaneously exists and that it con-
nects a susceptible and an infected. Thus, out of a potential
totality of N�N−1� /2 links among N individuals, only
�SI�t�N�N−1� /2 are typically present. This provides an ac-
curate equation for the number of susceptibles S�t� in a given

epidemic sequence: Ṡ�t�=−p�SI�t�N�N−1� /2, with p is the
infectivity parameter quantifying the probability that a par-
ticular S is infected by a particular I to which it is linked. We

rewrite this in the conventional mass-action form Ṡ�t�=
−pPSI�t�S�t�I�t�, where PSI�t� is equivalent to �SI�t�N�N

−1� / �2S�t�I�t�� and hence now incorporates the complex dy-
namics which are so hard to capture analytically. We now
approximate PSI�t� by a constant term P, which is the time-
averaged probability that any two arbitrarily chosen nodes
belong to the same cluster independent of SI-infection status.
This approximation throws out the dynamical details of I�t�
but can provide useful insights, as shown below on the non-
spreading to spreading transition, provided that several
coalescence-fragmentation processes occur over the time
scale of the entire outbreak. In order to develop a more de-
tailed analytic analysis, we start with the identification of P
as the average value of Pi,j, where Pi,j means the probability
that specific nodes i and j are connected �i.e., i and j are in
the same cluster�. Our numerical simulations enable us to
track individual pairs and hence deduce numerical values for
P as a function of �coal, �frag, and N.

Figure 4 presents P values taken from the numerical
simulation, which suggest that P has a remarkably simple
functional form. Results are shown for populations of size
N=10 �Fig. 4�a��, N=100 �Fig. 4�b��, N=1000 �Fig. 4�c��,
and N=10 000 �Fig. 4�d��, and for different sets of param-
eters �coal and �frag. There are several ways that one can
obtain the quantity P numerically. One could follow a certain
pair of nodes over a very long simulation run of the model,
counting how many time steps these two nodes happen to be
in the same cluster. Alternatively, to reduce run times, one
may follow a certain number of pairs �e.g., 50 or 100� over a

��� ���

��� ���

FIG. 4. �Color online� Demonstration of accuracy of Eq. �1� across a range of parameter space. Solid line is theoretical expression from
Eq. �1�, while discrete points are numerical simulation results. Population size �a� N=10, �b� N=100, �c� N=1000, and �d� N=10 000. Left
panel for each N value: P value obtained by tracking all pairs over time for the illustrative case ��coal+�frag�=1, and also for specific values
�coal=0.1 and 0.5. Left panel of �d� additionally shows result of tracking just 100 pairs over time, demonstrating that the same results are
obtained as long as the time window is sufficiently long. Right panel for each N value: P as a function of �frag /�coal on a log-log scale. Data
corresponding to different systems fall onto the same curve as predicted by Eq. �1�.
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particular time window. As confirmed by the left-hand panel
of Fig. 4�d�, the results do not depend on the precise method
used. The numerical results in Fig. 4 suggest that the varia-
tion in P can be well described by the following empirical
relation:

P =
�coal

�coal + N�frag
=

1

1 + N
�frag

�coal

. �1�

This expression contains an explicit dependence on N, the
number of nodes in the system, and a dependence on the
ratio �frag /�coal. For each N value in Fig. 4, the right-hand
panel shows that different simulations with different param-
eters ��coal ,�frag� yield dependences of P as a function of
�frag /�coal which all collapse on the same curve. For N�frag
��coal, Eq. �1� reduces to the approximate form

