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An alternate model for rumor spreading over networks is suggested, in which two rumors (termed rumor 1
and rumor 2) with different probabilities of acceptance may propagate among nodes. The propagation is not
symmetric in the sense that when deciding which rumor to adopt, nodes always consider rumor 1 first. The
model is a natural generalization of the well-known epidemic SIS (susceptible-infective-susceptible) model and
reduces to it when some of the parameters of this model are zero. We find that preferred rumor 1 is dominant
in the network when the degree of nodes is high enough and/or when the network contains large clustered
groups of nodes, expelling rumor 2. However, numerical simulations on synthetic networks show that it is
possible for rumor 2 to occupy a nonzero fraction of the nodes in many cases as well. Specifically, in the
Watts-Strogatz small-world model a moderate level of clustering supports its adoption, while increasing ran-
domness reduces it. For Erdos-Renyi networks, a low average degree allows the coexistence of the two types
of rumors. In Barabasi-Albert networks generated with a low m, where m is the number of links when a new

node is added, it is also possible for rumor 2 to spread over the network.
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I. INTRODUCTION

The investigation of social spreading phenomena such as
the propagation of rumors, the diffusion of fads, the adoption
of technological innovations, and the success of consumer
products mediated by word of mouth, has a long tradition in
sociology and economics. Effects of the network of contacts
in the spreading process have been postulated long since
[1,2], and recently, with the development of the theory of
complex networks, these effects are gradually unraveled. In
fact, in the last decade, complex networks theory has paved
the way for exploring many real-world large-scale networks,
and describing and understanding various processes that play
out on the nontrivial topology of these networks. Much of
the studies in this respect are concerned with spreading pro-
cesses such as virus propagation in social and computer net-
works [3-8], the diffusion of innovations [9,10], the occur-
rence of information cascades in social and economic
systems [11,12], disaster spreading in infrastructures [13], or
information diffusion in a society through the word-of-mouth
(w-0-m) mechanism [14], to name a few.

The most popular model for information or rumor spread-
ing, introduced by Daley and Kendall [15], see also [16-19],
is conceptually similar to the SIR (susceptible-infective-
recovered) model for epidemiology. Agents are divided into
three classes: ignorants, spreaders, and stiflers, i.e., those
who have lost interest in diffusing the information or rumor.
Their role is exactly the same as the susceptible, infective,
and recovered agents of the SIR model, respectively. Epide-
miological models have since been repeatedly used for de-
scribing information spread, such as, topic flow in blogspace
[20], and word of mouth in product marketing [14].
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Other widely used models for describing collective social
behavior are the threshold models, first proposed by Gra-
novetter in [21]. Each individual has a specific threshold,
based on which a binary decision is made. More formal defi-
nitions which take social network structure into account have
appeared since, the simplest version of which is the linear
threshold model [22]. A variant of the threshold model has
been used, for example, in [9,10] for describing diffusion of
innovations in a population. The effects of network topology
for the threshold model have been analyzed by [11,12].

However, in the context of complex networks research, so
far the spread of only one type of information through a
network has been considered (a notable exception is [23], as
we outline later). In this paper we present a model of rumor
(information) spreading, where two different types of infor-
mation affect the nodes, and consider the behavior of the
model for different network topologies. We term the two
types of information rumor 1 and rumor 2.

The model we propose is a natural extension of the SIS
epidemiological model, where a node in the network can be
in the susceptible state, not having contracted the disease, or
in the infective state, able to spread the disease to each of its
neighbors. Infectives recover, becoming susceptible to the
disease again. In our model the nodes are divided into three
classes: ignorants, rumor 1 spreaders, and rumor 2 spreaders.
Namely, each node is “susceptible” to the effects of two
kinds of “infections” and is able to recover from them as
well. Moreover, the source of rumor 1 has a dominant posi-
tion in the sense that the nodes will always consider rumors
coming from this node first. This formulation could be sig-
nificant for describing two w-o-m processes circulating in a
social network, e.g., concerning two competing products in
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the market, or two candidates form opposing parties in elec-
tions, one of which has a better standing in the public eye.
We note that rumor spreading also has appealing connections
with the search for robust scalable communication protocols
in large distributed systems [24,25], “viral” strategies in mar-
keting [26], and epidemic routing in ad hoc networks
[27,28].

