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The thermodynamical properties of heterogeneous DNA sequences are computed by path-integral techniques
applied to a nonlinear model Hamiltonian. The base pairs relative displacements are interpreted as time-
dependent paths whose amplitudes are consistent with the model potential for the hydrogen bonds between
complementary strands. The portion of configuration space contributing to the partition function is determined,
at any temperature, by selecting the ensemble of paths which fulfill the second law of thermodynamics. For a
short DNA fragment, the denaturation is signaled by a succession of peaks in the specific-heat plots while the
entropy grows continuously versus T. Thus, the opening of the double strand with bubble formation appears as
a smooth crossover due to base pair fluctuation effects which are accounted for by the path-integral method.
The multistep transition is driven by the adenine-thymine- �AT� rich regions of the DNA fragment. The base
pairs path ensemble shows an enhanced degree of cooperativity at about the same temperatures for which the
specific-heat peaks occur. These findings establish a link between microscopic and macroscopic signatures of
the transition. The fractions of mean base pair stretchings are computed by varying the AT base pairs content
and taking some threshold values for the occurrence of the molecule denaturation.
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I. INTRODUCTION

Partial separation of the DNA double helix is fundamental
in many processes relevant for biological functioning such as
transcription and replication of the genetic information �1�.
Also the packing of long DNA strands into nucleosomes
seems related to the local opening of a double helix segment
which may provide the key mechanism for loop formation
�2�. Gene transcription is possible as the hydrogen bonds,
linking the pair bases on the two complementary strands, can
break and expose the bases for chemical reaction. The region
of open base pairs �bps�, the transcription bubble, is gener-
ally localized and characterized by large amplitude fluctua-
tions known as the breathing of DNA. These observations
have suggested that the bps hydrogen bonds are intrinsically
nonlinear �3� thus putting some constraints on the modeling
of the double helix dynamics and strands separation, the
DNA denaturation. The latter is driven experimentally either
by increasing the temperature or reducing the proton concen-
tration in the solvent so that the repulsion between negative
phosphate groups on the two strands is less screened. Also
adsorption of DNA on a surface affects the denaturation
properties, a process widely used in biotechnologies �4,5�.
Thermally induced bubbles can be several bps long even at
about room temperature and extend by increasing T, leading
to the DNA melting once the complete strand separation oc-
curs. Such process is made evident by a sharp increase in the
UV absorbance �6� of the DNA solution due to the reduction
in both base pairing and stacking �along the strand� upon
denaturation. In fact substantial differences occur in the UV
absorption profiles for synthetical homogeneous and natural
heterogeneous DNA: while the former denaturates within a
narrow temperature range, the latter shows multiple steps
transitions �7� according to patterns which depend both on

the length and on the sequence �8–11� that is on fraction and
specific order of the strongly bonded guanine-cytosine and
weakly bonded adenine-thymine base pairs. However, as a
common signature to all different DNA structures, denatur-
ation is a highly cooperative phenomenon involving a size-
able number of bps. This follows from the fact that the ther-
mal disruption of a specific interstrand hydrogen bond
decreases the overlap between � electron orbitals of the or-
ganic rings in the bases and favors the unstacking of intras-
trand adjacent bases which, in turn, breaks the next hydrogen
bond and ultimately opens a bubble in the double helix �12�.
The role of cooperativity effects in DNA has been recog-
nized since long �13–16� and introduced phenomenologically
in Ising-like two state models in which the bps are either
closed or open. Such models have been applied to represent
melting transitions occurring step by step in heterogeneous
DNA fragments �17,18�. Later on Hamiltonian models, in
which the potential energy is continuous function of the dis-
tance between the bases �19�, have proposed a microscopic
origin for cooperativity by relating it to the anharmonic char-
acter of the intrastrand stacking potential �20�. The latter has
been found responsible for a denaturation with an entropy
jump corresponding to an effective latent heat reminiscent of
a first-order phase transition in homogeneous DNA �21�.
However, no consensus has been reached so far regarding the
nature of the transition, whether first or second order
�22–30�.