P =
�coal

N�frag
. �2�

B. Analytic derivation of P using master equation

Having demonstrated the quantitative accuracy of Eq. �1�
using quantitative results from the model simulation, we now
turn to the task of trying to understand this result analyti-
cally. Starting with the master equation approach, the dynam-
ics of Pi,j follows

dPi,j

dt
= − Pi,j

1

N �
k��..i.�

Pk,i�frag + �1 − Pi,j�

�
1

N
�

m��..i.�
Pm,i

1

N �
n�” �..i.�

Pn,j�coal. �3�

As indicated, the sums are restricted to either the nodes
within the cluster containing node i or to the nodes outside
that cluster. We note that the first term on the right-hand side
can alternatively be written in a completely symmetric way
in terms of i and j, simply by splitting the term into two
equal pieces �one in i and one in j� and adding a factor of one
half to avoid double counting. Two particular situations will
significantly affect the value of Pi,j: one situation is where
the nodes i and j are together but are going to breakup at the
next time step. The second situation is where the node i and
j are not currently together but are going to join together at
the next timestep. The two terms on the right-hand side of
Eq. �3� correspond to these two cases. The first term on the
right-hand side of Eq. �3� describes the case where nodes i
and j are together �Pi,j� and then one node k is picked � 1

N �
which is in the same cluster as i and j �Pk,i� and so the cluster
fragments ��frag�. The second term of Eq. �3� describes the
case where nodes i and j are not together �1− Pi,j�, and then
one node m is picked � 1

N � which is in the same cluster as i
�Pm,i�, as well as one node n being picked � 1

N � in the same
cluster as j �Pn,j�. They then coalesce ��coal�. We stress that
the third summation �n�” �..i.� sums over all the nodes outside
the cluster containing node i, and hence �n�” �..i.�Pn,j =1. In the
steady state, we can write P= Pi,j for all i and j. The remain-
ing two summations over nodes within the cluster containing
node i, then become equal to the average cluster size multi-

FIG. 5. �Color online� Phase diagrams show theoretically obtained transition �i.e.,
p�coal

q�frag
=1, black dashed line� and the numerical result

�white solid line� separating regimes of spreading �i.e., overall number of infecteds exceeds initial group size, hence R����N0� and no
spreading �i.e., R���N0�. Population reacts to news of the initial infection at t=0 by changing its dynamical grouping from �frag=0.001 and
�coal=0.99, to the new values shown on the axes. Shading shows the population �in units of N0� who become infected, and hence recovered,
over the lifetime of the outbreak. Solid triangular shaded region is unphysical since �frag+�coal�1.
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plied by P. Setting the left-hand side of Eq. �3� equal to zero
and solving for P yields

P =
�coal

�coal + N�frag
=

1

1 + N
�frag

�coal

,

which is exactly Eq. �1�.

C. Analytic derivation of P using coupled cluster equations

The limiting case Eq. �2� can also be obtained in the limit
N�frag��coal, by considering the master equation for the
number ns of clusters with size s in the model:

�ns

�t
= −

�fragsns

N
+

�coal

N2 �
s�=1

s−1

s�ns��s − s��ns−s�

−
2�coalsns

N2 �
s�=1

�

s�ns� �4�

for s�2, with a similar but truncated form for s=1,

�n1

�t
=

�frag

N
�
s�=2

�

�s��2ns� −
2�coaln1

N2 �
s�=1

�

s�ns�. �5�

For a steady-state cluster distribution, we have

sns =
�coal

2�coal + �frag

1

N
�
s�=1

s−1

s�ns��s − s��ns−s� �6�

for s�2, while for s=1 we have

n1 =
�frag

2�coal
�
s�=2

�

�s��2ns�. �7�

Therefore on average, we obtain

P = �
s=2

�
sns

N

s − 1

N
=

1

N2�
s=2

�

�s2ns − sns� =
1

N2

2�coal

�frag
n1 −

N − n1

N2 ,

�8�

where the only unknown quantity is n1. We now define a
generating function,

(a)
(b)

(c) (d)(c) (d)
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FIG. 6. �Color online� SIR process in presence of the coalescence-fragmentation group dynamics. �a� Schematic SIR process. �b� Typical
individual simulation run showing I�t� for N=10 000, �frag=0.001, �coal=0.99, p=0.001, and q=0.1. �c� Typical individual simulation run
showing I�t� for N=10 000, �frag=0.01, �coal=0.9, p=0.001, and q=0.001. �d� Comparison between run-averaged I�t� �solid curve, red� using
the same parameters as �c�, and I�t� for a weighted network �blue dotted curve� in which all nodes are connected with strength P.
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G�y� = �
k=0

