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We demonstrate the existence of steadily translating filaments in the Belousov-Zhabotinsky reaction. The
filaments have self-reinforcing shapes tracing planar hairpins and constant velocities that are inversely propor-
tional to their width. These features are well described by an analytical solution of the mean curvature flow
problem. Using numerical simulations based on an excitable reaction-diffusion model, we also probe the
solution’s large basin of attraction and show that entangled hairpins reconnect during collisions.
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Curvature-dependent motion of curves and surfaces is at
the heart of many natural and man-made processes. Such
geometric flows are relevant to the evolution of soap films
and cell membranes, flame propagation, problems in quan-
tum field theory, as well as applications in image processing
�1–3�. The simplest case are planar one-dimensional curves s
that contract according to

ds

dt
= ��N̂ , �1�

where � describes a system-specific constant line tension, �

equals the local curvature, and N̂ denotes the curve’s unit
normal vector. Mathematical analyses show that, under this
flow, all nonintersecting closed curves evolve toward a circle
and vanish in finite time. During the collapse, the enclosed
area decreases at a constant rate of −2�� �4,5�. Furthermore
there are interesting shape-preserving solutions including
self-shrinkers such as circles and Abresch-Langer curves, ro-
tating “yin-yang” patterns, and translating curves �2,6�.

To date only few of these solutions have been observed in
experiments. This situation is surprising because Eq. �1� ap-
plies to a wide range of phenomena including two-
dimensional grain boundaries and various one-dimensional
phase singularities �4�. Among the latter examples,
curvature-dependent motion has been used to describe vortex
lines in superconductors �7� and scroll wave filaments in ex-
citable and oscillatory reaction-diffusion systems �8�.

Scroll waves have been studied in numerous models in-
cluding the complex Ginzburg-Landau equation �CGLE� �9�.
They exist in experimental systems such as the chemical
Belousov-Zhabotinsky �BZ� reaction, the cellular slime mold
Dictyostelium discoideum, and cardiac tissue �10–12�. Espe-
cially the latter system attracts considerable attention be-
cause scroll waves and their filament dynamics have been
linked to dangerous cardiac arrhythmias in humans. Further-
more, negative filament tension induces dynamically inter-
esting chaotic states �12–14�.

In general, scroll wave filaments also move in binormal
direction at curvature-dependent velocities. This contribution
to the overall motion depends in a nontrivial way on reaction
kinetics and diffusion coefficients. However, it is zero in the
three-dimensional CGLE �9� and also vanishes in excitable
systems in which all relevant reaction species have equal
diffusion coefficients �15�. Consequently, shape-preserving

solutions of Eq. �1� could exist in a broad spectrum of excit-
able and oscillatory systems. However, this prediction has
been tested so far only for circular filament loops �10,16�.

In this Rapid Communication, we describe experiments
demonstrating the existence of steadily translating filaments
in three-dimensional excitable systems. These constant speed
constant shape structures are among the hallmark solutions
of Eq. �1� and have been referred to as “grim reapers” or
hairpins. The study is complemented by numerical simula-
tions based on a FitzHugh-Nagumo-like reaction-diffusion
model.

Our experiments employ disk-shaped systems of the
ferroin-catalyzed BZ reaction. The disks have a diameter of
10 cm and measure 8.0 mm in height. The lower 4.8 mm of
the medium are contained in agrose gel �0.8 % weight/
volume� while the upper 3.2 mm are liquid solution. The
total height corresponds to approximately 1.7 wavelengths of
the excitation vortex. The initial reactant concentrations are
constant throughout the two layers: �H2SO4�=0.16 mol /L,
�NaBrO3�=0.04 mol /L, �malonic acid�=0.04 mol /L, and
�Fe�phen�3SO4�=0.5 mmol /L. The corresponding solutions
are prepared in nanopure water �18 M� cm� and all experi-
ments are carried out at room temperature.

