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Connections in complex networks are inherently fluctuating over time and exhibit more dimensionality than
analysis based on standard static graph measures can capture. Here, we introduce the concepts of temporal
paths and distance in time-varying graphs. We define as temporal small world a time-varying graph in which
the links are highly clustered in time, yet the nodes are at small average temporal distances. We explore the
small-world behavior in synthetic time-varying networks of mobile agents and in real social and biological
time-varying systems.
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I. INTRODUCTION

In the last decade, the study of complex networks has
attracted a lot of attention in the scientific community as
various social, biological, and technological systems can be
represented and analyzed as graphs �1�. Typically, such sys-
tems are inherently dynamic, with the links changing and
fluctuating over time. Human contacts or relationships
change over time because individuals lose old acquaintances,
acquire new ones, or move over geographic space �2,3�.
Communication in man-made networks, such as machine
connections and social interactions over the internet, takes
place at specific points in time �4–6�. New links appear
while some others disappear in the world wide web �7�, in
patterns of interactions among gene from microarray time
experiments �8,9� or in functional brain networks �10,11�.
The time evolution of a network by the addition, as well as
the deletion, of nodes and links has been extensively mod-
eled with the main purpose of reproducing asymptotically
statistical properties such as scale-free degree distributions
�1,12�. With only a few notable exceptions �13–15�, less fo-
cus has been given to the characterization of the dynamics of
complex networks in stationary conditions.

In particular, the small-world phenomenon, i.e., the fact
that real networks have high clustering coefficient, while the
typical distance between their nodes is small as in random
graphs, has been investigated in static graphs, neglecting the
temporal dimension �16–18�. The time evolution of a real
system, when considered, is usually studied by evaluating
the standard static measures �distances and clustering coeffi-
cient� on snapshots of the network taken at different times
�19,20�. As we will show below, this approach does not cap-
ture entirely the dynamic correlations of a time-varying net-
work. In this Rapid Communication, we introduce a measure
of the temporal distance between the nodes of time-varying
graphs, i.e., graphs with time-fluctuating links. Such tempo-
ral distance takes into account the actual time order, duration,
and correlations between links appearing at different times.
This metric, together with a measure of the time persistence
of the links, allows us to define and investigate temporal
small-world behavior in social and biological networks that
change over time.

II. TEMPORAL MEASURES

Consider a network with N nodes, where the links can
fluctuate in time. The typical example is a social system,
with no births or deaths, where the patterns of interaction are
changing in time because of the spatial movement of the
individuals or because the individuals lose old acquaintances
and get new ones. The system can be described at its maxi-
mum resolution sampling time as a time-varying graph, i.e.,
a discrete sequence �an ordered set� G1 ,G2 , . . . ,GT of T un-
directed or directed graphs, where T is the length of the
sequence. In compact notation, we denote the entire se-
quence as G= �Gt�t=1,2,. . .,T. A time-varying graph G can be
represented by means of a N�N time-dependent adjacency
matrix A�t� , t=1, . . . ,T, where aij�t� are the elements of the
adjacency matrix of the tth graph. We indicate as K�t� the
number of links in the tth graph of the sequence. A sequence
of graphs is convenient to describe systems where each con-
nection starts at a specific time and also has a temporal du-
ration. In this sense, time-varying graphs are different from
previous temporal approaches �4,5,21,22� designed to char-
acterize systems as email exchanges, where the links have
instead no temporal duration, because the exchange is instan-
taneous. Moreover, a time-varying graph is a different en-
semble from those usually studied in the literature �23,24�. In
fact, in a time-varying graph, what matters is not only the
probability distribution P�G� over the graphs in the ensemble
but also how the graphs are ordered in time. By counting the
number of times a given graph G appears in the time se-
quence, we can construct P�G�. To fully describe time-
varying graphs we also need to know how graphs are
correlated in time. For instance we need to know the condi-
tional probabilities P�Gt �Gt−1� of observing graph Gt after
graph Gt−1 �more in general, the probabilities
P�Gt �G1 ,G2 , . . . ,Gt−1� of observing graph Gt after the se-
quence G1 ,G2 , . . . ,Gt−1�. In most cases, the contacts between
the same node pair in time-varying systems tend to be clus-
tered in time, i.e., they show persistence over time �4�. For
instance, people tend to engage in relations for continuous
intervals of time. Hence, a given link has a higher probability
to appear in graph Gt if it was already present in graph Gt−1.
To quantify this effect, following Ref. �20� we compute C,
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the average topological overlap of the neighbor set of a node
between two successive graphs in the sequence:

C =
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We name this metric the temporal-correlation coefficient of
G. The value of C is in the range �0,1�. In particular, if all
graphs in the sequence are equal, we have C=1.