�

knky
k = n1y + �

k=2

�

knky
k = n1y + g�y� . �9�

Taking Eq. �6� multiplied by ys and then summing from s
=2 to � yields

g�y� =
�coal

2�coal + �frag

1

N
G�y�2, �10�

i.e.,

g�y�2 − �2�coal + �frag

�coal
N − 2n1y	g�y� + n1

2y2 = 0, �11�

where g�y�=�s=2
� snsy

s and g�1�=N−n1. Solving this qua-
dratic equation Eq. �11� gives

n1 =
�frag + �coal

�frag + 2�coal
N . �12�

Substituting into Eq. �8�, we obtain Eq. �2�.

V. DYNAMICAL CONTROL OF OUTBREAKS

We now use our numerical model and the approximate
analytic analysis of Sec. IV, in order to address the following
highly topical question: will there be epidemic spreading in a
population in which it is publically known that N0 persons
have been infected with a given pathogen or rumor, but
where the precise identity of infected persons cannot be dis-
closed? At t=0, N0�N individuals of the instantaneously
largest group are infected and news of an infection is an-
nounced without disclosing the infected’s identities. The
population reacts by adjusting its group dynamics, i.e., it
adopts a new �coal and �frag. Although many further features
could be added to mimic the population’s subsequent adjust-
ment to knowledge of an outbreak, we focus here on a
simple case in order to better understand the effect of the
initial reaction.

Numerical results are presented in Fig. 5, together with
analytic curves for the transition threshold, as a function of
the new �coal and �frag. Our analytic analysis exploits the
generalized SIR equations developed in Sec. IV, and builds
upon the theoretical framework discussed in detail in Ref.

(a) (b)( ) ( )

(c) (d)��
�
��
	


�

��
��
�
�

��
�
��
	


�

��
��
�
�

��
�
��
	


�

��
��
�
�

��� ���

���

FIG. 7. �Color online� SIS process in presence of the coalescence-fragmentation group dynamics. �a� Schematic SIS process. �b� Typical
individual simulation run showing I�t� for N=10 000, �frag=0.01, �coal=0.99, p=0.01, and 	=0.0001. �c� Typical individual simulation run
showing I�t� for N=10 000, �frag=0.001, �coal=0.99, p=0.01, and 	=0.001. �d� Comparison between I�t� �solid curve, red� using the same
parameters as �c�, and I�t� for a weighted network �blue dotted curve� in which all nodes are connected with strength P.
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�12�. The number of susceptibles in the long-time limit S���
with N�1 is then given by the solution z̄ to the following
generalized form, z=exp�−��1−z�� where z
S��� /N and
�
 p�coal /q�frag where � plays the role of the basic repro-
ductive rate. For ��1, the only solution is z̄=1, correspond-
ing to a vanishingly small fraction of infected individuals
�i.e., total number of infected R��� does not exceed N0�N�.
This solution bifurcates at �=1 into the following stable so-
lution z̄=−�1 /��W�−�e−�� valid for ��1, where W�z� is the
Lambert function. For ��1.5, z̄ is very well-approximated
by z̄�e−� /�. This shows a rather abrupt transition from non-
spreading epidemics for �1 to global infection of a finite
fraction of the population for ��1. The form of the epi-
demic control parameter �
 p�coal /q�frag exemplifies that in-
fectivity and coalescence play together against recovery and
fragmentation in controlling the propagation of the epidem-
ics: Infectivity and coalescence promote the infection propa-
gation, while recovery and fragmentation hinders its spread.