For the creation of scroll waves, we first initiate a nonro-
tating expanding wave front. This initiation step is carried
out by placing a silver wire on the gel-liquid interface for
about 20 s, which locally decreases the concentration of in-
hibitory bromide ions. The shape of the exposed wire con-
trols the shape of the triggered wave and subsequently the
form of the filament. Here, we use small localized nuclei
creating nearly spherical waves and long wire segments trig-
gering fronts resembling capped cylinders. Then we rapidly
swirl the reactant vessel in order to mix the solution phase,
which erases the upper portion of the wave. At this time, we
also place a glass plate onto the upper solution interface to
prevent undesired fluid flow during the main experiment. As
the fluid comes to rest, the rim of the gel-bound wave begins
to curl spontaneously and nucleates a scroll wave filament of
corresponding shape. Notice that the filament loop is formed
in very close vicinity of the gel-solution interface and there-
fore planar.

Detection of wave and filament dynamics is performed by
recording image sequences with a charge coupled device
�CCD� camera mounted over the system. This method uti-
lizes the color difference between the chemically reduced
rest state of the system �red� and its oxidized excitable state
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�blue�. In the resulting image data, local gray values are the
integrated absorption profiles across the sample height. From
these data, we compute the position of the scroll wave fila-
ments by extracting curves that emit waves in alternating
fashion in normal and anti-normal direction.

Figure 1 shows a typical sequence of snapshots recorded
under the geometric projection described above. The patterns
consist qualitatively of bright U-shaped bands which corre-
spond to individual waves of excitation. These bands propa-
gate outwards with the exception of the innermost structure
for which the waves move inwards and collide after a short
distance �20�. Consequently, the latter band must contain a
scroll wave filament which qualitatively matches the shape
of the innermost band. The small dark spots in Fig. 1 are
slowly growing gas bubbles of the reaction product CO2.

In separate experiments but for identical conditions, we
measure the rotation period of spiral and scroll waves as
initially 280 s. The period increases by approximately 20%
over a time interval of 2 h and then remains almost constant.
These values match the local excitation periods measured for
the experiment in Fig. 1 and, hence, confirm the presence of
a rotating scroll wave. With respect to this rotation, the
frames in Fig. 1 show nearly identical phases. Additional
measurements show that, for the given concentrations, fila-
ment motion has no detectable binormal component.

The hairpin-shaped filament in Fig. 1 moves slowly to-
ward the upper edge of the image while maintaining a nearly
constant width. This motion is in qualitative agreement with
the highly curved lower end of the filament and its straight
pair of parallel arms. In Fig. 2, two representative examples
of such filaments are shown in more detail. The �blue� circles
correspond to experimental data and are compared to an ana-
lytical solution of Eq. �1� that translates at a constant speed v
while maintaining a constant shape of width w.

This solution is found by applying Eq. �1� to the motion

of the filament. We reemphasize that the filament is initiated
as a planar curve and remains in its plane since motion in
binormal direction is negligible. Hence, we analyze the fila-
ment dynamics as a two-dimensional problem. For the Car-
tesian coordinates �x ,y�, Eq. �1� yields �y /�t=�y� / �1+y�2�,
where the prime denotes partial differentiation with respect
to x �2,4�. For translating solutions, y�x , t�=vt+ ỹ�x�, this dif-
ferential equation is a Riccati equation of the form ỹ�−cỹ�
−c=0 with c=v /�. It yields