The Peyrard-Bishop-Dauxois �PBD� anharmonic model
�20� has also proved to be consistent with a multistep melt-
ing envisaged by experiments in heterogeneous DNA �31�
and with the formation of temporary sequence-dependent
openings observed by S1 nuclease cleavage experiments
�32�. Instead, some discrepancies have been pointed out be-
tween the PBD predictions and the denaturation curves of
specific heterogeneous sequences �33–35� indicating that im-
provements in the theoretical modeling are still necessary.
Due to the huge number of degrees of freedom, fully atom-
istic representations for sizeable segments of DNA require*marco.zoli@unicam.it
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prohibitive computational time. Accordingly, several mesos-
copic models have been developed to account for the essen-
tial interactions which determine structural stability, dynam-
ics, and denaturation of the molecule �36–40�.

In a recent work �41�, the imaginary time path-integral
formalism has been applied to the PBD Hamiltonian to in-
vestigate the occurrence of thermal denaturation in homoge-
neous DNA. The transverse stretchings of the bps with re-
spect to the ground state have been treated as one-
dimensional �1D� paths x��� depending on the imaginary
time � whose range is set by the inverse temperature �42�. A
path is defined by a set of Fourier coefficients and a single
base pair displacement is taken at a specific �i. Then, an
ensemble �x��i�� �i=1,N� represents a configuration for the
DNA molecule made of N bps, and by varying the Fourier
coefficients, one builds all the possible molecule states at a
selected temperature. While in principle the path integral is
obtained by summing over all DNA configurations, the
model potential poses lower and upper bounds on the spe-
cific bps elongations which naturally restrict the path phase
space for the computation of the partition function. The
method accounts for the highly cooperative character of the
denaturation which appears as a smooth second-order transi-
tion in homopolymer DNA.

In this paper the path-integral formalism �43� is extended
to heterogeneous DNA and, in particular, to short fragments
which are both technologically interesting for fabrication of
DNA chips �44� and theoretically relevant due to the en-
hanced role of fluctuations far from the thermodynamic limit
�finite and small N� �45,46�. Due to the direct integration
over the bps degrees of freedom, the path-integral method
naturally incorporates fluctuation effects and seems therefore
particularly promising in dealing with finite-size DNA frag-
ments. The PBD Hamiltonian and the generalities of the
path-integral approach are presented in Sec. II. The thermo-
dynamical properties for some specific DNA sequences are
discussed in Sec. III together with the computation of the
fractions of open bps versus temperature. Some final remarks
are made in Sec. IV.

II. THEORY

A. Hamiltonian model

The PBD Hamiltonian, originally introduced for homoge-
neous DNA �20�, is usually extended to represent a chain of
N heterogeneous bps as follows:

H = �
n=1

N ��ẏn
2

2
+ VS�yn,yn−1� + VM�yn�	 ,

VS�yn,yn−1� =
K

2
g�yn,yn−1��yn − yn−1�2,

g�yn,yn−1� = 1 + � exp�− ��yn + yn−1�� ,

VM�yn� = Dn�exp�− anyn� − 1�2, �1�

where yn is the transverse stretching at the nth site and mea-
sures the relative pair mates separation from the ground-state

position. The model is essentially one-dimensional as the
longitudinal displacements, being much smaller than the
transverse stretchings, are not taken into account �1�. The
boundary condition y0=yN closes the chain into a loop
whereas, in the case of an open end chain with N+1 bps, the
single-particle energy for y0 should be added to Eq. �1�. � is
the reduced mass of the bases which is assumed identical
both for guanine-cytosine �GC� and AT bps. This is a rel-
evant limitation of the model �7,12� which is mirrored also in
the stacking potential VS�yn ,yn−1� whose parameters K and �
are independent of the type of bases at n and n−1. In fact,
K=��2 with � being the harmonic phonon frequency.