When considering rumor spreading, some of the relevant
questions are similar to those for epidemiology: How many
nodes will eventually be reached by the rumor? Is there an
“epidemic threshold” (i.e., critical point) for the rate of
spreading, separating a regime in which a finite fraction of
nodes will be informed from one where the rumor remains
confined to a small neighborhood? There is a large amount of
studies concerning epidemic spreading from a complex net-
works perspective. Using percolation theory ideas and gen-
erating function methods [3] give exact analytical results for
the epidemic threshold, outbreak size, and other relevant
quantities for the SIR model. The results represent average
values over an ensemble of random graphs with an arbitrary
degree distribution. In [4,5], the absence of an epidemic
threshold has been established for the SIS model and infi-
nitely large networks with a power-law degree distribution
k77,2 <y=3, whereas [6] shows the existence of a threshold
for clustered power-law networks. Rather than determining
the epidemic threshold for a whole class of networks with a
given degree distribution, [7,8] propose its calculation for a
specific network given with an adjacency matrix, for a SIR
and SIS model, respectively. We follow this idea to deter-
mine the rumor spreading threshold in our model. As to the
effect of network topology on the spreading process, Watts-
Strogatz small-world networks have been found to be less
susceptible to spreading processes as network randomness
increases in threshold models [12], and more susceptible
with increasing randomness for the SIR model [18,19].
Power-law networks are reported as more resilient to large
outbreaks than comparable uniform random graphs for
threshold spreading models with random initial spreaders
[11], and Iess resilient for the SIS model [4].

Finally, we outline a study which is close to our work in
the sense that two rumor types spread through the network.
Namely, in [23], Goldenberg et al. investigated the effects of
both positive and negative w-o-m on a firm’s profits. In this
study, negative w-o-m is limited to traveling two hops away
from its source. In our model, both rumor types can spread
arbitrarily far from their respective sources.

The paper proceeds as follows. Section II defines the
model and analyzes the stability of its dynamics. In Sec. III
we describe the behavior of the model on regular network
topologies, namely the star and fully connected topology.
Results of the rumor dissemination simulations on complex
network topologies are given in Sec. IV. The last section
concludes the paper and points out potential research direc-
tions.

II. RUMOR SPREADING MODEL
A. Definition of the model

Consider a closed population of N individuals, connected
by a neighborhood structure which is represented by an un-
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directed unweighted graph G=(V,E) with node set V and
edge set E. Let A denote the adjacency matrix of the graph
G,ie. a;=1if (i,j) € E and a;;=0 otherwise. We propose a
discrete stochastic model for rumor spreading in a network.
The model allows for two different types of rumor coming
from two different sources, to spread through the network. At
time k, each node i can be in one of three possible states: 1,
2, and 3. The state of the node is indicated by a status vector,
an indicator vector containing a single 1 in the position cor-
responding to the present state, and 0 everywhere else,

si(k) =[5} (k)s7(k)s? (k)]

foralliel,...,N. Anode being in state 1 or 2 indicates that
it is a supporter, or adopter of rumor 1 or 2, accordingly.
State 3 signifies an undecided or neutral state of the node in
relation to the two rumors circulating in the network. Let

p.(k) = [p! ()P ()pi (k)T

be the probability mass function of node i at time k. For
every node i it states the probability of being in each of the
possible states at time k. Having defined that, the equations
describing the dynamics of each node, i.e., the evolution of
the model, are

pi(k+1) =53 (k)f; + ays; (k)
pAk+1) = s3(K)(1 = f7)g; + ars?(k)

pilk+ 1) =53 (k) (1 = f)(1 = g) + (1 —ay)s} (k)
+(1- az)siz(k)

s/ (k+ 1) = MultiRealize[p! (k+1)] (1)

where MultiRealize[ -] performs a random realization for the
probability distribution given with p!(k+1). a; and a, are
parameters, 0=a;=1 and 0=a,=1. In the model f; and g;
are given by

N
filk)=1- H [1- BaijS}(k)],
J=1

N
gilk)=1- H [1- ’Yaljjsjz‘(k)]- (2)
j=1

In the last two expressions 8 and 7y are parameters, 0=/
=1 and 0=7y=1. We note that a discrete stochastic SIS
model can be obtained as a special case of the rumor spread-
ing model by setting a,=0, y=0 and no nodes in status 2
initially. Status 1 is then the infective state, and status 3 is the
susceptible state, with the curing rate of the disease being
5= 1 —daj.