ỹ�x� = −
�

v
ln cos� v

�
�x − x0�� + ỹ0, �2�

where the integration constants x0 and ỹ0 specify the position
of the hairpin turn �in the following set to zero�. This solu-
tion diverges at x= ��� /2v and, hence, defines the full
width w of the corresponding curve. Consequently, we obtain
the simple velocity-width dependence

v = ��/w . �3�

The continuous �red� curves in Fig. 2 are the best least-
squares fits of Eq. �2� to the measured filament coordinates.
Both fits are in very good agreement with the experimental
data. The hairpin widths are w=0.47 cm in �a� and 0.80 cm
in �b�. For comparison, Fig. 2�a� also shows a circle of di-
ameter w �dotted line�, which clearly does not represent the
data. Notice that the curvature of the circle is smaller than
the hairpin curvature at the origin. Hence, we expect the
hairpin to move faster than a circle of identical width. A
seemingly related velocity difference had been noted earlier
by Keener and Tyson �17� for shrinking noncircular scroll
waves which they coined “hot dog” waves. In addition, we
note that Panfilov et al. �5� used an integral invariant to
derive Eq. �3� for similar patterns.

Figure 3 provides quantitative data on the velocity of
translating hairpin filaments. Figure 3�a� shows the vertical
position y0 of three filaments of different width as a function
of time. The position data are well described by linear func-
tions indicating constant velocities. During the analyzed time
intervals, the widths of the hairpins showed no measurable
changes �data not shown�. We note that the hairpin structures
terminate either at the system boundary or with another hair-
pin that moves in opposite direction. Hence, the structures

a b
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b

FIG. 1. Four consecutive images of a scroll wave rotating
around a hairpin-shaped filament. In �a� the filament extends from
the image center upwards. Snapshots are taken at �a� 0.5, �b� 10.5,
�c� 31, and �d� 53 min after the initiation of the vortex. Field of
view: 1.73�1.73 cm2.
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FIG. 2. �Color online� Filament of scroll waves as obtained from
two different experiments �open blue circles�. The continuous red
curves are fits based on the analytical solution in Eq. �2�. The
dashed �black� curve in �a� shows a circle of diameter w.
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have a finite life time which in the latter case is approxi-
mately tL=L0w /2��, where L0 denotes the initial, total
“height” of the filament �i.e., the initial distance between the
two points of maximal curvature�.

The solid �black� squares in Fig. 3�b� represent the inverse
velocities of several hairpin-shaped filaments with different
full widths w. The measurements are in excellent agreement
with the inversely proportional dependence in Eq. �3� and
yield a filament tension of �= �1.77�0.05��10−5 cm2 /s.
For comparison, we have also measured the initial collapse
velocity of circular filament loops. In Fig. 3�b�, their inverse
values are plotted as a function of the filament diameter 2R
�solid red circles�.

From Eq. �1� and earlier experimental studies �10�, we
know that circular filaments obey −dR /dt=� /R. Hence, the
ratio of the two slopes in Fig. 3�b� should equal � /2. A direct
comparison of the experimental data sets in Fig. 3�b� yields a
ratio of 1.68�0.1 which differs by only 7% from the ex-
pected value. This finding provides additional evidence that
the hairpin-shaped filaments are a translating solution of the
curvature flow in Eq. �1�.

To obtain further insights into these constant-shape solu-
tions, we perform numerical simulation using the Barkley
model �18�:

�u

�t
= Du�

2u +
1

�
�u�1 − u��u −

v + b

a
�� , �4a�

�v
�t

= Dv�
2v + u − v . �4b�

In this frequently studied set of reaction-diffusion equations
u and v are time-dependent variables. Here, we consider spa-
tially three-dimensional systems with diffusion coefficients
Du=Dv=1. The other model parameters are a=1.1, b=0.18,
and �=0.02. The latter values induce excitable point dynam-
ics around a stable steady state. Also notice that for our
choice of identical diffusion coefficients �and in the limit of
small curvature and twist�, filament motion is known to oc-
cur strictly in normal direction �19�. Our simulations employ

Euler integration with a time step of 6�10−3. The box-
shaped system is surrounded by Neumann boundaries and
resolved with 300�300�300 grid points at a grid spacing
of 0.2.