���0� accounts for the anharmonicity in the stacking of
nearest-neighbor bps. When the molecule is closed, yn ,yn−1
	�−1, the effective stacking coupling is K�1+��. Whenever
either yn��−1 or yn−1��−1, the corresponding hydrogen
bond breaks and the electronic distribution around the two
pair mates is modified. Accordingly in Eq. �1�, g�yn ,yn−1�

1 and the effective stacking coupling �along each strand�
between neighboring bases drops to K. Then, also the adja-
cent base tends to open as both bases are less closely packed
along their respective strands. This is the microscopic origin
of the cooperative character �emphasized in the introduction�
of the interactions which determine the formation of a region
with open bps. The interplay between anharmonicity and co-
operativity is thus at the heart of the PBD model through the
form of the stacking potential.

However the form for VS�yn ,yn−1� in Eq. �1� is not unique
and other potentials have been proposed which also account
for the finiteness of the stacking energy at large intrastrand
base separations �37�. Typical values for DNA models with
intermediate anharmonicity are taken hereafter, K
=60 meV Å−2, �=0.35 Å−1, and �=1 �21,47�. As the pa-
rameters are site independent, it follows that the present dis-
cussion is neglecting stacking hetereogeneities �7�. The latter
may slightly affect the melting temperatures of specific por-
tions of the chain �11� although they are not expected to
modify the nature of the denaturation crossover. The quanti-
tative effects of the stacking hetereogeneities are left for next
investigations.

Instead, heterogeneity is present in the Morse potential
VM�yn� which models the hydrogen bond link between bases
on complementary strands �48,49�. Depth Dn and width an of
the potential differ for weakly bonded AT bps and strongly
bonded GC bps. Figure 1 shows VM�yn� for the parameters
used in the following calculations. While hydrogen bonds
may vary in a considerable range �50�, those in DNA are
typically described by taking energies per bond of

15–25 meV �51�. I assume here the lower bound taking
DAT=30 meV and DGC=45 meV thus accounting for the
fact that AT and GC bps have two and three bonds respec-
tively. an sets the spatial cutoff beyond which the bps tend to
open. The values aAT=4.2 Å−1 and aGC=5 Å−1, ensure that
transverse stretchings are somewhat stiffer for GC than for
AT bps although even larger values for aGC are found in the
literature �52�.

In spite of some arbitrariness in the parameters choice, the
shape of VM�yn� captures the fundamental features of the
many-body interactions at play between the opposite strands.
The repulsion of the negatively charged phosphate groups is
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described by the hard core that the base pair mates experi-
ence by coming too close to each other �yn
0�. On the
opposite side, when the relative separation grows above a
given threshold, the pair opens and the force between the
mates vanishes consistently with the plateau at the dissocia-
tion energy encountered for large yn. However precisely the
plateau, at about yn�1 Å in Fig. 1, reveals a drawback of
the model: when all bps in the chain open, the two strands
separation can grow in principle to infinite with no further
effort as the potential energy is flat �53�. Thus, the PBD
Hamiltonian assumes a single chain in a infinite solution
whereas experiments deal with DNA in a solvent structure at
finite concentration, hence, recombination of separated
strands in solution is possible. Here is a case of biomolecule
whose structure depends on the strong interaction with the
environment, a challenge to theoretical investigation �55�.
Specifically, reconciling model to experiment requires some
restrictions of the configuration space which have been at-
tempted either by methods based on molecular-dynamics
�56� and Monte Carlo simulations �57� or by truncating the
kernel domain in the transfer integral method �58� to prevent
the two strands from going infinitely apart �59�. In the path-
integral formalism, proposed in Ref. �41� and briefly outlined
in Sec. II B, the confinement of the phase space for the �yn�
is naturally incorporated in the computation after imposing a
macroscopic constraint to the evolution of the system which
is driven by the temperature.