The mechanism of spreading is the following. Each node
in status 1 attempts to send a message to each of its neigh-
bors at the beginning of time k. Each attempt is successful
with probability 8 and is independent of other attempts. The
nodes in status 2 also send messages to each of their neigh-
bors with probability . Hence, f; and g; are the probabilities
that node i receives a status 1 or status 2 message from its
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neighboring supporters of rumors 1 and 2, accordingly. How-
ever, note from the formulation of Eq. (1) that node i will
actually be able to become a supporter of rumor 2 at (k+1)
only if, at time k, it does not receive a status 1 message from
its neighbors. More precisely, the probability of converting
from an undecided status to status 2 is not g;, but it is mul-
tiplied by the factor (1—f;) which in general is smaller than
1. Conversely, node i can become a supporter of rumor 1
regardless of whether it receives a status 2 message or not. In
this way, the model has prebuilt a preference in each node for
the rumor of type 1, as if though its source was more credible
or more reputable. Additionally, after adopting a particular
type of rumor, the nodes in states 1 and 2 continue to pre-
serve their status at a rate of a; and a,, respectively, i.e., they
convert back to status 3 with a rate of (1—a,) and (1-a,),
respectively. The parameters a; and a, can be said to signify
the remembrance rate of each rumor, or how long the nodes
are willing to support the adopted rumor before abandoning
it and converting back to an undecided status.

A model of this kind could potentially be useful for a
variety of real-world situations. In marketing circumstances,
one can imagine a product entering the market and having to
compete with a product of the same kind from an already
established brand-name company. In a situation of elections,
one could take the case of a country which has a dominant
political party, and each citizen is inclined to consider a can-
didate from this party first. However, since in the model
rumors spread through the interaction of nodes, it is safe to
use it for simulating the spread of w-o-m about two different
products, or two candidates from opposing parties. The
model does not encompass factors such as mass-media mar-
keting, or political campaigns, which have an effect on all
individuals in a population. Furthermore, the model makes a
simplifying assumption that the remembrance rates a; and a,
and the message transmission probabilities 8 and vy are the
same for all nodes. In a real-world scenario where each node
represents an individual, they would depend on one’s char-
acteristics and preferences.

Let X(k)=2Y,5;(k), Y()=2,57(k), and Z(k)=2{! 57 (k)
be the total number of nodes in statuses 1, 2, and 3 at time k,
respectively. Further, let N;=E[X(e0)], N,=E[Y()], and N,
=k[Z(e)]. The object of interest is the average number of
nodes that eventually (when k— o) adopt statuses 1 and 2,
N, and N,, compared to the total number of nodes N in the
network.

In the following, in order to facilitate the mathematical
analysis we rewrite the model given with Egs. (1) and (2) as

pilk+1) = pR(k)f; + ayp} (k)
pilk+1) = p(k)(1 = f)g; + arpi(k)

pik+1)=p;()(1 - £)(1 = g) + (1 —a,)p} (k)
+ (1= ay)pl(k) (3)
and f; and g; as

N
fik)=1-T1[1-Bayp}®)]
j=1
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FIG. 1. (Color online) Evolution of Egs. (1) and (3) on a 100-
node BA network generated with m=2. Initially, node 25 is a sup-
porter of rumor 1, while node 29 is of rumor 2. Both nodes have
degree 2 and may change their status as time progresses. The solid
lines show the number of nodes in each status as simulated by Eq.
(1), while the dashed lines show the evolution of the average num-
ber of nodes in each status, i.e., the evolution of Eﬁl pl! k),
SN pi(k), and =X p?(k) in Eq. (3).

N
gik)=1-T111-ya;p}(h)] )
=1

Equivalently N,,N,,N; can be computed using Eq. (3) as
Ni=2,p; (%), Ny=3X,pi(=), and N3=Z}L p}(=).

To illustrate that Egs. (1) and (3) are the same, consider
Fig. 1. The figure shows the results of running both of the
models on a 100 node scale-free network generated by the
Barabasi-Albert (BA) algorithm as given in [29], with m=2.
In this case we simulate injecting the two rumors at two
sources initially, and the sources are allowed to change their
status as time passes. As can be seen, the evolution of the
sum probability vector according to Eq. (3), corresponds to
the evolution of the number of nodes in each status as pre-
dicted by Eq. (1). In effect, by studying Eq. (3), we are
investigating the evolution of the probability vectors from
which random realizations are made in Eq. (1).

B. Dynamical systems approach

In this part we apply a dynamical systems approach to our
model. Let us in Eq. (3) replace the probabilities for the node
i to be in status 1 and 2 with x;= p} and y;= p?, respectively.
The evolution of the model can be rewritten as

xilk+1) =[1 = x;(k) = yi(k) Ifi(k) + a1x;(k)
yilk+ 1) =[1 = xj(k) =y () ][1 - filk)1gi(k) + azy(k),
(5)

where

N
fik)=1-T1T11 - Ba;x;(k)]
Jj=1
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N
gitk)=1- H [1- Yaijyj'(k)]- (6)
j=1

Equation (5) represents a nonlinear dynamical system
F:[0,172Y—[0,1]?V. Since x; and y; are probabilities, and
assuming that the corresponding graph is connected, then the
ergodicity of the Markov chain of the whole system is guar-
anteed [30] if

a#F1, aa#1, B#0, B#1, y#0, y#1. (7)

Therefore, when condition (7) is satisfied, dynamical system
(5) has a unique globally stable fixed point.

