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We analyze the coherence resonance phenomenon in an ensemble of noise-driven excitable neurons giving
special attention to the role of the interaction topology. The neural architecture is modeled using a spatially
embedded network in which we can tune the network organization between scale-free-like with dominating
long-range connections and a network with mostly adjacent neurons connected. We found that besides an
optimal noise intensity, also an optimal network configuration exists at which the largest average coherence of
noise-induced spikes is achieved. Furthermore, we show that long- as well as short-range interactions between
neurons should exist in order to achieve the optimal response of the neuronal network.
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I. INTRODUCTION

It is well known that noise can act as an ordering agent in
several nonlinear systems. Perhaps the most famous phe-
nomenon related to this apparently paradoxical fact is sto-
chastic resonance, where the response of a weakly driven
stochastic nonlinear system exhibits a resonancelike depen-
dence on the noise intensity �for review, see �1��. Interest-
ingly, constructive effects of noise can also be observed in
systems without weak external inputs, whereby the estab-
lished term describing this phenomenon is coherence reso-
nance �2,3�. A particularly lively subject appears to be the
study of noise-induced effects in excitable systems �4�, since
excitability has been recognized as a fundamental property
of several biological and artificial systems �5�. Perhaps the
most striking examples concern neuronal systems �6�, al-
though several other examples range from cardiac tissue �7�
and chemical reactions �8� to laser optics �9� and aquatic
ecosystems �10�.

While primal investigations of stochastic and coherence
resonances have scrutinized mainly systems with relatively
small numbers of degrees of freedom, the scope has been
shifting to coupled and spatially extended systems with
many degrees of freedom, where numerous interesting con-
tributions regarding collective noise-induced dynamic behav-
ior have been reported �for review, see �11��. Here, we would
like to highlight the quite recent work of Tessone et al. �12�,
who showed that intrinsic diversity, i.e., static disorder, can
also provoke a resonantly enhanced collective behavior,
where the response of the system exhibits a clear maximum
with the variation of inherent variability. Their findings were
recognized to play an important role in several other setups
ranging from soft-matter systems �13� to biological signaling
pathways �14�, whereby special attention has been devoted to
ensembles of neural elements �15�.

In the past, the majority of scientific research dealing with
spatially extended systems was devoted to the study of the

dynamics on regular networks. However, recently, the focus
has been shifting toward ensembles characterized with com-
plex interaction topologies, as constituted by small-world or
scale-free networks �16�. Such networks appear to be excel-
lent for modeling of interactions among units in complex
systems, since many natural, social, and technological sys-
tems can be regarded as complex networks, in which vertices
represent interacting units and the edges signify interactions
among them. In particular, small-world and scale-free net-
work properties have been identified in several real-world
networks such as the world-wide web, scientific collabora-
tion, and other social networks as well as in biological net-
works �17�. Furthermore, many real networks are embedded
in metric space and the connectivity is also a function of the
Euclidean distance between the vertices �18�. The most
prominent examples of such complex networks are the inter-
net, mobile communication, traffic networks, and power
grids. Most remarkably and immediately related to the
present study are the recent studies which have revealed that
the same general principles in the structural and functional
organizations of complex networks are present in the nervous
system �19,20�. Those features were found on microscopic
level, considering individual neurons, as well as on macro-
scopic level, in the context of gross neural connectivity.

Recently, stochastic and coherence resonances have been
intensively studied on complex networks in various situa-
tions �21–23�. In particular, studies incorporating small-
world network models in general point out an enhanced re-
sponse and a greater synchronization due to the added short-
cut links �21�. Furthermore, similar investigations on scale-
free networks also emphasize advantages of complex
interaction topologies �22,23�.

In contrast to these previous studies on small-world and
scale-free networks, we are trying to find out the best net-
work configuration at which the noise-induced oscillations
are the most regular without choosing any specific network
configuration. To this purpose, we analyze the coherence
resonance phenomenon in a noise-driven excitable system by
embedding individual units in Euclidean space. In particular,
we construct a network representation of the neural architec-
ture, where the vertices are excitable neurons and the links
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model interactions among them. Development of our net-
work model is based on the vertex fitness network model
�24,25� and the spatially embedded vertex fitness network
model �26�. Accordingly, a fitness value is assigned to each
element of the network and vertices are connected with the
probability depending on the vertex fitness and their spatial
localization. Notably, variability of vertex fitness values is a
consequence of diversity of neuron cells, which is realized
by distributing the thresholds values for large-amplitude fir-
ing of individual neurons. Moreover, a control parameter is
present in the model which signifies the nature of the net-
work. In particular, by modifying the parameter, the network
topology can smoothly be altered between a scale-free-like
network with dominating long-range connections originating
from highly connected nodes and a random geometric net-
work where mostly adjacent neurons are connected. In this
study, in which we do not prejudice any network configura-
tion of the neuronal architecture, we show that for different
distributions of excitability, the optimal network topology is
always between a scale-free-like network organization and a
strong geometric regime. Our results thus indicate that long-
as well as short-range interactions between neurons should
exist in order to ensure an optimal response of the neuronal
network.

