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We study the splitting of regular square lattices subject to stochastic intermittent flows. Various flow patterns
are produced by different groupings of the nodes, based on their random alternation between two possible
states. The resulting flows on the lattices decrease with the number of groups according to a power law. By
Monte Carlo simulations we reveal how the time span until the occurrence of a splitting depends on the flow
patterns. Increasing the flow fluctuation frequency shortens this time span, which reaches a minimum before
rising again due to inertia effects incorporated in the model. The size of the largest connected component after
the splitting is rather independent of the flow fluctuation frequency but slightly decreases with the link capaci-
ties. Our findings carry important implications for real-world networks, such as electric power grids with a
large share of renewable intermittent energy sources.
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I. INTRODUCTION

Assessing the robustness of networks against failures of
nodes and links is an essential research topic across many
scientific disciplines. Examples range from the extinction of
species in food webs and malfunctions in protein networks to
the vulnerability of the world wide web and cascading fail-
ures in electric power grids. In the last decade, substantial
new insights have been gained through the application of
methods from statistical physics �1–4�. Random failures as
well as targeted attacks have been addressed by first studying
static properties such as different network topologies �5�.
Later on, load redistribution models have been introduced to
better represent networks supporting the flow of a physical
quantity. For example, the load of a node has been defined by
its betweenness centrality �6�, by the total number of effi-
cient paths passing through it �7�, or enriched with stochastic
flux fluctuations �8�. While these approaches model the fail-
ure propagation in a static manner, the dynamic flow proper-
ties have just recently been taken into account �9�.

The contribution of this paper is to investigate the impact
of stochastic intermittent flow patterns on the potential oc-
currence of cascading link failures, eventually leading to a
network splitting. Therefore, our model considers two-
dimensional lattices with different groups of nodes which
randomly alternate between two possible states, i.e., they act
as sources or sinks, respectively. These state transitions in-
duce time-varying stochastic flows on every link. Once
reaching its capacity, a link fails with a time delay due to
inertia effects.

The motivation for this dynamic flow model was the
large-scale integration of renewable intermittent energy
sources �e.g., wind power, photovoltaic systems� into the
electric power grid. This implies a higher ratio of nondis-
patchable generation which, in turn, leads to less predictable
and more fluctuating flows on the network. Consequently, the
anticipation of undesired situations such as cascading trans-
mission line overloads leading to a network breakdown be-
comes highly complicated �10�. In such a future infrastruc-
ture layout the network merely serves as a backbone for the
redistribution of power from regions of energy surplus to

regions with net power consumption. As detailed modeling
and simulation approaches become limited due to the in-
creased complexity of electric power systems with large
share of renewables, we opted for a minimalistic approach in
order to understand the fundamental physics governing the
dynamic behavior leading to a network splitting. Past expe-
rience has shown that such a splitting potentially results in a
wide-area blackout with severe social and economic conse-
quences �11�.

Questions to be tackled are what is the relation between
the stochastic behavior of the nodes and the emerging flow
patterns on the network? How are these flow patterns af-
fected by different groupings of the nodes? What, in turn, is
the impact of these flow patterns on the probability of a
network splitting? How do inertia effects influence the po-
tential splitting process? Although the definition of our
model is based on the specific properties of future energy
networks, it is expected to reflect basic features of other real-
world networked systems, whose robustness is subject to sto-
chastic intermittent flows.

II. DYNAMIC MODEL AND SIMULATION PROCEDURE

Our study system incorporates a model for the nodal state
alternation, a flow model, a lattice layout model and a model
for the cascading link outages.

A. Stochastic nodal state alternation

The two possible states between which all nodes can al-
ternate assume current injections of Pi

+=1 �node state “up”�
when the node acts as a source or Pi

−=−1 �node state
“down”� when the node acts as a sink. This stochastic up-
down-up cycle assumes for every node i constant transition
rates �i and �i, respectively. Hence, this alternating process
is characterized by the cumulative distribution functions of
the up-state and down-state times,

Fi�tu� = 1 − e−�itu, Fi�td� = 1 − e−�itd, �1�

where tu and td are the time spans measured from the mo-
ment of entering the up-state and down-state, respectively.
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The state transition frequency of every node is calculated by

f i =
�i�i

�i + �i
�2�

and corresponds to the average number of up-down-up
cycles per time unit. For simplicity we assign to every node
i the same transition rates �i=� and �i=�, implying the
same transition frequency f i= f . Moreover, the ratio is kept
constant at � /�=1 in order to assign the same probabilities
to both possible states.