It is also worth pointing out that the lower bound confine-
ment for the �yn�, physically due to the hard core potential,
ensures that the bps paths are self-avoiding at complemen-
tary sites along the strands. In fact base pair mates do not
overlap. However we recognize that the system in Eq. �1�,
lacking of the rotational degrees of freedom, does not cap-
ture the helicoidal structure of the molecule which should be
realistically embedded in the three-dimensional space. Ac-
cordingly, also self-avoidance is only partially considered in
our investigation as excluded volume effects due to interac-
tions between bubbles and bounded segments in three di-
mensions are not taken into account. This effect has been

shown to be relevant in polymer network theories to drive a
sharp denaturation transition at least in homogeneous DNA
�23,24�. On the other hand, the path-integral approach to the
Hamiltonian in Eq. �1� accounts for all bps fluctuations at
any T and permits to include in the computation the two
competing tendencies of the system: the energetic gain asso-
ciated to the �bounded� double strands configuration and the
entropic gain due to the large number of configurations avail-
able for open strands.

B. Path integral method

The idea underlying the path-integral method is that of
mapping the real-space model in Eq. �1� onto the imaginary
time scale. Accordingly, the transverse stretching yn is repre-
sented by a one-dimensional path x��i� with �i� �0,�� and �
being the inverse temperature:

yn → x��i�, yn−1 → x����, �� = �i − �� ,

n = 0,N, i = 1,N� + 1. �2�

Thus, at any given temperature, the finite-size system of
N+1 bps is described by N�+1�N��N� paths each of them
taken at a specific �i along the time axis. Along the DNA
strands only adjacent bps stacking interactions are consid-
ered. Accordingly, �i and �� in Eq. �2� are first neighbors
separated by �� in the discrete imaginary time lattice.

I am assuming periodic boundary conditions, x�0�=x���,
for all paths analogously to those imposed for the 1D finite
chain described by Eq. �1� �20�. Then, periodicity ensures
that a molecule configuration is given by N� paths and the
retardation is ��=� /N�. Further, any path x��i� can be ex-
panded in Fourier series with cutoff MF

x��i� = x0 + �
m=1

MF

�am cos�m�i� + bm sin�m�i�� , �3�

with m=2m� /�. Using Eq. �3� has an important physical
interpretation: for any choice of coefficients �x0 ,am ,bm�, a
single configuration �x��i�� for the DNA fragment is built at a
given temperature. As such coefficients can be varied in the
phase space, many different configurations are possible at the
same temperature each of them being a copy of the molecule
in the ensemble. Thus, integration over the path coefficients
amounts to sample the molecule configuration space and, in
turn, to account for the possible evolutions of the N bps
system in going between the time points 0 and �.

As the trajectories are closed paths, the path integral
yields the imaginary time partition function �42� which is
given by

Z =� Dx exp�− A�x�� ,

A�x� = 
0

�

d���

2
ẋ���2 + VS�x���,x����� + VM�x����	 ,

0 0.5 1 1.5 2
Base Pair Stretching (A)

0

50

100

150

M
or

se
Po

te
nt

ia
l(

m
eV

)

D
GC

= 45 a
GC

= 5
D

AT
= 30 a

AT
= 4.2

o

FIG. 1. �Color online� Morse potential VM versus base pair rela-
tive separation. The potential parameters Dn �in meV� and an �in
Å−1� are taken for both GC and AT base pairs.
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� Dx �
1

�2��

 dx0�
m=1

MF �m�

��
�2 dam dbm, �4�

where A�x� is the Euclidean action for the molecule in Eq.
�1� after applying the mapping in Eq. �2�. The molecule state
�x� corresponds to a specific set of Fourier coefficients. In
practice, the d� integral is replaced by �i=1

N� �and x���
→x��i�� which has to be sufficiently dense to make the ac-
tion numerically stable. This poses a constraint to the appli-
cation of the method to very short DNA fragments. Hereafter
I take N�=100 while a possible extension of the method to
molecules of arbitrary length will be mentioned in the con-
clusion.