We initiate vortex patterns by cutting excitable holes into
planar wave pulses. This step nucleates a filament loop of
desired shape as the wave edge curls into the void. Figures
4�a� and 4�b� illustrate the v field of such a scroll wave for
which the boundary of the “cut-out” region had the shape of
the hairpin function in Eq. �2�. The two frames show nearly
opposite rotation phases. The long-term evolution of the pat-
tern involves the expected translation of the filament �20�.
Furthermore, it conserves the width of the hairpin and occurs
at �width-dependent� constant speeds.

While all of our observations indicate that the log−cos
shape is a stable solution, it is unclear what family of fila-
ments evolve into this structure and at what rate. For this
purpose, we have carried out some exploratory simulations
in which we varied the initial filament geometry. Figure 4�c�
shows an example in which the initial filament describes a
planar hammer-shaped curve. Neighboring curves differ by
approximately five periods of scroll wave rotation with the
leftmost curve being the earliest. Notice that the corners of
the filament round off first, followed by the decay of the
hammer head feature. Subsequently, the filament rapidly
evolves toward the hairpin solution as illustrated by the con-
tinuous �black� curve which is obtained by fitting Eq. �2� to
one of the simulated filaments. We did not detect any effects
caused by the system boundaries. In general, our simulations
support the intuitive view that all filament loops �and
boundary-bound half loops� of high aspect ratio evolve to-
ward Eq. �2� if large parts of them consist of parallel lines. In
addition, the curved part of the hairpin solution and its ve-
locity �Eqs. �2� and �3�� should also be good descriptions if
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FIG. 3. �Color online� �a� Position of the hairpin turn as a func-
tion of time. The three data sets correspond to hairpin widths of
w=0.47 cm �black squares�, 0.57 cm �blue triangles�, and 1.27 cm
�red circles�. �b� Inverse velocity of circular �red circles� and
hairpin-shaped �black squares� filaments as a function of diameter
and width, respectively. The straight lines are linear fits with zero
intercept �see Eq. �3��.
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FIG. 4. �Color online� ��a� and �b�� Numerical simulation of a
hairpin-shaped scroll wave at opposite phases of one rotation cycle.
�c� An initially hammer-shaped planar filament �dashed line�
evolves into a stable hairpin which moves rightwards �circles� and
agrees well with Eq. �2� �continuous curve�.
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the hairpin arms are curves of low curvature that maintain a
constant or slowly varying distance.

Lastly, we briefly discuss interactions between translating
hairpins. In a common plane, two of these filaments can
typically not overlap. However, they might form a nested
pair if they have different widths. In the latter case, the outer
filament propagates at a lower velocity than the inner one,
which causes a steadily increasing distance between their
turning points. Filament collisions occur only if the hairpins
are entangled. To better understand the behavior of such en-
tangled filaments, we performed numerical simulations based
on Eqs. �4�, in which two perpendicular hairpins of identical
width move in antiparallel directions. Already prior to the
collision, the turn region of the filaments bend periodically in
and out of the main filament plane, while the linear arms
show no or little change. Nonetheless, the distance between
the hairpin tips decreases and eventually results in a colli-
sion. During this collision the hairpins reconnect and form
two separate, disentangled filaments. A detailed analysis of

the reconnection process will be reported elsewhere. How-
ever, the collision outcome reveals a clear difference be-
tween the filament hairpins and conventional solitons as the
latter emerge from collisions unchanged.

In conclusion, we have demonstrated that scroll wave fila-
ments can have self-reinforcing shapes that travel at constant
speed. These shapes and their velocities are well described
by classic curvature flow. Accordingly, we expect that vortex
filaments in excitable and oscillatory systems should also
reveal other characteristic solutions such as rotating non-
Archimedean �yin-yang� spirals. Clearly those patterns are
closely dependent on the homogeneity and isotropy of the
system. Future work will aim to observe these planar solu-
tions experimentally and to identify more complex, stable
solutions in three dimensions.

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 0910657.
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