B. Flow model

We model the flows on the network by applying an elec-
trical direct current model based on Ohm’s law. Thereby, the
linear relation between the nodal current injections Pi and
the voltages Vi can be put into matrix form

P = BV . �3�

The conductance matrix B has elements Bij =−rij
−1 and Bii

=� j��i
rij

−1 where rij is the resistance of each link �i , j� and �i

is the set of all the directly connected nodes to i. By assum-
ing for simplicity that rij =1 for all links, the flow on a link
�i , j� is given by

Pij = Vi − Vj . �4�

The sum of all the current injections at a given time instant is
not necessarily equal to zero due to the stochastic nature of
the up-down-up cycle. In order to satisfy the balance condi-
tion �iPi=0 at all times, a lack or surplus of the total current
injections within the network is compensated by an addi-
tional, equally distributed injection ����iPi� /N� at every
node. Nevertheless, the satisfaction of the balance condition
implies that the rows of B are linearly dependent. To make
Eq. �3� uniquely solvable, one of the equations in the system

is removed and the node associated with that row is chosen
as the voltage reference Vref=0.

C. Lattice layout and node grouping

We embedded our model for the nodal behavior and the
resulting flows in a regular square lattice of N nodes and L
=2N links with periodic �or “wrap around”� boundary con-
ditions. In this way every node is directly connected to 4
neighbors, thus different conditions for boundary nodes are
avoided. Furthermore, we partition the lattice into several
square groups, each containing an equal number of nodes
�Fig. 1�a��. All the nodes in a given group are in the same
state at all times and alternate states simultaneously. We de-
note the grouping factor G as the number of groups in the
network, thus G=N represents total stochastic independence
between all nodes. As depicted in Figs. 1�b�–1�e�, an in-
creased f results in a higher fluctuation frequency of the
flows. By further varying the grouping factor G, a broad
spectrum of different stochastic flow patterns can be repro-
duced. A high value of G is leading to more smooth flow
time series, while a small value implies a strong fluctuation
around the mean value.

D. Link outage model

In order to incorporate inertia effects in our model, the
link outage mechanism is based on the concept that the flow
Pij�t� determines the “temperature” Tij�t� on the link �i , j�
according to

�ij
dTij�t�

dt
= qijPij�t� − Tij�t� . �5�

The link fails if Tij�t� reaches its capacity Tij
c . In order to

simplify Eq. �5� we set qij =1. The parameter �ij represents
the characteristic time �inertia� constant. As an example,
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FIG. 1. �Color online� �a� Schematic plot of a
12�12 lattice �N=144� with grouping factor G
=9 �left� and G=36 �right�. Note that the coloring
of the groups has been used only due to illustra-
tive reasons, all groups are stochastically inde-
pendent with each other. The total flow �i�j�Pij�
versus time in the left lattice is depicted in �b� for
f =0.01 and in �d� for f =0.5. Similar for the right
lattice in �c� and �e�, respectively. Notice that an
increased f results in a higher fluctuation fre-
quency of the flows. By further varying the
grouping factor G, a broad spectrum of different
stochastic flow patterns can be reproduced. A
high value of G is leading to more smooth flow
time-series, while a small value implies a strong
fluctuation around the mean value.
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such an inertia is present in electric power grids where the
power flows might heat the transmission lines up to a maxi-
mum allowable temperature.

E. Simulation procedure

With respect to the implementation we opted for a
discrete-event-based approach. This allows describing the
time evolution of the nodal states and the resulting flows, as
well as of the link outages and the resulting lattice status. By
means of extensive Monte Carlo simulations we estimated
the expected time until the splitting of the lattice. The simu-
lation procedure comprises the following steps:

�1� Construct the N�N lattice adjacency matrix A and the
N�N conductance matrix B. For all the nodes i in a single
group determine their equal output states Pi at t=0 by a
single Bernoulli trial with probability p=0.5. Set the simula-
tion step to n=0, set t�0�=0 and initialize the temperature of
each link to Tij�t�0��=0.