Dx is the measure of integration which normalizes the
free particle action

� Dx exp�− 
0

�

d�
�

2
ẋ���2	 = 1 �5�

and � denotes integration over closed particle trajectories
�60�. �� is the thermal wavelength whose form in general
depends on the model whether quantum or classical. The
latter is appropriate to the occurrence of DNA denaturation.
Then, the time derivative ẏn �Eq. �1�� maps onto the imagi-
nary time derivative ẋ��� �Eq. �4��, the proper replacement
being: d /dt→ ����d /d� hence, ��=�� /�K.

The above-mentioned truncation of the configuration
space is intrinsic to the path-integral method as the compu-
tation of Eq. �4� requires a cutoff in the Fourier coefficients
integration �61,62�. The latter has to be consistent with the
physics contained in the model potential. Paths x��i�
0 rep-
resent the equilibrium configuration for the double helix cor-
responding to the minimum VM�x��i��. Then, qualitatively,
one may argue that too large coefficients would produce: �i�
too negative path amplitudes in Eq. �3� which are forbidden
by the electrostatic repulsion between the sugar-phosphate
backbones �63�; �ii� too positive paths which are anyway
unphysical as the two strands separation has an upper bound.
As Fig. 1 makes clear, paths associated to AT bps can sample
a spatial range somewhat broader than paths describing GC
bps whose bonds are stiffer. Incorporating all these require-
ments it is found that the suitable set of paths should be
searched among the x��i�� �xmin ,xmax�, with xmin
−0.2 Å
and xmax
6 Å for the temperature window hosting denatur-
ation effects. More negative paths would make a vanishing
contribution to the partition function �making the free energy
F of the system numerically unstable� while larger positive
paths would not affect the free-energy derivatives. After set-
ting the framework, the quantitative determination of the
paths configuration space is carried out by imposing the ful-
fillment of the second law of thermodynamics.

The free-energy derivatives presented in the next section
are obtained by F=−�−1 ln Z, with Z given in Eq. �4�.

Thus Eq. �4� is computed, at an initial temperature TI, for
a given path ensemble defined �at any �i� by the number of
integration points over the Fourier coefficients. The path en-
semble is temperature dependent. Then, at any larger T, the
numerical code redetermines the contribution to Z and calcu-
lates the free-energy derivatives. If, for a given number of

integration points, the growing entropy constraint is not ful-
filled then the size of the path ensemble is increased. The
procedure is reiterated until a minimum number of paths is
found such that the entropy grows versus T. This method sets
the T-dependent size of the ensemble, Nef f, whose paths sat-
isfy boundary conditions and macroscopic physical con-
straints. These are the good paths included in the computa-
tion. Nef f is the number of different trajectories followed by a
single base pair stretching in the configuration space. As the
procedure holds for any �i, the total number of paths contrib-
uting to the thermodynamics is N��Nef f whose value sets
the overall system size. Good numerical convergence has
been found taking Nef f 
47 000 at TI=260 K �41� and no
significant effect arises by further increasing the initial size
of the path ensemble.

III. DENATURATION CURVES

In heterogeneous DNA, AT-rich portions of the molecule
tend to open at lower temperatures than GC-rich regions.
However openings occurring at lower temperatures extend
also well inside the GC domains indicating a role for nonlo-
cal effects in shaping multistep denaturation patterns �64�.
The sequence pattern is particularly relevant in relatively
short segments made of a few tens of bps which is the rel-
evant scale for those transcription starting domains where the
genes are read. As transcription and other biological phe-
nomena require formation of open domains, theoretical mod-
eling faces the questions to define when �a� a base pair is
open and �b� a molecule is open. Here I consider the statis-
tical average of the ith base pair elongation as given by

�x��i�� = Z−1� Dxx��i�exp�− A�x�� . �6�

Equation �6� is computed by summing over those good
paths in the configuration space which fulfill the growing
entropy constraint as described in the previous section. Then
a base pair is open if: �x��i����, where the threshold � is an
arbitrary parameter at this stage. Further, the fraction of open
bps is defined as

f =
1

N�
�
i=1

N�

���x��i�� − �� , �7�

where �� • � is the Heaviside step function. Accordingly, the
size of the local openings is measured by f �0 while a mol-
ecule is entirely open if f =1. This does not imply that all
molecule configurations in the ensemble are denaturated: I
am assuming that a DNA molecule may exist in many dif-
ferent configurations which have to be Boltzmann weighted
to get the ensemble average of physically relevant quantities.
If all the averaged elongations exceed a given threshold then
the two strands separate.

