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Power stroke in skeletal muscles is a result of a conformational change in the globular portion of the
molecular motor myosin II. In this paper we show that the fast tension recovery data reflecting the inner
working of the power stroke mechanism can be quantitatively reproduced by a Langevin dynamics of a simple
mechanical system with only two structural states. The proposed model is a generalization of the two state
model of Huxley and Simmons. The main idea is to replace the rigid bistable device of Huxley and Simmons
with an elastic bistable snap spring. In this setting the attached configuration of a cross bridge is represented
not only by the discrete energy minima but also by a continuum of intermediate states where the fluctuation
induced dynamics of the system takes place. We show that such soft-spin approach explains the load depen-
dence of the power stroke amplitude and removes the well-known contradiction inside the conventional two
state model regarding the time scale of the power stroke.
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I. INTRODUCTION

A broadly accepted molecular mechanism of force gen-
eration in skeletal muscles is embodied in the swinging
lever-arm model �e.g., �1–3��. In this model each myosin
head, attached to the actin filament, stretches a series elastic
element by undergoing one or more conformational transi-
tions generally referred to as a power stroke �4,5�. The sys-
tematic experimental and theoretical study of the myosin
stroke was initiated in the pioneering work of Huxley and
Simmons �HS� �6� who applied to an isometrically contract-
ing muscle fiber a length drop � and showed that the tension
almost instantaneously �tens of nanoseconds� diminishes to a
value T1��� but then partially recovers in a milliseconds time
scale reaching a plateau T2���. The system returns to the
original value of the isometric tension T0 during a much
longer time �fraction of a second� via an attachment-
detachment process involving ATP splitting. Since the rapid
recovery of the force value T2��� does not appear to be rate
limited by the chemical stages, the release of the power
stroke is widely believed to be a largely mechanical phenom-
enon �e.g., �7��. In this paper we stay with this point of view
although alternative hypotheses implying certain role of the
attachment detachment in the fast transients of tension have
also been discussed in the literature �2,8�.

The mechanics enters the conventional chemomechanical
models of the power stroke �e.g., �9�� through phenomeno-
logical assumptions regarding the dependence of the chemi-
cal rate constants on a single continuous variable which rep-
resents a state of the force generating spring. In this paper we
take a more mechanically consistent point of view and rep-
resent the power stroke as a continuous stochastic dynamics
of a set of elastic snap springs. In view of its simplicity the
model is surprisingly successful in reproducing the fine
structure of the fast tension recovery data.

We begin by recalling that despite years of intense stud-
ies, there still exists considerable uncertainty regarding the

nature of the conformational change responsible for the
power stroke and the exact magnitude of the corresponding
lever arm rotation �e.g., �10,11��. Crystallographic and struc-
tural data suggest that the power stroke must be around 11
nm �12–15�. This value is comparable to what has been ob-
served in the length step experiments at the fiber level �6�,
however, it is at least two times larger than the value ob-
tained in single molecule measurements �16,17�. Besides, re-
cent single fiber experiments �18,19� revealed that the power
stroke amplitude may vary from 6 to 12 nm depending on the
force acting at the motor level. The question whether this
variability is due to a large number of configurational states
or to the range of amplitudes available to just a few states,
remains open.

In the classical HS model of the power stroke �6� the
myosin head is viewed as a linear elastic spring in series with
a bistable contractile unit. The energy of the bistable element
is represented by a double-well potential with infinitely nar-
row wells separated by a fixed distance in the configurational
space. The switching between the wells is modeled as a ran-
dom jump process which can stretch or relax the elastic ele-
ment if the motor remains attached. The HS model interprets
the T1��� response as purely elastic deformation and views
the configurations corresponding to T2��� as the state of ther-
mal equilibrium. This interpretation is preserved in the
present model, however we go further by fully characterizing
the corresponding free-energy landscape and giving to the
equilibrium an explicit dynamical meaning.

On a quantitative side, it is well known that the classical
HS model can fit the experimental curves T1��� and T2���
under the assumption that the stiffness of the elastic element
is low K�0.2 pN /nm. A large number of experimental stud-
ies have unambiguously shown that cross-bridge stiffness
must be at least an order of magnitude larger �20–28�. It has
been also realized that such an increase in the value of the
crucial parameter K would affect considerably the predic-
tions of the HS model �29�. For instance, the HS model with
sufficiently high stiffness of the elastic element predicts that
all cross bridges are in the high tension state after already a
small shortening step. This makes the function T2��� almost
linear after a small threshold value of �. Under the HS as-
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sumptions the slope of this linear function must be identical
to the slope of the linear function T1���, which however,
contradicts observations showing a pronounced load depen-
dence of the power stroke amplitude �6,19,30�. The second
incongruence is that the higher value of K obliges the curve
T2��� to have a negative slope around �=0 which was not
observed experimentally �31�. Finally, in a model with stiffer
elastic spring the rate of fast tension recovery becomes much
larger than in experiments �29,31�.