System (5) has a fixed point at (x;,y;)=(0,0) for all i. The
local stability of this fixed point can be analyzed using the
Jacobian matrix of system (5) evaluated at the fixed point,

Az O
g Un
DF|g0)= {0 s }
N Sy
where Ag=a;l+BA, A,=a,I+ A, and Oy (the matrix of all 0
elements) are N X N matrices. Hence the fixed point (0,0) is
stable when

max{a, + B\,a, + YA} <1, (8)

where M\ is the largest eigenvalue of the adjacency matrix.
What this condition means with regard to rumor spread is
that, whenever it is fulfilled, eventually no rumor of either
type will persist in the network. All of the nodes will be in
the neutral status, since the model stabilizes in a state where
the probabilities of each node to adopt either status 1 or 2 are
zero.
Restating condition (8) as

B Iy

l-a, Nl-a

<

S )
one can see that the value of T:% appears as a threshold
value for the ratios l—f‘a—] and 1—_%2 up to which the fixed point
(0,0) is stable. In these ratios, B and 7 are the message trans-
mission probabilities. Since we interpreted a; and a, as the
remembrance rates of the two rumors, (1—a;) and (1-a,)
are the rates at which the rumors dissipate at the nodes.
Whenever a ratio of transmission to dissipation is larger than
the threshold, the fixed point (x;,y;)=(0,0) is unstable, and
there will be rumor spreading in the network. For both rumor
types to be able to spread in a network, it is necessary that
both transmission to dissipation ratios are greater than the
network threshold. However, whether at the end both rumors
will still persist in the network depends on the particulars of
the case, as we discuss later in the paper.

The existence of a network threshold % has already been
pointed out in several epidemiological models of virus
spreading such as the SIS-type model in [7] and the SIR
model in [8]. Note that this threshold value is a critical point
in the system dynamics, and is not related to node specific
thresholds in the class of threshold models.
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III. BEHAVIOR OF THE MODEL ON REGULAR
NETWORK TOPOLOGIES

This section presents results on the model behavior on
regular networks. The topologies considered are the star and
fully connected network. In all the experiments initially there
is one node in status 1 and one in status 2. The rumors are
just injected in these two sources, allowing them to change
their status as time passes. Also recall that for the conver-
gence of the model to a unique fixed point we established
condition (7). It will hold for all the numerical simulations.

A. Star network

In this section results on the star topology are presented.
In all cases, node 1 is the hub to which all the leafs are
connected. Because of its central position in the network, one
can expect the hub to have a major role as a rumor spreader.
The model equations for the star become

N
xyk+ 1) =[1=x,06) =y, (01 1= 1111 - Bx;(k)]
j=2

+ayx, (k)

xi(k+1)=[1-x;(k) —y(k)1Bx,(k) + a\x;(k), i=2,...,N

N N
yilk+1)=[1=x,(k) = y;(OI[T[1 - Bx;(01) 1 =TI 11
j=2 =2

- ’}’Yj(k)] +ayy (k)

yilk+1) =[1 = x;(k) = y:(K) I[1 = Bx; (k) Jyy (k) + apy,(k), i
=2,...,N. (10)

Figure 2 shows the case when only one of the _rumors ex-
ceeds the threshold for the star for which A=yN—-1. Thus,
only one status prevails, and all the leafs have the same value
for the probability of this status. If we write x;=a, x;=b, i
=2,...,N and yj:OVj, or yy=a, y;=b, i=2,...,N, and x;
=0, Vj, depending on which the remaining status is, the fixed
point of the star, using Eq. (10), is

| (1 BZa )N—l
Ba+1-a Ba
“= Bla N ’ b=,8a+1—a1
1- I—BT +1-a
a —a)

(11)

or
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FIG. 2. (Color online) The evolution of x; (lines) and y; (crossed
lines) for a star with 10 nodes. The dotted lines are the stable values
as computed by iterating Egs. (11) and (12) accordingly. (a) I—%
> i and 1—_%2 < i Initially the hub is in status 2, and node 2 in status
1. (b) l—% <% and 1—_7a—2 > i At k=0, the hub is in status 1 and node
2 is in status 2.

1 (1 _Ya )N_l
. ya+1-a, be ya
= N-1 » b= :
+1-
1—(1—4) +1-a, LA
ya+1l—a,

(12)

Iterating these equations for the hub on (0,1] will give the
correct stable values, as Fig. 2 shows.