A fundamental concept in graph theory is that of geodesic
or shortest path. In a static graph, a shortest path between
nodes i and j is defined as a path of minimal length between
the two nodes. This is a sequence of adjacent nodes starting
at i, ending at j, and visiting the minimum number of nodes.
Finally, the distance between node i and node j is set equal to
the length of the shortest paths from i to j. Here, we intro-
duce the concepts of temporal shortest path and temporal
distance to generalize the definitions of shortest paths and of
node distance to the case of time-varying graphs. We illus-
trate the basic idea with the example shown in Fig. 1�a�.
Suppose node A wants to send a message in the fastest pos-
sible way to the other nodes of the graph. We assume that
node A can start passing the message at time t=1, and the
message has to be delivered by time t=4. On graph G1, node
A can directly pass the message to nodes B and D, which are
therefore assigned temporal distance 1 from node A, since
they can be reached in one unit of time. There are also other
temporal paths to go from A to nodes B and D in three time
units. For example, we can go from A to D in the following
way: A→B in G1, B→D in G3. This is also a temporal path
from A to D, though it is not the shortest, since the fastest
way to go from A to D is to use the link A→D in G1.
Distance 3 is assigned to node C since the message can be
passed from A to D in graph G1 and then from node D to
node C in G3, thus reaching C in three time units.

Node F can be reached in four time steps by means of
three alternative shortest paths: A→B in G1, B→F in G4;
A→D in G1, D→C in G3, C→F in G4; and A→D in G1,
D→B in G3, B→F in G4. Finally, there are no temporal
paths from A to E, hence we set the temporal distance of E
from A equal to �, and we say that E is not reachable from
A. This is an effect of the time order of the links in a time-
varying graph, and indeed node A and E are connected in the
aggregate graph shown in Fig. 1�b� in which all links are
considered as concurrent.

Notice also that, due to the time order of the links, the
temporal distances are not symmetric even if the time-
varying graph consists of a sequence of undirected graphs.
For instance, while the temporal distance from A to F is 4,
the temporal distance from F to A is � �because the links
occur in the wrong time order to facilitate the passage from F
to A�. Conversely, in the static graph in Fig. 1�b�, we have
dAF=dFA=2. In order words, the main difference between a
time-varying graph G, as that shown in panel �a�, and its
associated static graph, reported in panel �b�, is that some of
the shortest paths of the static graph are not temporally valid
�in the sense that the links do not appear in the correct time
order� and, therefore, cannot be used to route messages. In
general, in time-varying graphs there are more disconnected
node pairs than in static ones. As an example, the static graph
in Fig. 1 is composed of a single connected component,
while if time is taken into consideration, it is not possible to
go from A to E, or from F to A. In order to compute the
temporal distances dij for all node pairs i , j=1,2 , . . . ,N of a
generic graph G, we have implemented a generalization of
the breadth first search algorithm. The average temporal con-
nectivity properties of G can be measured by the character-
istic temporal path length L:

L =
1

N�N − 1��ij dij . �2�

Alternatively, in order to avoid the potential divergence
due to pairs of nodes that are not temporally connected, we
can define the temporal global efficiency of G as �17�:

E =
1

N�N − 1��ij
1

dij
. �3�

Low values of L �high values of E� indicate that the nodes of
the graphs can communicate efficiently. In the following, we
will show that time-varying graphs from models and real-
world systems can be, at the same time, temporally clustered
and still have small temporal distances between their nodes.
In analogy with the small-world analysis in static graphs
�16,17�, we will compare the actual values of C, L and E of
a given time-varying graph G, with the corresponding values
calculated by considering an ensemble �Grand� of randomized
versions of G. Each sequence Grand is obtained by randomly
reshuffling the graphs in G, i.e., by destroying the time order
�and correlations� in the original sequence G1 ,G2 , . . . ,GT.
More precisely, we will show that some time-varying graphs
can have a value of C much larger than the correlation coef-
ficient of the reshuffled sequence Crand and at the same time
a value of L as small as Lrand. We will refer to this behavior
as small-world behavior in time-varying systems.