�2� Calculate the flow Pij on each link �i , j� by Eq. �4�
after solving Eq. �3� for V. For all links �i , j� determine the
subsequent time step 	tij,�n+1�

temp after which they fail. If
Pij�tn�
Tij

c , this time span is given by

	tij,�n+1�
temp = − �ij ln� Tij

c − Pij�t�n��

Tij�t�n�� − Pij�t�n��
� . �6�

For every link calculate the point in time when it fails due to
reaching Tij

c as tij
temp= t�n�+	tij,�n+1�

temp and build the vector ttemp

with elements tij
temp. Determine the time of the first link out-

age as tout,temp=min�ttemp�. Determine for every node i of the
network the point in time ti

s when it changes its state. Then,
the time of the first state change is given by tchange,s

=min�ts� with ts= �t1
s t2

s
¯ tN

s �. Determine the time of the next
simulation event as tnext=min�tout,temp, tchange,s�. Increment the
simulation step to n=1.

�3� Proceed the simulation to t�n�= tnext. Remove the failed
link �if any� from the lattice and update A and B. Recalculate
the output Pi of each node i based on Eq. �1�. Recalculate the
flow Pij and the temperature Tij on each link �i , j�. The flow
Pij remains constant at least until the next event. The tem-
perature Tij�t�n�� is given by

Tij�t�n�� = Pij�t�n−1���1 − e−�1/�ij�	t�n�� + Tij�t�n−1��e−�1/�ij�	t�n�,

�7�

where 	t�n�= t�n�− t�n−1�.
�4� For each node and link recalculate ti

s and tij
temp and

update tchange,s and tout,temp, respectively as described in Step
2. Determine the time of the next event tnext.

�5� Check the connectivity of the lattice. If it remains
connected, increment the simulation step n and go back to
Step 3. Otherwise, stop the simulation.

III. NUMERICAL RESULTS

A. Average flows

To clarify the impact of different grouping factors G and
lattice sizes N on the resulting flow patterns, we estimate the

average flow per link 	Pij
 without considering the link out-
age model,

	Pij
 =
1

L
lim
t→�

�1

t
�

0

t

�
i�j

�Pij�t���dt�
�

1

ttotL
�

n
�
i�j

��Pij�t�n−1���	t�n�� , �8�

where ttot=�n	tn is the sampled overall time span. The av-
erage flow is independent of f , as by increasing the fre-
quency the relative duration among all different nodal state
combinations remains unchanged. Figure 2 shows the values
of 	Pij
 versus the grouping factor G in lattices of different
sizes N. The average flows increase with the lattice size be-
cause for a given G the number of nodes in a group increases
with N leading to a higher current exchange among the
groups. Moreover, 	Pij
 decreases with the number of inde-
pendently alternating groups. For a given lattice size N, in-
creasing G implies less nodes in the groups and thus less
exchange among them. Seen from a different angle, a high
value of G means that less nodes behave simultaneously in
the same way, leading to a more local current exchange and
less flows in the lattice. In contrast, a low G induces higher
flows over longer distances. Interestingly, for a given N the
decrease in the average flow with G follows a power law

	Pij
 � G−b, G 
 9. �9�

The exponent b is rather small and slightly increasing with
the size of the lattice.

As shown in Fig. 3 the data in Fig. 2 collapse onto a
single curve, if the average flows are scaled with �N. This
result can be explained by the flow distribution on the lattice.
The average flow is largely determined by the maximum
flows which are encountered at the boundaries of the groups.
Suppose two lattices with sizes N1 and N2 and same grouping
factor G. Then the maximum possible flows induced by a
�square� group on one of its boundary links, P1

max and P2
max,

are approximately proportional to �N1 /G and �N2 /G with
the same factor respectively. Thus, P1

max / P2
max��N1 /N2.
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FIG. 2. �Color online� Average flows 	Pij
 versus the grouping
factor G, which are well fitted by a power law with characteristic
exponents b, slightly increasing with the lattice size N. The dotted
lines serve as a guide to the eye.
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B. Lattice splitting