When both rumors can spread in the network, both status
1 and status 2 can appear in the stable state (Fig. 3). Also,
due to the regularity of the topology, the leaves have equal x;
and y; values. Writing (x;,y;)=(x2,y5), i=2,...,N in Eq. (10)
we get

xp=z[1= (1= Bx)" T +ax,,

Xy =2p8% + apxy,
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FIG. 3. (Color online) Evolution of Eq. (10) for a star with 20
nodes. Initially, one leaf supports rumor 1, and one leaf has adopted
rumor 2. Lines are for x; and crossed lines are for y;, i=1,...,N.

yi=21(1=Be)V ' [1= (1= )V T+ agy,

ya=2o(1 = Bx)) yyy + agys,

where z;=1-x;-y; and z,=1-x,—y,. From the last four
equations we can see the behavior of the model in the limit
of large N. In fact (1-8x,)""'~0 when N is large, and it
follows that y;=~0, Vi, while

1 B B
2-a T B+(l-ap2-a)

This is shown on Fig. 4, for a star with 1000 nodes. In words,
in such a situation it is very difficult for rumor 2 to pervade
the network. Once the hub hears the word from someone in
status 1, it spreads it to all the other nodes in the network,
and they will always consider this message first.

(13)

X1 =

a, =03
1 == =X
09k a,=09 1
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FIG. 4. (Color online) The evolution of (10) for a 1000-node
star. Initially, one of the leafs is in status 1, and one is in status 2.
Lines are for x; and crossed lines are for y;. The dotted lines are
approximations for the stable values of the hub and leaves, as given
by Eq. (13).

056102-5



TRPEVSKI, TANG, AND KOCAREV

B. Fully connected network

A complete, or fully connected network, is a simple net-
work in which every pair of distinct nodes is connected by an
edge. The fully connected network is an example of an en-
vironment with homogeneous mixing where every node has
equal contact with the others. The model equations for this
topology become

N
X+ 1) =[1-x0) -y 01y 1= T [1-Bxk)]

Jj=Lj#i

+ax;(k)

N N
yilk+ 1) =[1-x)-y0] IT [1-pxm01 1~ II [1

J=Lj#i J=1j#i

= (k)] [ +axy (k). (14)

We present several results. Figure 5 shows cases when only
one of the rumors has a transmission to dissipation ratio
greater than 7. Accordingly, only one type of message is able
to spread through the network. The stable values x; or y; are
the same for all the nodes. Using this in Eq. (14) we obtain

1-(1-po"!

- - (15

or

1_(1_,)/57)N—1
1-(1-yM ' +1-a,

for the value of the stable state in Figs. 5(a) and 5(b). Iterat-
ing each of these equations on (0,1] instead of Eq. (14) will
also give the stable state solution. When N is large enough,
the solutions for the one-status-spreading case become inde-
pendent of the message transmission rates, and are well ap-
proximated by

y= (16)

=
I
[\
[
2

1
2—(,12'

y= (17)

When both l—fa—]>% and l—_”a—2>%, both message types are
able to spread through the network. For the parameter values
on Fig. 6, each node has the possibility of being in each of
the three statuses, and on average most nodes will be in
status 2. Due to the regularity of the topology, all the nodes
have the same stable values for all the probabilities. Using

this fact, from Eq. (14) one obtains
f=(1-x--0-0)""T+a%

y=(1-3-51 - [1-(1-y)""T+a,y (18)

for the value of the fixed point. An interesting observation is
that when N is large enough, the fixed point becomes
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FIG. 5. (Color online) The evolution of x; (solid lines) and y;
(crossed lines) for a 20-node fully connected network. The dotted
lines are the approximated stable values [Eq. (17)]. (a) Only rumor
1 has parameters above the network threshold. (b) Only rumor 2 has
parameters above the network threshold.

§=0. (19)

An illustration of this is in Fig. 7, for a fully connected
network of 100 nodes and one node in each status initially.
Although messages of type 2 pervade the network at the
beginning due to high a, and v, status 2 is not sustained in
the network.