II. MATHEMATICAL MODEL AND SETUP

One of the most commonly used models of excitable os-
cillators is the famous Fitzhugh-Nagumo system �27�, which
has been derived from the Hodgkin-Huxley model describing
the excitable dynamics of electrical signal transmission along
neuron axons �28�, but is due to its relatively simplicity
nowadays utilized for the description of various situations
exhibiting excitability. In the present study, we also utilize
the Fitzhugh-Nagumo equations for managing the dynamics
of individual units. The model along with the additive noise
and the coupling term takes the following form:

�
dui

dt
= ui�1 − ui��ui −

vi + b

ai
� + D�

j

�ij�uj − ui� + ��i,

�1�

dvi

dt
= ui − vi, �2�

where ui�t� and vi�t� are dimensionless variables representing
the membrane potential and the time-dependent conductance
of potassium channels of the ith unit, respectively. Parameter
��1 guarantees that the dynamics of ui is much faster than
that of vi and � signifies the intensity of additive Gaussian
white noise �i with zero mean and unit variance. Parameters
b and a determinate the excitable dynamics, where the latter
is assumed to follow a power-law distribution

P�a� � a−�. �3�

In particular, values of ai are assigned deterministically as
follows �26�:

ai = �i/N�1/�1−��, �4�

where i=1,2 , . . . ,N and N signifies the number of units.
Then, we bound the given values ai so that they are confined
within the interval ai� �0.51,0.99� for any values of �,
whereby the characteristics of the distribution remains un-
changed. In this manner, the dynamics of each oscillator is
governed by a single excitable steady state ui=vi=0. When
perturbations of the excitable steady state exceed the thresh-
old, the system is set into the firing state, which is character-
ized by large-amplitude spikes. Heterogeneity of values ai
introduces diversity of the threshold values for large-
amplitude firings, whereby the thresholds decrease with in-
creasing values of ai.

The sum in Eq. �1� signifies the coupling and it runs over
all units, whereby �ij =1 if the cell i is coupled to cell j,
while otherwise �ij =0. D is the coupling constant. The net-
work connectivity was calculated as follows �26�:

	i→j �
aiaj

�li,j�
 , �5�

where li,j signifies the Euclidean distance between ith and jth
cell and 
 is a model parameter that controls the range of
interaction between the cells, with 
�1 for long-range inter-
actions and 
�1 for short-range interactions. Thus, the ith
and jth cells are connected if the connectivity exceeds the
threshold value 	i→j �. Given a fixed set of N cells, we
can set the number of links �or mean vertex degree 	k
� in the
network by choosing the appropriate �. The model given by
Eq. �5� is similar to the probability function employed by
Morita �26�, where, for simplicity reasons, the distance li,j
was defined by the Lmax norm, while in our calculations, the
usual L2 norm is used. Furthermore, in contrast to the model
in Ref. �26�, we did not apply any boundary conditions. Spa-
tial localization of individual cells was determined by ran-
domly distributing the vertices on a plane and no correlations
between the position and values of ai were assumed. We
show in the upper row of Fig. 1 some characteristic examples
of network generation for different 
. Clearly, for 
=0.5,
long-range connections are dominating in the network
mostly originating from a few well-connected vertices, i.e.,
hubs. Here, the majority of the units are connected exclu-
sively to some of those highly connected vertices, which
have the largest values of ai. On the other hand, for 
=5, the
distance between the units is the key constraint that defines
the topology of the network, so that in general, only adjacent
units are connected. For intermediate values of 
, long-range
as well as short-range interactions can be found. In order to
quantify the network properties, we calculated the corre-
sponding degree distributions. As shown in the lower row of
Fig. 1, the degree distribution for the network with 
=0.5 is
highly inhomogeneous, indicating a scale-free character of
the network, and for 
=5, the degree distribution obeys a
Poisson distribution, hallmark of random graphs. For inter-
mediate values of 
, for example, 
=1.5, the degree distri-
bution follows a power law at least in a certain extent. We
can observe that there are still some well-connected hubs.
However, on account of connections that are present also
between neighboring units, the degree of the most connected
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vertices is in this case considerably smaller as it is in the case
with 
=0.5.