Somewhat different definitions for f appear in the litera-
ture �33,57� with some authors arguing that the UV absorp-
tion signal does not relate to the mean bps stretching hence,
the sum in Eq. �7� should be made over the statistical aver-
ages ���x��i�−���. While this point should be investigated in
connection with available experiments for ensembles of short
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molecules �34�, here the focus is rather on the trend of the
path-integral model predictions for a single molecule.

First I consider a GC-rich molecule with 100 bps whose
sequence is

GC + 6AT + GC + 22AT + 4GC + AT

+ 4GC + AT + 8GC + �49 – 100�GC. �8�

The index i �Eqs. �6� and �7�� labels the bps running from
left �=1� to right �=100�. As the model depends on the rela-
tive positions between the pair mates, GC following GC can-
not be distinguished from GC following CG. Closer to real-
ity descriptions should include 16 stacking interactions. The
results for the sequence in Eq. �8� are summarized in Fig. 2
for a temperature window which features all the relevant
denaturation effects. The numbers of path amplitudes ex-
ceeding 1, 1.5, and 2 Å, respectively, are plotted in Fig. 2�a�
together with N��Nef f which ranges between 
4.7�106

and 
7�106. The insets displays the path amplitudes nor-
malized over N��Nef f. All plots generally show a steady but

not dramatic increase versus T due to the dominance of
strongly bounded GC pairs. Some exceptions are however
significant: at T
350 K, N��Nef f increases by over 2
�105 paths while two slightly less pronounced enhance-
ments are found at T
310 K �1.6�105 paths� and T

375 K �105 paths�. The total number of paths contributing
to Z markedly increases when some groups of bps weaken
their bonds signaling the interplay between cooperativity and
denaturation. These features are macroscopically seen in the
plot of the specific heat �Fig. 2�c��, whereas the entropy �Fig.
2�b�� displays small irregularities at the same T values and
maintains an overall continuous behavior. The complemen-
tary microscopic explanation is provided by Fig. 2�d� which
plots Eq. �7� for two choices of the threshold, �=1 Å and
�=1.5 Å, respectively. In fact the fraction of mean stretch-
ings exceeding 1 Å, with respect to the double helix equi-
librium configuration, shows somewhat appreciable jumps at
about the same temperatures given above while the fraction
larger than 1.5 Å becomes sizeable above T
325 K. Any-
way f never reaches the unity for such threshold values. The
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FIG. 2. �Color online� Sequence L48�AT30�+GC�49–100� in the temperature range which shows denaturation. �a� Number of paths �for
a single base pair stretching� larger than 1, 1.5, and 2 Å; total Number of paths �N��Nef f� contributing to the partition function. Inset:
number of paths �per base pair� whose amplitude is larger than 1, 1.5, and 2 Å, respectively, over N��Nef f. �b� Entropy versus temperature.
�c� Specific heat versus temperature. �d� Fractions of mean base pair stretchings calculated by Eq. �7� for �=1 Å and �=1.5 Å, respectively.
Inset: mean base pair stretchings at four specific sites.
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overall pictures emerging from Fig. 2 is that of a continuous
tendency toward denaturation essentially promoted by the AT
sites whose mean stretchings are generally larger than those
for the GC pairs: this is made evident by the inset in Fig.
2�d� where Eq. �6� is plotted for i=5,15,25,45. Also note
that the i=15,25 sites belong to a wider homogeneous AT
region than the i=5 site hence the former display larger av-
erage elongations than the latter.