There have been several attempts to improve the quanti-
tative predictions of the HS theory �e.g., �9,31–37��. A stan-
dard way to match this theory with observations is to adopt
for the myosin motor the existence of three or more stable
attached chemical states. Mechanochemical models based on
this idea and maintaining the discrete jump structure of the
HS model are all based on the phenomenological assump-
tions regarding the dependencies of the reaction-rate con-
stants on � �meaning essentially infinite number of param-
eters�. Since kinetics in these models remains disconnected
from the detailed structure of the energy landscape, the link
between the macroscopic response and the microscopic dy-
namics remains rather weak. More precisely, the freedom left
by the conditions of detailed balance is used to interpolate
the existing experimental curves, which limits the predictive
power of the model.

Here we report a simple alteration of the HS model which
allows one to fit the experimental data on fast tension recov-
ery while preserving the assumption of the two configura-
tional states and remaining in the fully transparent mechani-
cal framework. Most importantly, we operate with just a few
parameters whose values are extracted from independent
measurements.

In our theoretical development we follow the insights of
Hill and Eisenberg �29,32,38,39�. We relax the HS hypoth-
esis regarding the infinite narrowness of the energy wells and
allow each conformational state to have its own elasticity.
Although this idea is implicit in several models �e.g., �9,34��,
the elasticities of the chemical states are usually combined
with the elasticity of the spring in series. This removes the
configurational degree of freedom and enforces the jump
structure on dynamics. Ultimately this brings one back to the
necessity of handling the dependence of the chemical rate
constants on the stretch of the elastic element phenomeno-
logically. Instead, by retaining the configurational variable in
the model we recreate a detailed link between the energy
landscape and the kinetic constants. The importance of the
continuous reaction energy landscape has been recently em-
phasized in �40,41�. Here we extend these ideas by present-
ing a systematic study of the effect of mechanical loading on
the detailed shape of the effective energy landscape. Most
importantly, we show that the idea of a continuous landscape
leads to a natural explanation of the mysterious force depen-
dence of the size of the power stroke �e.g., �4�� already in the
simplest two state framework.

It is noteworthy that in our attempt to make the mechani-
cal nature of the power stroke explicit we follow the corre-
sponding development in the studies of attachment-
detachment dynamics �e.g., �42–45��. The emerging common
ground provided by the theory of continuous stochastic pro-
cesses allows one to represent both the attachment detach-

ment and the power stroke inside a single framework of
Brownian ratchets �see also �46–49��. This opens a way to
reproduce the machinery behind muscle contraction artifi-
cially.

II. MODEL

Following HS �6� we represent a cross bridge as a linear
spring in series with a bistable contractile element �see Fig.
1�. The total energy of this mechanical system is the sum of
the energy of a double-well snap spring and the energy of a
linear spring

E��,�e� = Ec��� + Ee��e� ,

where �e is the elongation of the elastic element and � is the
elongation of the contractile element.

We assume that detachment is suppressed and use the
total elongation

� = �e + �

as the control parameter �length clamp device�. In the model
of HS, and in most of its recent mechanochemical extensions
parameter � is used as the only mechanical variable while the
configurational variables such as � are treated as discrete
chemical degrees of freedom. For instance, our snap spring is
replaced by a discrete spin-type variable. Instead, below we
follow �29� and treat � as a continuous variable akin to �.
This amounts to a transition from hard- to soft-spin model.