A note on the results for large stars and fully connected
graphs is in order. In the limit of large N, the hub and the
fully connected nodes adopt either status 1 or an undecided
status. The proportion of time spent in these statuses is 1/1
+1-a; and 1-a,/1+1-ay, respectively. The numerators in
the expressions signify the transmission rate and dissipation
rate of information at the particular node. As can be seen,
when a node has a high degree, the rate of receiving a mes-
sage from its many neighbors is 1, regardless of the actual
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FIG. 6. (Color online) The evolution of (14) for a fully con-
nected network with ten nodes. Both message types can pervade the
network. (a) Evolution of x;, depicted by solid lines and y;, depicted
by crossed lines. (b) The average number of nodes in each status.

message transmission parameter. In fact, one can argue that
this happens in an arbitrary topology as well. For a node i
with high enough degree, the product

N
H [1- ,Baijxj(k)]
j=1

in Eq. (4) tends to 0, i.e., f;=1 in the model equations,
yielding the steady-state values as observed in the large star
and fully connected graph. The degree value above which
this behavior is observed depends on the values of the model
parameters, as well as on the network topology. For example,
consider Figs. 4 and 7. For the same model parameters, the
fully connected graph requires much less nodes than the star
in order to observe the stable values f:z_%ll and y=0. The
fully connected topology allows the nodes to reinforce their
decision more easily.

IV. BEHAVIOR OF THE MODEL ON COMPLEX
NETWORK TOPOLOGIES

We now investigate the model behavior for complex net-
work topologies. Of interest to us is the case when S/1
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FIG. 7. (Color online) The model evolution for a 100-node fully
connected network. (a) Evolution of x;, depicted by solid lines and
y;, depicted by crossed lines. Dotted line is the approximating stable
value for x; given by Eq. (19). (b) The average number of nodes in
each status. Dotted line is the stable number of nodes in status 1, as
predicted by N;=Nx=100/(2-a,).

—a;>1/N\ and y/1-a,>1/N\ since theory and simulations
both indicate that this is the only case when both rumor types
are able to spread in the networks. All experiments start with
one node in status 1 and one in status 2, which can change
their status as time progresses. Moreover, in almost all ex-
periments rumor 2 has relatively high parameter values in
comparison to rumor 1, so as to observe its spread in the
networks. Where applicable, we relate the results with those
on regular networks.

A. Erdos-Renyi random networks

In this section we observe the model behavior on Erdos-
Renyi (ER) networks. The model proposed by Erdos and
Renyi described random graphs with N nodes in which every
link exists with probability p. The degree distribution of
these networks is Poisson, hence the homogeneous structure
in the sense that all nodes have degree close to the average
degree (ky=p(N—1). Also, in this model there is a critical
probability value pc=1%, under which the resulting network
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FIG. 8. (Color online) The steady-state behavior of the model
for ER networks with N=1000 for different values of p, depicting
the fraction of nodes in each status. For every value of p the results
are the averages of 100 network realizations, each having a giant
component with size of at least 0.9N. The dashed line is the ap-
proximation of the number of nodes adopting rumor 1 given by
N,=N%, f=2+al.
consists of small disconnected components, and above which
there is a giant component in the network containing O(N)
nodes. All the networks used in the simulations are generated
with p>p., and the sources of the rumors are randomly
placed in the giant component. Figure 8 shows the steady-
state behavior of the model for ER networks with 1000
nodes for different values of p. Increasing p, the nodes have
an increasingly higher degree, which, as can be seen, serves
to promote rumor 1 at the expense of rumor 2, as could be
expected from our previous discussion. The number of nodes
in status 1 is accurately predicted by the approximation N,
=NX, izfal. Rumor 2 has chances to penetrate a random
social network when the average degree of the nodes is low
enough to allow it.

B. Small-world networks

In this section we investigate how the model behaves on
small-world networks. It has been suggested that many real-
world networks, and social networks among them have
small-world characteristics. We use the Watts-Strogatz model
as defined in [31] for generating the networks. ¢ denotes the
rewiring parameter in the model, instead of 3, to avoid con-
fusion with the model parameter of this paper. The algorithm
uses a starting ring lattice to construct a small-world net-
work. In a ring lattice each node has 2K neighbors, K in the
clockwise, and K in the anticlockwise direction. Each edge is
rewired with probability ¢, not allowing self-loops or mul-
tiple edges between nodes.

Figure 9 depicts the steady-state behavior of the model
when the rewiring parameter ¢ is varied. The results are
shown for networks of two different sizes for which C(0);
the clustering coefficient of the initial ring lattice is the same.
The fraction of nodes in each status is given, as well as the
clustering coefficient of each network, normalized by C(0).
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FIG. 9. (Color online) The steady-state behavior of the model
for different values of ¢. The fraction of nodes in each status is
depicted, as well as the normalized clustering coefficient for the
networks. (a) Results obtained by averaging over 50 network real-
izations for each ¢, run for k=400 time units. (b) Results obtained
by averaging over 25 network realizations run for k=700 time units.

Evidently, the results are the same due to the same level of
clustering in the networks. Furthermore, for the particular
values of the model parameters, status 2 is also present in the
small-world networks. The cliquishness of the environment
enables rumor 2 to occupy some of the nodes. However, as
the networks become increasingly random, status 2 is dimin-
ished mostly at the expense of status 1. The lack of signifi-
cant clustering in the random networks undermines the
spreading of the second type of rumor.