Now I take a AT-substrate in the right side of the fragment
keeping the same sequence for the first 48 sites:

GC + 6AT + GC + 22AT + 4GC + AT

+ 4GC + AT + 8GC + �49 – 100�AT. �9�

The results for the fragment in Eq. �9� are shown in Fig.
3. The portion of the path configuration space sampled by the
computation is much larger than in the previous case with a
strong increase at T
380 K and N��Nef f 
18�106 at T
=390 K. The path fractions exceeding 1, 1.5, and 2 Å, re-
spectively �inset in Fig. 3�a�� are similar to the previous case.
However there is now a substantial increase in the absolute

path numbers contributing to the denaturation with about
3�106–6�106 path amplitudes broader than 1 Å in the
upper temperature range. Consistently two more peaks ap-
pear in the specific-heat plot beside the three ones already
found in Fig. 2�c�. Looking at Fig. 3�d�, we see that the
fraction of mean base pair stretchings larger than 1 Å attains
the unity at T
318 K pretty close to the first peak encoun-
tered in the specific heat �T
311 K�. As subsequent steps
are found in the denaturation pattern at larger T it may follow
than �=1 Å underestimates the real threshold for the overall
molecule denaturation. Or, the ensemble average procedure
entering the definition of f in Eq. �7� may not fully capture
the occurrence of the molecule denaturation. While this issue
deserves further work here we note that the mean path am-
plitudes at specific sites �inset in Fig. 3�d�� are significantly
larger than those for the previous fragment �inset in Fig.
2�d��: this effect is due to the substrate made of weakly
bound AT pairs. Even the i=5 AT site feels the change in the
substrate �in spite of the distance along the fragment back-
bone� pointing to the importance of nonlocal cooperativity
effects. Conversely the GC pairs at the first and third site
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FIG. 3. �Color online� Sequence L48�AT30�+AT�49–100�. �a� Number of paths �for a single base pair stretching� larger than 1, 1.5, and
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may be viewed as the presence of two defects embedded in
the AT-rich sequence to the left side. As the defects affect
their surroundings �65� the i=5 site mean amplitude is some-
what smaller than that of other AT sites having homogeneous
neighbors.

Eventually, the role of the AT bps is emphasized in Fig. 4
where f is computed for three cases: the AT sites content is
increased/reduced by eight units �with respect to Fig. 3� in
the first part of the sequence while the �49–100� segment is
kept fixed. The L48�AT22� sequence correspond to the
L48AS sequence of Ref. �34� which shows a two steps melt-
ing transition but a broad AT substrate is here attached to the
sequence itself. Then, no direct comparison is possible.
Again f is computed by taking two threshold values as be-
fore. By adding �removing� eight AT sites, the temperature
value such that f attains the unity �for �=1 Å� shifts down-
wards �upwards� by about 10 K. A significant increase in f
�for �=1.5 Å� is also found at large T for the AT-richest
sequence. Taking for good the functional form in Eq. �7�, a
qualitative agreement is found with the melting profile cal-
culated by Monte Carlo simulations of the PBD model �57�
where the same definition for f is assumed. A comparison
between the L48�AT22� sequence in Fig. 4 and the L48AS
sequence in Ref. �57� suggests that a threshold �
1.1 Å
permits to get f =1 at T
345 K in both plots.

IV. CONCLUSION

The temperature-driven strands separation in heteroge-
neous DNA sequences has been studied by applying the
path-integral formalism to the nonlinear Peyrard-Bishop-
Dauxois Hamiltonian model. Essentially the method consists
in mapping the relative base pairs elongations onto the
imaginary time scale set by the temperature. A time index �i
labels each base pair which is thus described by all those
paths, computed at �i in the path configuration space, which
are compatible with the model potential and fulfill the mac-
roscopic constraint given by the second law of thermody-