The quadratic elastic energy of the series spring with stiff-
ness K and prestrain l is given by

Ee��e� =
1

2
K��e − l�2. �1�

For the energy of the bistable element �known also as switch
II, relay or converter� we use the simplest piecewise qua-
dratic approximation,

FIG. 1. Schematic representation of a single cross bridge as a
series connection of a bistable snap spring with the energy Ec���
and a linear elastic spring with the energy Ee��e�.
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Ec��� = �
1

2
ks�� − a�2 + d , � � b

1

2
kl���2, � � b ,� �2�

where following Hill �38� we assume that the curvatures of
the wells corresponding to “long” �prepower stroke� and
“short” �postpower stroke� conformations, kl and ks, are dif-
ferent; in the HS model ks=kl=�. The chemical ground-state
parameter d describes a bias toward the short conformation
which drives the power stroke. This energy may or may not
be associated with the ATP activity �see Fig. 1� and we
specify it, as in HS model, by the assumption that at �=0 the
energies in the bottoms of the wells are equal. We assume
that a�0 meaning that the overall shortening ��0 shifts the
global minimum toward the short phase. The parameter b
can be found from the condition of energy continuity at the
point of switching between the two parabolas.

The total energy of the system can be written as

E��,�� = Ec��� + Ee�� − �� = �Es��,�� , � � b

El��,�� , � � b ,
	 �3�

where

El,s��,�� = 1/2�K + kl,s��� − al,s����2 + hl,s��� . �4�

At the fixed � the minima of the energy are given by

al��� =
K�l + ��
kl + K

, as��� =
K�l + �� + ksa

ks + K
. �5�

while the corresponding energy levels have the values

hl��� =
1

2

klK

kl + K
�l + ��2, hs��� =

1

2

ksK

ks + K
�l + � − a�2 + d .

�6�

Notice that in our model, in contrast to �6�, not only the
“chemical” driving force but also the geometrical distance
between the bottoms of the energy wells �power stroke size�
depends on �.

In equilibrium we must have

�E��,��/�� = 0,

which gives �= �̂��� and

Ê��� = Ec��̂���� + Ee�� − �̂���� . �7�

Observe that the function �̂��� is multivalued in the interval
��l ,�s� where �l and �s are implicitly given by as��s�=b and
al��l�=b. Along the metastable branches, representing local
minima of the energy, we have

T̂��� =
dÊ���

d�
=� T̂l��� , � � �l

T̂s��� , � � �s,
	 �8�

where

T̂l��� = K�� + l − al���� ,

T̂s��� = K�� + l − as���� .

One can see that in the interval ��l ,�s� the equilibrium ten-
sion has two values �thin lines in Fig. 2� corresponding to
two local minima of the energy. The global minimum of the
energy is defined by the conditions �gl=al���, for ��0, and
�gl=as���, for ��0 �thick lines in Fig. 2�. In the global mini-
mum

T̂gl��� =� T̂l��� , � � 0

T̂s��� , � � 0.
	 �9�

Notice that the definition of tension T̂gl remains ambiguous at
�=0 where the two metastable states have the same energies.

We can summarize the mechanical response of our soft-
spin mechanical system as follows. Due to the presence of
the series linear spring, the double-well snap spring is loaded
in a mixed device even if the whole cross bridge is loaded
isometrically �hard device�. This allows for micrometastabil-
ity and the multivaluedness of the load-elongation relation
which in turn gives rise to a temporal pinning and linear
elastic behavior at short-time scales.

Exponentially more metastable states are available to the
system of N identical cross bridges arranged in parallel. Let
Nl be the numbers of elements in the long phase. Then, any
equilibrium configuration with a given fraction of long ele-
ments c=Nl /N corresponds to a local minimum of the en-
ergy. With such metastable configuration we can associate
the equilibrium tension

Tloc��,c�N−1 = cT̂l��� + �1 − c�T̂s��� = K�� + l − 
��� ,

�10�

where


����� = cal��� + �1 − c�as��� . �11�

In Fig. 2 we show three of these metastable branches with
c=0 �line AB�, c=1 �line CD� and c=c� �line EF� where c�

FIG. 2. Mechanical energy and free energy presented as func-
tions of �: �=0 �local and global minima, solid lines�, ��0 �free
energy, dashed line�. Arrows show the behavior of the system in a
typical HS experiment. Here we consider the case ks�kl. Other
symbols are explained in the text.
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is the value of c at the moment of the elastic unloading �to be
specified below�.

To account for finite temperature � we can follow
�6,38,50� and use equilibrium statistical mechanics for defin-
ing T2���. Observe that the motor degrees of freedom are
always out of equilibrium due to ATP activity. However,
while the motor remains attached, the conformational de-
grees of freedom, responsible for the fast force recovery, can
be expected to equilibrate. At even shorter time scale of the
elastic response generating T1��� the power stroke will also
be out of equilibrium.