Moreover, if the level of clustering in the networks is
higher, i.e., the cliquish neighborhoods are larger, as in Fig.
10, then status 1 is the only remaining status, even if the
parameters of rumor 2 are relatively higher than those of
rumor 1. The high clustering of the networks acts to
strengthen the influence of status 1, a result reminiscent of
that in a fully connected graph. We further illustrate this by
providing the time behavior of the model for a 1000-node
ring lattice with K=10 (Fig. 11), and a small-world network
generated from it with ¢=0.01 (Fig. 12), using the same
parameters as in the previous experiment.
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FIG. 10. (Color online) The steady-state behavior of the model
for networks generated with the Watts-Strogatz algorithm, using a
starting ring lattice with 1000 nodes and K=10.

The ring lattice is a highly clustered graph. Every node
has a cliquish neighborhood, and specifically, in this example
each 11 consecutive nodes on the ring are fully connected.
Figure 11(a) shows the evolution of model (5) for nodes 1 to
11. Since in this case node 51 is in status 2 initially, in the
beginning the group is influenced by the messages of rumor
2. The ring lattice has a long average path length. With the
source of rumor 1 being node 501, it takes a longer time for
the type 1 messages to traverse the network and reach the
observed group. Once they do, however, rumor 1 suppresses
the influence of rumor 2. Further, the values of x; and y; at
the clique of 11 nodes are well approximated by Eq. (17) for
a fully connected graph. Globally, Fig. 11(b) shows that both
rumor types progressively affect nodes, with status 2 being
slightly more successful in the beginning, due to its higher
message transmission and remembrance parameters. In the
long run, however, rumor 1 is greatly promoted due to the
cliquishness of the environment, becoming the only rumor in
the network.

We can now compare the behavior of the model on small-
world networks with that on the ring lattice. Figure 12 shows
a small-world network generated from the ring lattice in the
previous example, with ¢=0.01. The initial conditions are
the same as previously. The most obvious difference with the
regular case is the speed of the dynamics. The process con-
verges much more quickly on a small-world network due to
the shortcut connections which greatly reduce the average
distance between nodes. As a result, the spreading of the type
2 messages is greatly facilitated, and many nodes adopt ru-
mor 2 in the beginning. However, there is a rapid spread in
type 1 messages as well, and combined with the high clus-
tering of this network, status 1 being preferable easily sup-
presses status 2. The end result is again reminiscent of that in
fully connected graphs, with the stable x; value of the ob-
served nodes 1-11 being well approximated by x= 2_1a] . Also,
the total number of nodes in status 1 when the model stabi-
lizes is well approximated by N;=NX.

In conclusion, large neighborhoods in a small-world net-
work which are clustered highly enough behave as fully con-

PHYSICAL REVIEW E 81, 056102 (2010)

1,
ool a1:0.2,a2:0.5
: B=0.3,y=09
08k N =1000, K = 10
A=20,1=0.05
0.7t
_ 0.6f
> o
2 osf
£ o
o
0.4f
0.3}
0.2t
0.1f
o ‘ ‘
0 10 20 30 40 50 60 70 80 90 100
(a) k
1000
\ a, =0.2,a.=05 Status 1
900 ! 2 - - - Status 2
p=03,v=0.9 — - — - Status 3
800+ \\ N=1000,K=10
. A =20,7=0.05
700(
(2] \
) \
B 600}
c \
S 500 A
[} \ o
Ke) ~N = -
€ 400 N
=}
z RS
300( . <
s S
200 - L7 N
7 \\
100 7 ~
. <
0 ‘ ‘ ‘ ‘ ‘ ‘ - ‘ ‘ ‘
0 10 20 30 40 50 60 70 80 90 100
(b) k

FIG. 11. (Color online) Behavior of the rumor spreading model
(5) on a 1000-node ring lattice with K=10. Initially, node 51 is in
status 2 and node 501 is in status 1. (a) The evolution of x; and y;
for i=1,2,...,11. Solid lines stand for x; and crossed lines stand
for y;. Dotted lines are the approximating values of x; and y; for a
fully connected network as given with Eq. (17). (b) The average
number of nodes in each status.

nected graphs, strengthening the influence of the preferred
rumor 1, and disabling the spread of rumor 2. Messages of
type 1 are also easily spread through the long-range connec-
tions, quickly affecting the whole network. The type 2 mes-
sages could only be successfully spread if a small-world so-
cial network does not have large highly connected groups of
nodes.