namics. The computational method requires that the entropy
has to grow versus temperature but no ansatz has been made
regarding the shape of the entropy curves. The continuity
found in the latter is consistent with the view that the strand
separation is an overall smooth crossover similar in this re-
spect to the case of homogeneous DNA. The model has been
applied to short fragments for which chain fluctuation effects
are generally expected to broaden the transition region �28�.
In fact the molecule denaturation appears here as a multistep
phenomenon, promoted by the AT-rich regions, whose long-
range effects may gradually extend over the whole fragment.
The denaturation steps are signaled by a few significant en-
hancements in the number of paths which participate to the
partition function although such enhancements are much less
sharp than those previously found in homogeneous DNA.
These findings are consistent with the fact that cooperativity
is higher in homopolymers than in heteropolymers as, in the
latter, different portions of the chain denaturate at different
temperatures. The specific heat shows sharp peaks at about
the same temperatures for which anomalies in the path num-
bers plots occur. Beside a main transition peak at T

350 K, our DNA sequences display some shoulder peaks
whose frequency grows with a larger AT base pairs content.
However some arbitrariness remains in the definition of the
threshold for the occurrence of the overall molecule denatur-
ation and much theoretical work remains to be done to un-
ravel this issue.

The present conclusions regarding the smoothness of the
denaturation are at variance with previous studies of the PBD
Hamiltonian �21� suggesting that denaturation is a first-order
thermodynamic transition microscopically driven by the
backbone stiffness parameter both in homogeneous and het-
erogeneous sequences �31�. In fact the latter studies consid-
ered somewhat longer fragments than those I have taken but
this should not be the source of the discrepancy regarding the
character of the transition as the smooth crossover persists
also by increasing the system size. Also some polymer net-
work analysis based on the Poland-Scheraga model for DNA
�22� point to a sharp denaturation which should be ascribed
however to self-avoidance effects for the three-dimensional
molecule rather than to backbone stiffness. While the debate
is open both inside the PBD Hamiltonian and the Poland-
Scheraga model-research fields, the path-integral results here
presented show that anharmonic stiffness alone should not
change the character of the transition in heterogeneous DNA.
Some improvements in modeling heterogeneous specific se-
quences are certainly expected by taking stiffness parameters
which appropriately account for the stacking interactions
along the molecule backbones. This feature however is not
expected to modify the nature of the crossover predicted by
the path-integral method. Instead, I feel that a main reason of
divergence with respect to previous Hamiltonian studies lies
in the fact that Eq. �4� incorporates all the path fluctuations
around the ground state of the double strand structure. These
fluctuations, included in the computational method, soften
the effect of the entropic barrier associated to the stiffness
and ultimately smoothen the crossover between the double
strand configuration and a state with open domains.

Further, among the mesoscopic models capturing the es-
sentials of the complex DNA interactions, the path-integral
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method has the advantage to account for a remarkable num-
ber of molecule configurations in a short computational
time. Nonetheless some limitations regarding both model
and method should be here recognized with the purpose to be
lifted in next investigations. First, the path integral in Eq. �4�
describes a one-dimensional system: extensions to higher di-
mensionality may permit to fully include self-avoiding paths
in the computation. Second, the space-time mapping tech-
nique in Eq. �2� may be modified by removing the correspon-
dence between one base pair and one point �i along the
imaginary time axis. By freeing the time from such con-
straint, each base pair stretching would maintain the full time
dependence and one point in the path configuration space
would correspond to one molecule whose different configu-
rations could then be obtained by tuning the time. Accord-
ingly the configuration space spanned by the computation

would describe an ensemble of molecules each of them ex-
isting in an ensemble of different states. In this way the
length of the molecules in the ensemble would become a free
parameter thus allowing us to examine the denaturation pro-
cess both for long DNA chains and fragments with only a
few tens of base pairs. Analysis of long sequences may per-
mit to check the role of the path fluctuations approaching the
thermodynamic limit. On the other hand, short fragments are
particularly interesting also in view of the fact that experi-
ments capable to detect intermediate states in the melting
transition are becoming available.
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