It should be emphasized that the power-law distribution of
ai is not crucial, but also others, e.g., uniform or Gaussian
distribution, could be used with values confined in the same
interval. With the other distributions, qualitatively similar
networks appear in dependence on 
, e.g., for 
 close to 0,
we get a network with only few hubs, which are connected
with the majority of the nodes via long-range links, but in
this case, the degree distribution does not exactly follow the
power law. As it was shown by Servedio et al. �25�, a scale-
free network can be produced by arbitrary distributions of
vertex fitnesses, but in this case one has to find a suitable
linking probability function, which is in general different
from those used in the present study �Eq. �5��, even at 
=0.

Due to the inhomogeneous distribution of the thresholds
for large-amplitude firings, the dynamics of the network is
governed by a pacemaker-like mechanism. Namely, units
with lower thresholds are triggered earlier and thus imply
their rhythm to other units of the network. As a result, an
interesting interplay between noise intensity, coupling prop-
erties, and the distribution of ai is observed. In particular, we
are especially focused on the impact of network configura-
tion on the quality of the noise-induced global response. In
order to quantify the coherence of noise-induced firing at
different noise intensities and for different network configu-
rations, we calculate the normalized autocorrelation function
of ui�t�,

Ci��� =
	ũi�t�ũi�t + ��


	ũi
2�t�


, �6�

where ũi=ui− 	ui
. Afterwards, we signify the regularity of
firings by calculating the correlation time Ti according to the
formal equation for each of the units

Ti =� Ci
2�t�dt , �7�

which is a suitable and commonly used measure for the regu-
larity of the excitations �3�. In particular, larger values of Ti

correspond to a greater coherence of noise-induced spikes. In
order to evaluate the response of the entire network with a

single quantity, we introduce T̄, the average Ti of all units,

defined as T̄=N−1�i=1
N Ti. Importantly, the final average cor-

relation time T̄ presented in the figures was obtained by av-
eraging over 50 independent realizations in order to reduce
statistical fluctuations originating from the stochastic dynam-
ics and from randomness incorporated in network genera-
tions. System parameter values used throughout the study
were b=0.01, �=0.02, D=0.5, 	k
=5, and N=100.

III. RESULTS

In what follows, we will present the noise-induced re-
sponse of the units in dependence on the network topology

and on the noise intensity. For this purpose, we calculated T̄
for different noise intensities � and for different network
configurations 
. The color-contour plot in the left panel of
Fig. 2 features the results. It can be observed nicely that
besides optimal noise intensity, also a greatest possible net-
work configuration exists at which the noise-induced firing
of the whole network is most regular. Furthermore, the cross

section presented in the right panel of Fig. 2 showing T̄ in
dependence on 
 at optimal noise strength additionally cor-
roborates the resonant response due to the change in topol-
ogy.

To gain more insight into the observed phenomenon, we
show in Fig. 3 responses of individual units Ti for three
characteristic values of 
. It can be noticed that in case where
long-range connections are dominating in the network and
the degree distribution is a scale-free-like �
=0.5�, values of
Ti decrease quite quickly with increasing i. At this point, it
should be emphasized once again that values of ai are also
decreasing with increasing i, as given by Eq. �3�. However,
in the middle panel of Fig. 3, where the responses at 
=1.5
are shown, we can observe that in comparison to the case
where 
=0.5, values of Ti decrease slower, so that a larger
portion of the units exhibit larger values of Ti. Accordingly,

in this case, a greater collective response reflected by T̄ is

FIG. 1. �Color online� Characteristic network
representations of the neural architecture �upper
row� for 
=0.5 �left panel�, 
=1.5 �middle
panel�, and 
=5 �right panel� and the correspond-
ing degree distributions �lower row�. In both
cases, the mean degree was set to 	k
=5 and the
scaling exponent was �=2.5. The number of
units in network representations is N=100,
whereas the calculation of the degree distribution
was performed for N=5000 nodes and averaged
over ten independent network generations.
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noticed, as already recognized in Fig. 2. Finally, in the case
where mostly neighboring units are connected and the degree
distribution obeys a Poisson distribution �
=5�, the coher-
ence of individual units does not significantly depend on i
and values Ti. The units with the highest excitability �i
�10� are quite lower as in the former two cases, so that

consequently values of T̄ are lower too. These results clearly
indicate that an optimal response of neural network is
achieved in the intermediate regime between a network with
a few very well connected hubs and a random geometric
network. Apparently, very big differences in connectivity be-
tween individual units in networks with dominating long-