C. Scale-free networks

In this section results of the model behavior on scale-free
networks are presented. The original BA algorithm as given
in [29] is used to construct the networks. One starts from a
seed of m( connected nodes and adds a new node with m
=my, links at each step according to the preferential attach-
ment rule. This yields a network with average degree (k)
=2m and degree distribution P, ~ k3.

Figure 13 shows the average number of nodes in each
status as a fraction of N, as the parameter m of the BA
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FIG. 12. (Color online) Behavior of rumor spreading model (5)
on a small-world network with 1000 nodes generated from a ring
lattice with K=10 using ¢=0.01. Initially, node 51 is in status 2 and
node 501 is in status 1. (a) The evolution of x; and y; for i
=1,2,...,11. Solid lines stand for x; and crossed lines stand for y;.
The dotted line is the stable value for x; approximated by the ex-
pression in Eq. (17) for a fully connected network. (b) The average
number of nodes in each status, obtained by summing the probabili-
ties [Eq. (3)] for all nodes. Dotted line is the approximation N,
=NX.

algorithm is varied. The seed for the BA algorithm is a 20-
node fully connected graph. For each value of m, the largest
hub in the network has a degree high enough to act as a star,
having x= 2+ul and y=0. However, the total number of nodes
in status 1 is different for different values of m in this par-
ticular setting. For m=1 and m=2 status 2 prevails, suggest-
ing that the largest hub of the network does not have a far-
reaching influence. Increasing m brings an increasing
number of nodes in status 1, mostly at the expense of those
in status 2, eventually expelling rumor 2 from the network
for m=6. As m is increased the algorithm creates a network
with more hubs and higher degree nodes in general, the com-
bination of which seems to promote the preferred rumor 1
heavily. One can imagine, as m increases, the number of
nodes in status 1 to approach the dashed line.
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FIG. 13. (Color online) The average number of nodes in each
status as a fraction of N, as m is varied. For each value of m, results
are averaged over 100 network realizations, with the stable values
taken at k=100. All networks are generated from a 20-node fully
connected seed and have N=1000. The stable x value for the largest
hub in the networks (squares) correspond to the approximation x for
the star in Eq. (13) (dashed line).

V. CONCLUSIONS AND DISCUSSION

In this paper we make an attempt to study how two dif-
ferent rumors, one of which is always considered first, propa-
gate in a network. The model presented describes the inter-
actions among nodes, and general results for the interplay of
the two rumor types on different topologies are given. The
key points of this paper are as follows;

(i) we suggest a model of rumor spreading over networks,
in which each node can be in one of three possible states: 1,
2 and 3 corresponding to rumor 1 spreader, rumor 2 spreader
and ignorant, respectively. The model is a natural generali-
zation of the well-known epidemic SIS model, and reduces
to the SIS model when some of the model parameters are
zero. We confirm the existence of an intrinsic network
threshold i for the spreading process to occur, as is already
suggested by previous studies, where A is the largest eigen-
value of the network’s adjacency matrix A. The model has a
unique stable fixed point, which implies irrelevance of the
choice of initial rumor spreaders.

(ii) We find that the preferred rumor 1 is heavily promoted
when the degree of nodes is high enough and/or when the
network contains large clustered groups of nodes, expelling
rumor 2. This is reflected in the model behavior on regular
network topologies as well as on complex networks. Specifi-
cally, increasing the average degree in ER graphs yields
these results, as does increasing the cliquish neighborhoods
in small-world networks generated by the Watts-Strogatz
model. In both cases the number of nodes adopting informa-
tion type 1 is well approximated by NX, f=2+u|' The behav-
ior of the model is similar in BA networks as m is increased.

(iii) From the standpoint of the source of rumor 2, having
to compete with a more reputable source is extremely chal-
lenging in many cases. Nevertheless, simulations show that it
is possible for rumor 2 to occupy a nonzero fraction of the
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nodes in many cases as well. Specifically, in the Watts-
Strogatz small-world model moderate clustering levels facili-
tate its adoption, while increasing randomness reduces it. For
ER networks, a low average degree allows the coexistence of
the two types of rumors. BA networks generated with a small
m are also a pervading substrate for rumor 2.

Future research directions are numerous. Conditions in
which status 2 has a “win situation” over status 1 remain to
be determined. The stationary distribution of the Markov
process for the network might be a promising tool for this
matter. Nonergodic versions of the model, i.e., the ones when
condition (7) does not hold, are also worth investigating. The
problem of choosing the initial set of rumor spreaders which
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maximize the number of nodes in status 1 and 2 is natural in
that setting. Finally, how well the model approximates reality
is a key question to its usefulness. Hence, comparison with
available real-world data is in order.
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