In thermal equilibrium the system of N parallel cross
bridges is distributed with the probability

p��1, . . . ,�N,�,	� = Z−1exp �− 	

i

E��i,��� , �12�

where

Z��,	� = ��
−�

�

e−	E��,��d��N

, �13�

where 	=1 / �kB�� and kB is the Boltzmann constant. The free
energy can be obtained from

F��,	� = −
1

	
ln Z��,	�

and the corresponding equilibrium tension takes the form

T��,	� = �F��,	�/�� .

A direct substitution of Eqs. �1� and �2� into Eq. �12� shows
that

T��,	�/N = K�� − l − 
��� , �14�

where


����,	� = �
−�

�

�ps��;�,	�d� �15�

and

ps��;�,	� =
e−	E��,��

�
−�

�

e−	E��,��d�

. �16�

It is natural to link T��� at fixed 	 to T2��� in HS experi-
ments; the tension generated during isometric contraction T0
can then be identified with T2�0�.

The integrals in the statistical sum and in Eq. �15� can be
easily expressed through special functions. Moreover, we
found that in the relevant range of parameters a simple
Kramers’ approximation �51� is already adequate. By assum-
ing that the distribution in each well is close to equilibrium
we write

Z��,	� � Zl��,	� + Zs��,	� , �17�

where

Zl,s��,	� =� 2


	�K + kl,s�
e−	hl,s���. �18�

Then


����,	� � c��,	�al��� + �1 − c��,	��as��� , �19�

where the fraction of the prepower stroke myosin heads is
given by

c��,	� = Zl��,	��Zs��,	� + Zl��,	��−1. �20�

We can then identify T1��� describing instantaneous elastic
response in HS type experiments with the value Tloc�� ,c��
where c�=c�0,	�. The generic structure of the functions
T1��� and T2�� ,	� is shown in Fig. 3.

We can now move from equilibrium to kinetics and use
the obtained information about the structure of the energy
landscape to estimate the rate of tension recovery. We as-
sume that the N cross bridges connected in parallel are de-
scribed by the following system of overdamped Langevin
equations:

�i�̇i = − 

j

Aij � E/�� j + �2�i/	��t� . �21�

Here E��1 , . . . ,�N ,��=
iE��i ,�� and ��t� represents thermal
fluctuations with standard properties 
��t1��=0, 
��t1���t2��
=��t1− t2�. We neglect correlations in the noise assuming
strong time scale separation between the power stroke re-
lease and the ATP related energy input. We also neglect cou-
pling between the elements assuming that A is the unit ma-
trix and put for simplicity �i=� for i=1, . . . ,N.

Since the individual cross bridges are independent, we
can write the joint probability density as

FIG. 3. Equilibrium tension as a function of �: �=0 �mechanical
model, solid lines�, ��0 �thermal model, dashed lines�. Here we
again consider the case ks�kl, arrows and symbols correspond to
Fig. 2.
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p��1, . . . ,�N,t;�,	� = �
i

pi��i,t;�,	� .

Moreover for all i=1, . . . ,N we have pi�� , t ;� ,	�
= p�� , t ;� ,	� where p�� , t ;� ,	� satisfies the Fokker-Plank
equation

��tp = ���E���;��p� + 	−1��
2p . �22�

The stationary solution of this equation ps�� ;� ,	� generates
the equilibrium distribution in Eq. �16�, in particular, one can
rewrite Eq. �12� as p��1 , . . . ,�N ,� ,	�=�ips��i ;� ,	�.

To study the nonstationary case we make an assumption
that the relaxation within a well is fast comparing to the time
required to overcome the energy barrier. This allows us to
use the Kramers’ ansatz �e.g., �52��

p��i,t;�,	� = �ps��i;�,	��1 − c�t,�,	�
1 − c��,	� � , �i � b

ps��i;�,	�� c�t,�,	�
c��,	� � , �i � b ,�

where c�t ,� ,	�=�b
�p��i , t ;� ,	�d�. We recall that b denotes

the location of the barrier represented by a common point of
the two parabolic wells �see Fig. 1�.

To find c�t ,� ,	� we need to solve a first-order “kinetic”
equation

ċ�t,�,	� = rlc�t,�,	� + rs�1 − c�t,�,	�� ,

where rl= �	�c�as

alps��i ;� ,	�−1d��−1, rs= �	��1−c�

�as

alps��i ;� ,	�−1d��−1, and c�� ,	� is given by Eq. �20�. Ob-
serve that in contrast to most of the currently used chemo-
mechanical models here we do not need to postulate the de-
pendence of the chemical rate constants rl and rs on the
mechanical variable �. Instead, by performing numerical in-
tegration we can directly obtain the relaxation time r�� ,	�

r��,	� = rl + rs = �	�c�1 − c��
as

al

ps��,�,	�−1d��−1

.