III. RANDOM-WALKERS NETWORK MODEL

We first illustrate how this behavior can be obtained in a
network model of moving agents, as a result of simple mo-
tion rules. We consider a system of N random walkers which
move in a two-dimensional square of linear size D with a
fixed velocity v and additionally perform long-distance
jumps to randomly chosen position of the square with a jump

FIG. 1. An example of a time-varying graph G with T=4 �panel
a� and its projection into a static graph �panel b�.
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probability pj �3�. For each fixed value of pj � �0,1�, the
time-varying network G is constructed by linking, every sec-
ond, all nodes having a distance in space smaller than a
given value rc. In Fig. 2 we plot C and L as a function of pj.
The values reported are normalized to the maximum values
of C and L obtained for pj =0, and respectively equal to
C�0�=0.91 and L�0�=442.8. We observe that a small per-
centage of jumps is sufficient to create links between nodes
otherwise at large temporal distances and to produce a large
drop in the temporal L. When pj =0.01, L has reduced to one
forth of L�0�, and when pj =0.1, L has about the same value
as for the reshuffled sequence. The value of Lrand obtained as
an average over 1000 realizations of Grand is reported as
dashed line. While L�pj� is rapidly decreasing, C�pj� is con-
stant up to large values of pj �0.1 so that for intermediate
values of pj we have time-varying graphs exhibiting small-
world behavior. Finally, we have found that, by approximat-

ing for each value of pj the corresponding time-varying
graph G as a static graph, we obtain a value of static L �not
reported in figure� which slowly changes in the interval �0,1�.
For instance, for pj =1, we have L�pj� /L�0�=0.74. We thus
cannot capture the temporal small-world behavior with the
standard characteristic path length of a static graph.

IV. BRAIN CORTICAL NETWORKS

We finally explore real-world time-varying complex net-
works. We first consider time-varying functional cortical net-
works extracted from a set of high-resolution electroen-
cephalography �EEG� recordings in a group of five normal
subjects performing a task consisting in a foot movement
�11�. For each subject, and for each of four frequency bands
�� ,� ,� ,��, we considered a time period of 0.5 s correspond-
ing to the final phase of execution of the foot movement.
Each time-varying graph has N=16 nodes, representing cor-
tical regions of interest, and consists in a time sequence of
T=100 directed unweighted graphs, where the directed links
represent causal influences between cortical regions �see Ref.
�11� for details�. We have computed the values of C, L, and E
for each real sequence and for the reshuffled ones. In Table I
we report the results for one of the subjects. For all the
considered bands, the real sequence exhibits small-world
properties, having a large value of C �significantly larger
than Crand� and, at the same time, a small characteristic tem-
poral path length �a high efficiency�, comparable to that ob-
served in the shuffled sequence. Similar results �not reported�
were obtained for the other four subjects.

V. SOCIAL INTERACTION NETWORKS

The second real case study of our analysis is a time-
varying social network based on a dataset of contacts among
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FIG. 2. �Color online� Characteristic temporal path length and
temporal-correlation coefficient of time-varying graphs produced by
the model of moving agents, as a function of the probability pj of
long-distance jumps. In the simulations we have set N=100, D
=100 m, v=1 m /s, rc=5 m, and produced sequences of length
T=500. The characteristic temporal path length of the reshuffled
sequences is reported as dashed line.