Not only is our theory for the spreading threshold �dashed
black line in Fig. 5� in good agreement with the numerical
results �white solid line�, its simple analytic form suggests an

epidemic control scheme based on manipulation of the group
coalescence and fragmentation time scales �i.e., �coal

−1 and
�frag

−1 �. An imminent epidemic can be suppressed �i.e., R���
N0� by increasing the time scale for group coalescence
with respect to the time scale for group fragmentation �i.e.,
decrease �coal with respect to �frag�, but it will get amplified if
we decrease the coalescence time scale with respect to the
fragmentation time scale �i.e., increase �coal with respect to
�frag�. Not only would such modest intervention allow the
overall system to continue functioning, it does not require
knowledge of the infected’s identities. There is also no as-
sumption that the N0 members of the group which carries the
initial infected case at t=0, remain in that group. In the
school setting, schedules could be adjusted to slow down or
speed up classroom use and recess, without the need for
disruptive school closures �3� or the need to test, label, or
isolate infected children. In particular, the coalescence rate in
a school could be reduced by simply staggering the lunch-
times for separate classes, as opposed to isolating them en-
tirely. Having individual classes in the cafeteria at different
times does not count as a coalescence event, while a com-

(a) (b)(a) (b)

(c) (d)(c) (d)
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FIG. 8. �Color online� SIRS process in presence of the coalescence-fragmentation group dynamics. �a� Schematic SIR process. �b�
Typical individual simulation run showing I�t� for N=10 000, �frag=0.01, �coal=0.99, p=0.01, q=0.001, and �=0.001. �c� Typical individual
simulation run showing I�t� for N=10 000, �frag=0.001, �coal=0.99, p=0.01, q=0.001, and �=0.001. �d� Comparison between I�t� �solid
curve, red� using the same parameters as �c�, and I�t� for a weighted network �dotted curve, blue� in which all nodes are connected with
strength P.
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mon lunchtime period would. Hence the coalescence rate can
be reduced without removing any of the daily routine activ-
ity. In financial markets, if one wanted to prevent highly
noisy fluctuations of the type observed in Fig. 3, similar
control might be achieved by basing the joining and leaving
rules of the online chat rooms frequented by financial trad-
ers, on present occupancy. In viral marketing, the attractive-
ness of the message or product quantified by the infectivity p
can be completely subjugated by suitable management of the
group dynamics ��coal versus �frag�, as firms using
e-commerce and e-advertisement are now realizing �23�.
These findings are potentially applicable to many other sce-
narios, given that many real-world activity and infection
curves resemble those in Fig. 2.

VI. RESULTS FOR GENERAL INFECTION MODELS

Having focused exclusively on the SIR viral process, we
now compare the infection profiles generated using other
commonly studied viral processes. To ease comparison, the

population maintains the same coalescence-fragmentation
group dynamics as featured throughout this paper. We find
that a similarly large range of I�t� profiles arise for these
other viral processes as for SIR, which is understandable
given that they are all being driven by the same background
group dynamics. In addition to p and q, some of the viral
processes will use � which is a birth and death probability
rate, 	 which is a probability rate of transition from I to S,
and � is a probability rate of transition from R to S.

As suggested in the earlier parts of this paper, we might
expect the numerical simulations to exhibit three main
classes of behavior for each type of viral process: �1� group
dynamics is much slower than epidemic spreading, hence the
virus tends to exist only within the initial group; �2� group
dynamics is comparable with the epidemic spreading, hence
grouping plays a significant role in suppressing or amplify-
ing the spreading leading to generic spiky behavior in the
infection profile I�t�; �3� group dynamics is much faster than
epidemic spreading, in which case analytic theory can be
developed as discussed earlier in Sec. IV for SIR. Figure 6
summarizes some typical results from the SIR process in the
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FIG. 9. �Color online� SIRD process �i.e., SIR with demography� in presence of the coalescence-fragmentation group dynamics. �a�
Schematic SIR process. �b� Typical individual simulation run showing I�t� for N=10 000, �frag=0.01, �coal=0.99, p=0.01, q=0.001 and
�=0.000 001. �c� Typical individual simulation run showing I�t� for N=10 000, �frag=0.01, �coal=0.99, p=0.01, q=0.001, and �=0.001. �d�
Comparison between I�t� �solid curve, red� using the same parameters as �b� but with �=0.001, and I�t� for a weighted network �blue dotted
curve� in which all nodes are connected with strength P.
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presence of group dynamics, as discussed throughout this
paper. As in Fig. 3, a broad range of I�t� profiles can be
obtained—in particular those with large resurgences and a
long-tailed decay–simply by varying �coal, �frag, p, and q.
Neither individual nor time-averaged runs can be explained
by considering the SIR process on a static weighted network.
This is because any static network model neglects the dy-
namically changing nature of the transmission pathways, i.e.,
the dynamically changing contact structure.