The robustness of a lattice is quantified by the expected
time 	tsplit
 when a splitting occurs and the lattice breaks into
two parts �12�. This time span can be interpreted as the life
expectancy of the lattice and depends on the capacity Tij

c of
each link �i , j�. To simplify matters, we assign the same
value Tij

c =Tc and �ij =� to all links. Figure 4 shows the be-
havior of 	tsplit
 versus an increasing value of Tc for two
different grouping factors G and state transition frequencies
f . The expected time until the lattice splits increases expo-
nentially with the link capacity. Hence, 	tsplit
 is highly sen-
sitive with respect to small changes of Tc. For a given value
of Tc, a larger grouping factor G leads to a significantly
higher value of 	tsplit
, as less flows are induced �Fig. 2�. The
effect of varying the state transition frequency f is similarly
large and is examined in more detail in Fig. 5. Starting with
a low value, an increase of f leads to a shorter time span until
the combined nodal states induce those minimum flows,
which are needed for the temperatures Tij to reach the ca-
pacities Tc �Fig. 1�. Consequently, as depicted in Figs.
5�a�–5�d�, the splitting times 	tsplit
 are high at low values of
f and become significantly decreased as the value of f is
increasing. However, as f is exceeding a certain value, the
splitting times start to increase again, and the lattice becomes

more robust. This result can be explained by the inertia ef-
fects according to Eq. �5�. While the flows on the lattice
reach more often higher absolute values �Fig. 1�, the average
residence times of the underlying nodal states begin to fall
below the minimum time needed to heat the links up to their
capacity Tc.

With a small number of groups the combined output is
more fluctuating between the extreme values �Fig. 1, left,
compared to Fig. 1, right�. This, in turn, is leading to a higher
probability to encounter high flows and high link tempera-
tures in a given time span. The splitting times 	tsplit
 thus are
significantly shorter, as depicted in Fig. 5�a�.

By considering the scaling behavior of the average flows
�Fig. 3�, the values of 	tsplit
 collapse for lattices with differ-
ent sizes, but equal model parameters otherwise, if the link
capacities are set as Tc��N. This result is demonstrated in
Fig. 5�b� for three different lattice sizes. Notice that for a
given value of f the average splitting times without adjusting
Tc differ by several decades �Fig. 5, inset�.

As shown in Fig. 5�c� the link capacities Tc can be ad-
justed in such a way, that the splitting times in lattices with
equal N but different grouping factors G overlap for a wide
range of the state transition frequency f . The adjusted capaci-
ties can be fitted by a power law with characteristic exponent
−0.23 �Fig. 5�c�, inset�, being remarkably close to the char-
acteristic exponent b of Eq. �9�.

The effect of the inertia is shown in Fig. 5�d� by varying
the inertia constant �. Without any inertia, i.e., �=0 implying
Tij�t�= Pij�t� �Eq. �5��, the splitting time declines with slope
1 / f . In average, the number of state transition events in-
creases linearly with f in a given time span. This, in turn,
decreases the average time until a maximum allowable flow
Pij =Tc on a link �i , j� is reached, in an inversely proportional
manner. However, for �0 a minimum average splitting
time arises for a roughly estimated value of f �0.05 /�.

In order to quantify the damage after the splitting, we
follow �13� and measure the average relative size of the
larger of the two remaining connected components

	C
 = 	N�
/N , �10�

where 	N�
 denotes the average number of nodes in the
larger connected component. Figure 6 shows the average
relative size of the larger connected component 	C
 for dif-
ferent grouping factors G and link capacities Tc versus the
state change frequency f . The size of the larger connected
component is rather independent of the flow fluctuation fre-
quency as determined by f . While keeping the same link
capacities �Fig. 6, values for Tc=4� there is no clear indica-
tion with regard to the dependence of 	C
 on the grouping
factor G. For a given G, decreasing the link capacities Tc

slightly increases the value of 	C
. For a smaller value of Tc

lower flows are sufficient to overload the links and cascades
may develop in smaller regions. Hence, the failing links en-
velop a lower number of nodes eventually breaking away
from the lattice, implying a larger size of the remaining con-
nected component after the splitting. However, for the cho-
sen values of Tc the average relative size remains approxi-
mately in the range 0.65� 	C
�0.75.
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FIG. 3. �Color online� Collapse of all the average flow data
shown in Fig. 2 by scaling as 	Pij
 /�N, versus the grouping factor
G. The collapsed data follow a power law with characteristic expo-
nent −0.27. The dotted lines serve as a guide to the eye.
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indicate the 95% confidence interval. The dotted lines serve as a
guide to the eye.
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IV. SUMMARY AND CONCLUSIONS