range connections �see left column in Fig. 1� result in a less
coherent collective response. It seems that even though neu-
rons with the lowest-firing thresholds have widespread con-
nections almost over the whole network, the best coherence
in this case cannot be achieved due to the discrepancy in the
node degree. On the other hand, in a network with mainly
short-range interactions, there are no distinctive differences
in connectivity so that the most excitable neurons cannot use
their power and fail to efficiently dictate the rhythm to the
network. So, it seems that only a fine-tuned ratio between
long- and short-range connections ensures the greatest col-
lective coherence of noise-induced spikes. In such a network,
neurons with the highest excitability operate as hubs that
drive the dynamics of a local interconnected neighborhood
�see middle column in Fig. 1� and besides communicate
among themselves with long-range links.

We additionally examined the role of scaling exponent �,
which characterizes the distribution of excitability �see Eq.
�3��. In particular, we verified if qualitatively similar results
are obtained for different values of �. Results are shown in
Fig. 4. A comparison to Fig. 2 reveals that for other values of
�, comparable results are obtained, since in all cases an in-
termediate network configuration exists at which the greatest
coherence is achieved. However, for lower values of the scal-
ing exponent ��=1.5 and �=2�, the optimal response is at-
tained at higher values of 
, whereas for �=3 and �=3.5, the
optimum is located at lower values of 
. In other words,

FIG. 3. �Color online� Resonant responses of individual units Ti

in dependence on � for different network configurations: 
=0.5
�left panel�, 
=1.5 �middle panel� and 
=5 �right panel�. The scal-
ing exponent � is the same as in Fig. 2.

FIG. 2. �Color online� Color-coded values of T̄ in dependence
on � and 
 �upper panel� and the cross section of the color map at
optimal noise intensity �=0.17 �lower panel� for the scaling expo-
nent �=2.5.

FIG. 4. �Color online� Color-

coded values of T̄ in dependence
on � and 
 �upper row� and the
cross section of the color map at
optimal noise intensity �=0.17
�lower row� for different scaling
exponents: �=1.5 �left column�,
�=2 �second column from left�,
�=3 �third column from left�, and
�=3.5 �right column�.
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there is a shift of the optimal network configuration toward
lower values of 
 as � is increased. This phenomenon is
further analyzed in the continuation.

To establish a link between the dynamics and the structure
of the network, we calculate the global efficiency of the net-
work and the average Euclidean distance between the edges
in dependence on the network parameter 
. The average Eu-
clidean distance 	li,j
 is simply calculated by averaging all
the distances li,j between the units which are connected with
each other. The efficiency E, an indicator of the traffic ca-
pacity of the network, is defined as follows:

E =
1

N�N − 1��i�j

1

di,j
, �8�

where di,j is the length of the geodesic from unit i to unit j.
It can be noticed that E is inversely related to the average
minimum path length, but is numerically easier to use for the
estimation of topological distances between elements of dis-
connected graphs.

Since we are actually interested in comparison of the av-
erage geodesic distance dependence on the network structure
and how the average Euclidean distance changes when 
 is
varied, we analyze the 1 /E and 	li,j
 dependence on 
. In this
way, we seek to quantify the crossover from a heterogeneous
to a homogeneous network organization. For a better com-
parison, we normalized both quantities, 1 /E and 	li,j
, so that
they are bounded in the unit interval. Results for three dif-
ferent values of the scaling exponent � are shown in Fig. 5.
As it has been qualitatively ascertained in Fig. 1, 	li,j
 de-
creases as 
 is increased, whereas the average shortest path
length, quantified via 1 /E, is increasing. Most remarkably,
for all three values of �, the curves intersect at approxi-
mately the same values of 
 which were identified to warrant
the optimal response of the system �see Figs. 2 and 4�. We
can thus hypothesize that the points of intersection designate
the turning point between a network with mainly long-range
connections and a network where principally only short-
range connections exist. We notice that for higher values of
the scaling exponent �, the crossover is inferred at lower

values of 
. This observation is completely in accordance
with the results shown in Fig. 4, where the optimal 
 is also
found decreasing as � is increased.