TABLE I. Temporal-correlation, characteristic temporal path length, and efficiency for brain cortical
networks �subject 1 and four band frequencies� �11�, for the social interaction networks of INFOCOM’06
�time periods between 1 pm and 2:30 pm, four different days�, and for messages over Facebook online social
network �three different months of year 2007� �25�. Results are compared with those obtained for 1000
randomized �shuffled� sequences of the same length. The values in parenthesis next to Crand are the respective
standard deviations. The values in parenthesis next to L and Lrand are the percentage of pairs of nodes that are
temporally connected and not considered in the averages.

C Crand L Lrand E Erand

� 0.44 0.18 �0.03� 3.9 �100%� 4.2 �98%� 0.50 0.48

� 0.40 0.17 �0.002� 6.0 �94%� 3.6 �92%� 0.41 0.45

� 0.48 0.13 �0.003� 12.2 �86%� 8.7 �89%� 0.39 0.37

� 0.44 0.17 �0.003� 2.2 �100%� 2.4 �92%� 0.57 0.56

d1 0.80 0.44 �0.01� 8.84 �61%� 6.00 �65%� 0.192 0.209

d2 0.78 0.35 �0.01� 5.04 �87%� 4.01 �88%� 0.293 0.298

d3 0.81 0.38 �0.01� 9.06 �57%� 6.76 �59%� 0.134 0.141

d4 0.83 0.39 �0.01� 21.42 �15%� 15.55�22%� 0.019 0.028

Mar 0.044 0.007 �0.0002� 456 451 0.000183 0.000210

Jun 0.046 0.006 �0.0002� 380 361 0.000047 0.000057

Sep 0.046 0.006 �0.0002� 414 415 0.000058 0.000074

Dec 0.049 0.006 �0.0002� 403 395 0.000047 0.000059
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participants of INFOCOM’06, a major data communication
conference which took place in a hotel. The contacts were
collected by means of bluetooth-enabled devices able to
record interactions among people that are in proximity �26�.
The discovery process of new devices was performed every
2 min. In Table I we report the data for the interactions
during lunchtime between 1 pm and 2:30 pm. This is the
interval with the larger number of contacts during a day.
Each sequence is made of T=45 undirected unweighted
graphs with N=78 nodes each. The average path length and
the efficiency are similar for the original and reshuffled
traces �the number in parenthesis close to L and Lrand are the
percentage of pair of nodes being temporally connected and
hence considered in the computation of the average path
length�, whereas C is more than double that of Crand. This
can be considered as an indication of small-world behavior
in these traces according to our definition.

VI. ONLINE SOCIAL NETWORKS

The third system we study is based on interactions over an
online social network. The original dataset contains the mes-
sages sent among 6�106 users in the London network of
Facebook over one year �March 2007 to February 2008�
�25�. We have divided the contacts according to the months
of the year and, for each month, we have filtered out all
contacts between pairs of nodes which exchange less than 10
messages per month. This allows us to consider only the
subset of most active users, obtaining networks with about
N=100 000 users per month. For each month, the time vary-
ing graph is composed by T=720 �or T=744� directed
graphs, one for each hour of the month. As shown in Table I
for four different months of the dataset, the average temporal

path length of the time-varying networks is close to the value
obtained for the reshuffled sequences. However, the network
under study is disconnected in several different components,
and only an extremely small percentage �about 10−6� of the
node couples are temporally connected. Consequently, the
characteristic temporal path length was evaluated as an av-
erage over a small number of node couples. A better charac-
terization of the system can be obtained by means of the
temporal efficiency. The values of E and Erand measured for
Facebook are in general smaller than those observed in the
other two networks, this being due to the high disconnected-
ness of Facebook. Nevertheless, as for the case of the cortical
networks and of INFOCOM’06, the real Facebook is almost
as efficient as its reshuffled version. Finally, also for Face-
book we observe a temporal small-world behavior: while the
length of the temporal paths of the time-varying network are
not affected by the reshuffling procedure, the temporal cor-
relation coefficient C is about one order of magnitude larger
than in the reshuffled version Crand.

In conclusion, our results suggest that time-varying net-
works, strongly clustered in time and, at the same time, with
short temporal paths between their nodes might be wide-
spread in biological, social, and man-made systems, often
with important dynamical consequences �27�. We hope that
our work will stimulate further studies of temporal small-
world behavior in real time-varying systems.
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