Figure 7 presents the SIS viral process which is appropri-
ate for diseases without immunity. Recovery from infection
is followed by an instant return to the susceptible pool. The
slow growth and low stable state �endemic equilibrium� are
both due to suppression by the group dynamics, which only
allows a part of the population to come in contact with in-
fecteds, while others are isolated in different groups. Before
an infected node can contact the whole population and infect
them, it may recover and become susceptible again. Figures
7�b� and 7�c� show how the restoration rate 	, combined with
�frag and �coal, affect the stability of I�t� after reaching the
endemic equilibrium. Large 	 values yield large jumps, and
vice versa, because it leads to quickly replenishment of the
pool of susceptibles. Figure 8 presents the SIRS viral process
which is appropriate for diseases in which an infected has a
recovery time and then returns to susceptible status. It ap-
pears similar to SIS, but produces bigger fluctuations than
SIS since there is the possibility that infecteds maintain an
inert state �R� for a finite time, which hence allows I�t� to
become very small. The net effect is that the I�t� peak-trough
ratio is enhanced as compared to SIS.

Figure 9 presents the SIRD viral process which corre-
sponds to the addition of demography �i.e., births and deaths�
to SIR. It assumes that there is a natural mortality � �i.e.,
each individual has a lifespan 1 /��. In order to keep the total
population constant S+ I+R=N, � also represents the birth
rate of the population. Figure 9�b� shows that when the birth-
death processes are much slower than infection and recovery
processes, the infection profile I�t� is essentially the same as
SIR model including group dynamics. The fact that the en-
demic equilibrium is not stable can be solved by increasing
�. However we stress that as in all other cases, the resultant
I�t� profile is different from the corresponding result for a
static weighted network �Fig. 9�d��.

VII. SUMMARY AND OUTLOOK

We have presented and analyzed a simple model of con-
tagion within a population featuring dynamically evolving
connectivity, allowing group-level dynamics and the
individual-level transmission process to coexist on similar
time scales. In spite of the simplicity of our model, we find
that the profiles produced bear a striking resemblance to a
wide variety of real-world examples from social, financial,
and biological domains. The common features of multiple
resurgent peaks and abnormal decay times are observed both
theoretically and empirically. To demonstrate further the ge-
neric nature of the empirical profiles that we show in Fig. 3,
and hence the relevance of our theoretical model, we refer
interested readers to examine the explicit YouTube profiles in
Ref. �6�, and the wider range of examples in Ref. �24�. In
terms of further justifying the underlying group dynamics
that we imposed, we stress that the recent Ref. �22� shows
explicitly that these coalescence-fragmentation group dy-
namics are consistent with that observed in insurgencies.
Adding in the feature of transmission, as we do in the present
paper, elevates this particular real-world application to the
hotly debated issue of understanding how information and
know-how about improvised explosive devices �IEDs�—in
particular innovations in design—spreads through an insur-
gency. This latter topic is a very important practical one
given the recent insurgent preference for IED use in the cur-
rent wars in Iraq and Afghanistan.

Although it is of course possible that such empirically
observed I�t� profiles can be generated by other more sophis-
ticated models—e.g., more detailed social dynamic mecha-
nisms, the introduction of spatial heterogeneity, or more
elaborate generalizations of the SIR transmission
process—we find it intriguing that our simple analysis suf-
fices. We hope that these findings stimulate future work on
the potential effects of different social group dynamics �see,
for example, Palla et al. �17�� and on detailed analytic de-
scriptions of the resulting infection profiles.
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