IV. DISCUSSION

We studied the coherence resonance phenomenon on a
spatially embedded vertex fitness network model. By
smoothly varying the network topology from a scale-free-
like to a topology that exhibits random geometric graph
properties, we found that besides optimal noise intensity, also
an intermediate network configuration exists, at which the
noise-induced oscillations are the most regular. For various
distributions of excitability, the optimal topology always lies
between a scale-free network organization with dominating
long-range connections and a network with a strong geomet-
ric regime. In particular, the greatest response of the network
is achieved if both, long-range as well as short-range con-
nections are present. In this case, some excitable units act as
hubs that govern the dynamics of a local interconnected
neighborhood. Moreover, there are some long-range links in
the network, which principally represent connections be-
tween those hubs �see middle column in Fig. 1�. For com-
parison, hubs are also present in scale-free networks; how-
ever, in this case, the hubs act as global pacemakers with a
very large node degree influencing very different parts of the
network, which does not ensure such a coherent response of
the whole network. On the other hand, in case of regular
geometric networks, where hubs are missing, a global coher-
ent response of the network is also hard to obtain. Therefore,
an optimal number of hubs and optimal ration between short-
and long-range connections are required.

Although the results are obtained for a rather simple net-
work representation of a neural architecture, they allow us to
discuss several interesting aspects of possible functional or-
ganization and topology of complex neural networks. Two of
them are of particular importance. First, the neural network
organization can neither be firmly described by a regular
network nor it can be treated as a pure scale-free network;
however, the network must at least contain a few “hub” neu-
rons possessing long-range connections that link large num-
bers of cells. Second, the variability of neurons is of crucial
importance for optimal stochastic resonant responses.

The existence of hub neurons is still speculative. Graph
theory predicts that topologies, which include hubs, represent
an effective design to orchestrate synchronization and, in
general, offer a compromise between computational needs,
wiring economy, and robustness. The usual understanding of
such networks is that the neurons are mostly connected with
their neighbors, but also connected by some long-range links
�20�. For archetypal anatomical neural networks, for ex-
ample, it is known that on one hand, they have a degree
distribution compatible with the existence of hubs, but on the
other hand, they are sparsely connected, so that the physical
distance between neurons is close to minimal �19�. In that
way, an efficient information transport between nodes is
achieved at low connectivity cost. A closer inspection of the
results presented in Fig. 5 reveals that these circumstances
can be regarded as fulfilled in the proximity of the critical

FIG. 5. �Color online� Normalized average Euclidian distance
between coupled units 	li,j
 and the mean path length quantified via
1 /E in dependence on 
 for different scaling exponent values �.
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points. Namely, even if the mean path length is larger at
optimal network configuration and with that the global effi-
ciency is lower, the average Euclidean distance between neu-
rons is at that point much lower than in case the average
geodesic distance is minimal. Apparently, the optimal ratio
between those quantities is attained in the vicinity of points
of intersection.

Experimentally, the existence of neuronal hubs is hard to
confirm, perhaps of the conceptual and technical difficulties
of investigating them, including the rarity of high-connected
cells �hubs� as compared to all other low-connected cells.
However, recently, a considerable progress in experimental
investigations has been made. A method was designed to
map functional connectivity in real time in living brain
slices, which confirmed the existence of functional hubs and
helped to find cells involved in the synchronization of neu-
ronal networks �29�. The most recent hypotheses indicate
that the neuronal hubs orchestrate physiologically relevant
activity in cortical assemblies, as well as being causal in
producing pathological oscillations �29,30�.

The synchronization and phase locking are no longer di-
rectly and automatically related to only pathological behav-
iors such as epilepsy. It has been shown, for example, that
exactly the phase-locked oscillating neuronal groups can in-
teract effectively because their communication windows for
input and for output are open at the same time. Thus, a flex-

ible pattern of coherence defines a flexible structure, which
subserves our cognitive flexibility �31�.

The pathological behaviors are also not directly connected
to a given network structure. In particular, for neuronal net-
works characterized by hubs, it has been shown that by
changing parameters such as the synaptic strengths, number
of synapses per neuron, and proportion of local versus long-
distance connections, all kinds from “normal,” “seizing,” and
“bursting” behaviors can be obtained �32�. In this context,
the seizing phase is related to the second epileptic phase
characterized by high-frequency oscillations, usually follow-
ing after the first stage of depolarization �33�.

Next, we emphasize the importance of neuron variability.
We found that the variability of neurons is of crucial impor-
tance for optimal stochastic resonant responses. This model
prediction is fully in accordance with very recent studies
noting the importance of variability of units constituting the
network, which is an apparent feature of several real-life
systems including neurons �15,23,34�. These studies examine
heterogeneity in neuronal systems, where the disparity be-
tween individual neurons is obvious �35� and has besides
been realized to constructively affect the dynamic behavior
of coupled neurons �36�. However, in order to be able to
assess the real biological relevance of this model as well as
to find the physiological origin of all the short-range and
long-range links, additional experimental and theoretical
studies will be needed in the future.
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