�23�

The resulting model depends on only five dimensional
parameters. Two of them, the modulus K and the prestrain l,
characterize the series elastic element. The remaining three,
the elastic moduli in two conformations kl ,ks and the scale of
the lever arm rotation �a�, describe the bistable element. The
total number of myosin heads N does not affect the dimen-
sionless tension T /T0, which, if expressed through normal-
ized elongation � / �a�, depends only on four nondimensional
parameters: l / �a�, kl,s /K, and Kl2 / �kB��.

III. RESULTS

To obtain the realistic values of the nondimensional pa-

rameters we use the following experimental data: �i� T2��̄�
=0 at �̄=−10.8 nm �34�; �ii� the curve T2��� /T0 can be ap-

proximated near �̄ by a straight line with the slope
0.138 nm−1 �34�; �iii� the slope of the �almost� straight line
T1��� /T0 is 0.258 nm−1 �34�; �iv� the experimentally mea-

sured value of the motor rigidity is in the range 2–4 pN/nm
�28,30,53�. Notice that the account of elasticity in both the
contractile element and the series spring makes the definition
of the stiffness of a motor ambiguous. Also, the overall force
changes recorded in experiments �34� necessarily incorporate
the compliance of the filaments. In this paper, we neglect the
latter and assume that the overall stiffness of a cross bridge is
equal to ksK / �ks+K�=1 pN /nm. Our fitting procedure �see
�54� for details� produced an additional constraint ks /K
�0.3 and we took the maximal admissible value for ks. Fi-
nally, we obtained �a�=10.4 nm, l=0.4 nm, kl
=11.4 pN /nm, ks=1.3 pN /nm, and K=4.0 pN /nm. For
	−1 we used the value 3.82 pN nm, corresponding to �
=4 °C.

The computations based on these data show that the curve
T2��� has an expected overall structure. In particular, it ex-
hibits different slopes of the T1��� and the T2��� curves at
large shortening steps � which reflects the load dependence
of the amplitude of the power stroke. We observe, however,
that the T2��� curve exhibits a negative slope around �=0 �as
in Fig. 2, dotted line� which contradicts typical experiments.
One way to moderate this effect is to consider the whole
myofibril, interpreted as a large number of half-sarcomeres
in series, and allow for locally inhomogeneous configura-
tions �37,55�. Another approach, which we pursue here, is to
take into consideration the dispersion in the attachment po-
sitions as suggested in �31,56�.

More specifically, we assume that the prestrain l may vary
for individual motors. Then

T��,	� = K

i

N

�� + li − 
��i� , �24�

where for each i the average value 
��i corresponds to the
prestrain l= li. Following �31� we assume that parameters li
are independent random variables distributed uniformly in
the interval �l−2.75 nm, l+2.75 nm�. The overall relative
tension T�� ,	� is then equal to the average of Eq. �14� over
the interval ��−2.75 nm,�+2.75 nm�.

A comparison of the computational results for T1��� /T0
and T2��� /T0 with the experimental data from �34� is pre-
sented in Fig. 4. The agreement is rather good in the whole
shortening range. Interestingly, with our choice of param-
eters we obtain that �l=3.5 nm. This means that in the short-
ening range the long phase disappears exactly around the
point where the experimental data for T1��� /T0 start to devi-
ate from a straight line. The remaining discrepancies in the
stretching range may be at least partially related to the fact
that in the corresponding experiments the recovery of T2���
is too slow for the power stroke to be distinguished from the
attachment-detachment process �57�.

Turning now to kinetics we recall that in the HS model
the assumption of infinitely narrow energy wells was essen-
tial for obtaining an exponential dependence of the tension
recovery rate on �. It has been observed, however, that with
realistic K the model with sharp wells �hard spins� predicts a
time scale for the power stroke which is three orders of mag-
nitude larger than the characteristic time of ATP hydrolysis
�2�. This follows from the fact that infinite stiffness in the
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short state obliges the elastic element to be stretched to the
full power stroke length before the conformational transition
takes place. Since this stretch must be achieved through ther-
mal fluctuation, the transitions become unreasonably rare
events.