To sum up, in this paper we have introduced a minimal
model for stochastic intermittent flows on lattices. These
flows might induce cascading link overloads eventually lead-
ing to a lattice splitting into two parts. In order to better
represent real systems we implied an inertia in such a way
that a link does not fail immediately but rather delayed when
it becomes overloaded. By extensive Monte Carlo simula-
tions we revealed how the time until such a splitting occurs
depends on different flow patterns. With an increasing num-
ber of �stochastically� independent nodes the average flows
decrease slowly, following a power law. With regard to the

robustness of the lattices, a high sensitivity of the splitting
time to the link capacities is observed. Increasing the flow
fluctuation frequency �as determined by the nodal state alter-
nation� decreases this time span until reaching a minimum,
after which it rises again meaning a higher “life expectancy”
of the lattice. Generally, both a higher stochastic indepen-
dence among the nodes �i.e., more groups of simultaneously
alternating nodes� and a smaller size of the lattice imply
higher splitting times. However, these time spans seem to
coincide by adjusting the link capacities according to a
power law with respect to the node grouping, and according
to the square-root of the lattice size, respectively. Further-
more, we have shown that the effect of the inertia is signifi-
cant. Its absence implies a monotonic decrease of the split-
ting times, while introducing it results in remarkably higher
values for higher inertia constants. As an indication of the
damage after the splitting, the relative size of the larger con-
nected component seems to be independent of the flow fluc-
tuation frequency but slightly decreases with the link capac-
ity.

We conclude with some thoughts on the implications of
these results for future energy networks, being characterized
by a large share of renewable intermittent power sources.
The more distributed the power sources are �being equivalent
to more groups in our model�, the lower the flows exchanged
over the power grid �Figs. 2 and 5�a��. However, even in a
highly distributed system, a considerable transmission capac-
ity is still needed to keep the system at the desired level of
security �Fig. 5�c��. Increasing the size of the grid can be
expected leading to a disproportionally small increase of the
flows �Fig. 3�. Restricting the capacities of the transmission
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FIG. 5. �Color online� Expected time 	tsplit

until the lattice splitting versus the state transition
frequency f . If not stated otherwise, the lattices
have size N=576. The error bars indicate the 95%
confidence interval. �a� Effect of different group-
ing factors G. The parameters of the dynamic
model are set to �=1 and Tc=4. �b� Collapse of
the splitting time data in lattices of different sizes
N with G=36, by adjusting the link capacities
according to Tc=a�N with a=1 /6. The inertia
constant is set to �=1. The average splitting times
without adjusting Tc are depicted in the inset for
N=576 and N=900. The corresponding values
for N=144 are omitted as the high splitting times
induce prohibiting simulation run times. �c� Col-
lapse of 	tsplit
 with �=1 due to adjusting Tc ac-
cording to the grouping factor G. The inset shows
the chosen value of Tc for each value of G, being
fitted by a power law. �d� Effect of the inertia
constant � on the splitting times with G=36 and
Tc=4.
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lines or, equivalently, operating the system closer to its secu-
rity margins might reduce the robustness of the network
against cascading failures drastically �Fig. 4�. The inertia as
induced by the heating of the transmission lines which might
fail when reaching a maximum allowable temperature, po-
tentially increases the robustness of power grids with large
share of renewables �Fig. 5�d��. The same effect can be even
exploited for increasing existing transmission line capacities,
thus improving the economic performance of the system
�14�. If the grid breaks apart as a result of cascading line
failures, the sizes of the two formed islands can be expected
to be largely independent of the flow fluctuation frequencies.
Nevertheless, they seem to slightly become more asymmetric
with decreasing power transfer capacities thus leaving a
larger remaining connected component of the network �Fig.
6�.

Our model provides insights into the underlying physics
of networks subject to stochastic flows. Therefore, we be-
lieve that besides future energy networks, potential applica-
tions could be investigated on other real-world systems such
as traffic networks.
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