To compute the rate of recovery in the soft-spin model we
must use Eq. �23� but with one precaution. In the case of a
nontrivial dispersion in the attachment positions li one ob-
tains a multiexponential tension-time curve �as in real ex-
periments�. A single function r�� ,	� can be obtained from
the sum of individual contributions 1

n
i=1
n e−ri��,	�t by one-

exponential fitting of the resulting curve. To complete this
task we need to supply the value of only one additional pa-
rameter, the drag coefficient �. If we take the value �
=90 pN ns /nm recommended by �2� we obtain from Eq.
�23� a time scale which is much faster than what has been
observed experimentally. To obtain the realistic time scale
we must increase the value � by four orders of magnitude.

A way to deal with this unrealistically fast time scale
while remaining in the framework of the model with realistic
value of � is to introduce an additional energy barrier be-
tween the two states. This is also appropriate in view of
another drawback of the oversimplified two parabolic ap-
proximation: disappearance of the barrier at �l=3.5 nm. The
simplest way to deal with these problems is to use a three
parabolic approximation which agrees with the two parabola
model everywhere outside a narrow transition region and
therefore preserves the equilibrium response T2���. We can
then write

Ec��� =�
1

2
ks�� − a�2 + d , � � bs

−
1

2
km�� − b�2 + e , bs � � � bl

1

2
kl���2, � � bl.

� �25�

If the values of the constants bl and bs are chosen to ensure
the continuity of the function Ec��� we are left with three
new constants: the position of the energy barrier b, its height

e and its curvature km. The best fit of the experimental data
was achieved for km=1.05
104 pN /nm, b=−0.4 nm, and
e=65 pN nm �see Fig. 5�.

Knowing that our augmentation of the model does not
affect the equilibrium curves shown in Fig. 4, we can con-
clude that the three parabola model can reproduce both equi-
librium and kinetics of shortening rather faithfully. We did
not try to simulate the kinetics in the stretching region hav-
ing again in mind that in this domain the effects of the sec-
ond head �58� and the attachment detachment �57� may be of
considerable importance.

In summary, our analysis shows that the main features of
the fast response of skeletal muscles can be captured by a
simple mechanical model with only two attached states if
those states are interpreted not as discrete chemical compo-
nents but as extended configurations of an elastic snap
spring. A nonconventional aspect of the resulting model is in
the use of two rather than one mechanical degrees of free-
dom. The main theoretical ingredient of our approach is the
representation of the power stroke as a continuous stochastic
process which allows one to couple it potentially with a
Brownian ratchet.

In this paper we offer an interpretation of the load depen-
dence of the amplitude of the power stroke. According to our
model, the origin of the variability of the power stroke size
lays in the sensitivity of the minima of the total energy, re-
placing the fixed chemical states of the HS model, to the
stretch of the series elastic element. By taking this effect into
consideration the model provides a natural explanation how
the size of the power stroke, which may be loosely identified
with the distance between the energy minima, can become a
function of the imposed length shortening in length clamp
device �or of the imposed external force in load clamp de-
vice�. The experiments show that the amplitude of the power
stroke is indeed changing continuously with tension �53�.
Such observations can be explained inside chemomechanical
framework only if one assumes the existence of three or
more stable configurations for the attached cross bridge
�31,34,59�.

An interesting consequence of the above stretch sensitiv-
ity of the energy minima is the resolution of the long-
standing claim �34� that in a two state model the elastic en-
ergy associated with the power stroke of 11 nm must be
larger than the free energy of ATP hydrolysis. Instead, in our

FIG. 4. Computed tension-length curves are plotted against the
experimental data from �34�.

FIG. 5. Computed rate of recovery plotted against the experi-
mental data from �4,6,20�.
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model the amplitudes of this scale can be reached only if the
series elastic element is completely relaxed.

Since the goal of this short communication was to capture
only the principal effects, several features of the muscle sys-
tem which may affect the interpretation of the power stroke
phenomenology have been left outside. For instance, we did
not try to address the peculiar temperature dependence of the
functions T1��� and T2��� �53� which would require the re-
placement of mechanical springs by entropic ones �e.g., �2��.
We also did not address the delicate asymmetry between
shortening and stretching which may require the account of
the second head leading to a substantial modification of the
model. Finally, we left aside the analysis of the additional
coupling due to filaments extensibility, the study of the inho-

mogeneity of the relative displacement between myosin and
actin filaments, and we neglected the possibility of a non-
affine character of the displacements distribution in the sys-
tem of many sarcomeres connected in series. The incorpora-
tion of the corresponding effects in the Langevin framework
requires large scale numerical computations and the results
of such simulations will be reported elsewhere.
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