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Using the discrete phenomenological model with interlayer anticlinic and chiral interaction, the unwinding
of the antiferroelectric helix in external electric field was studied. The dependence of the helical pitch on the
electric field differs essentially in antiferroelectric and ferroelectric phases. It was found that in antiferroelectric
the critical electric field Eh of the transition into the unwound structure is proportional to the value of chiral
interaction and does not depend on the anticlinic interaction between nearest layers. This behavior differs
significantly from the case of ferroelectric in which Eh increases as the square of the chiral interaction and is
inversely related to the synclinic interaction between layers. Peculiarities of the unwinding process and the
dependence of the critical field Eh on model parameters are discussed. Based on our calculations, we propose
an analytical equation for the critical unwinding field in the antiferroelectric.
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I. INTRODUCTION

The behavior of polar liquid crystals in external electric
field is interesting both for fundamental physics and various
applications. Chiral ferroelectric smectic-C� �Sm C�� and an-
tiferroelectric smectic-CA

� �Sm CA
�� phases �1� form layer

structures with long molecular axis tilted with respect to the
layer normal �Fig. 1�. In the Sm C� phase the azimuthal ori-
entation of molecules �i �Fig. 1� in adjacent ith and
�i+1�th layers is nearly parallel �synclinic ordering�. In the
Sm CA

� phase molecules in adjacent layers tilt in nearly op-
posite directions �anticlinic ordering�. Layer polarization in
Sm C� and Sm CA

� phases is perpendicular to the tilt plane.
Without electric field chirality leads to rotation of the tilt
plane and polarization from layer to layer and formation of a
helix along the layer normal. The interaction of the electric
field with layer polarization favors alignment of the tilt
planes perpendicular to the electric field. The competition
between chirality, which favors the helical structure, and the
electric field, which favors the planar structure, leads to frus-
tration �2�. In the electric field unwinding of the helix takes
place through the formation of a complex structure with do-
main walls or solitons.

In nonpolar cholesteric �1� and polar Sm C� phases un-
winding of the helix in external field was investigated theo-
retically and experimentally in detail �3–13�. In cholesteric
the molecules rotate continuously along the helical axis. In
the Sm C� phase the angle �� between azimuthal orienta-
tions of molecules in adjacent layers is small. Without field
����=2� / p0, where p0 is the number of layers in the pitch.
Both in cholesteric and in Sm C� continuous theory can be
used to find the equations describing the unwinding of the
helix in the electric field and the value of critical field Eh of
the transition to the unwound state. A more complex example
of a twisted structure is the antiferroelectric helix �14� since
in Sm CA

� the molecules tilt nearly in opposite directions in
nearest layers, ����= ��+��, where �=� / p0.

Muševič et al. used the continuous model for the descrip-
tion of the chiral antiferroelectric in magnetic field �15�.
Their analysis of the field-induced distortion of the helical
structure and the value of the critical field for unwinding of

the helix were the same as in the case of chiral ferroelectric
due to the similar quadratic coupling with the field. Calcula-
tions for the electric field interacting with the layer polariza-
tion were made by Taylor and co-workers �16–18�. They
investigated the field-induced Fréedericksz transition and the
transition to the ferroelectric structure. Then, transformation
of the antiferroelectric structure in electric field was studied
on a phenomenological level �19–22� and using the
molecular-statistical approach �23�. In this paper, using the
discrete phenomenological model �24–31� with anticlinic
and chiral interaction between molecules we first calculate
the variation of the antiferroelectric pitch in electric field. We
found a nontrivial dependence of the critical field Eh on ma-
terial parameters, which differs essentially from the depen-
dence of Eh in the ferroelectric phase.

II. MODEL

In the antiferroelectric liquid crystal the azimuthal orien-
tation of molecules in smectic layers can be described by a

FIG. 1. Orientation of molecules and the layer structure of the
tilted smectic. �i is the polar angle. The vector �i determines the
azimuthal orientation of molecules �angle �i�. Each molecular layer
bears the electric polarization Pi perpendicular to the tilt plane. The
helical axis is along the layer normal. The electric field is applied
along the x axis.
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unit two-dimensional vector �i, where the index i stands for
the ith layer �Fig. 1�. Using �i the free energy with interac-
tion between tilted molecules of neighboring layers can be
written as

F = �
i
�1

2
a��i · �i+1� + f��i � �i+1�z + EPi sin �i� . �1�

Synclinic or anticlinic ordering arises due to the first term in
the free energy. This interaction favors the synclinic structure
for negative a and the anticlinic structure for positive a �27�.
The second term �the so-called Lifshits term� describes the
chiral interaction between molecules in the nearest-
neighboring layers �31�. Positive or negative f corresponds
to the opposite chirality. The coupling of the electric field
with layer polarization Pi is described by the last term. The
external electric field is parallel to the smectic layers. In our
calculations the tilt angle remains constant in electric field
since no intralayer interactions are considered. Antiferroelec-
tric structures with zero-field pitch p0 from about 40 to 80
smectic layers were calculated. These pitches correspond to
selective reflection in the Sm CA

� phase in the region from
about 400 to 800 nm. In the calculations samples with peri-
odic boundary conditions were used. The calculation of the
structures in electric field was performed by means of nu-
merical minimization of the free energy over orientation of �i
in all layers of the sample. The method of minimization of
the free energy was described earlier �21,30�. The starting
structure was taken as a random set of values of �i in differ-
ent smectic layers. The structure with minimum energy was
found by changing �i in every layer using the quasi-Newton
algorithm. To determine the structure with the global ener-
getic minimum, the minimizations were performed from 50
to 100 times for different random starting sets of �i. For the
determination of the pitch p in electric field the following
procedure was used. At a given E the structures with differ-
ent periods were calculated. The structure with minimum
energy was taken as the ground state. The calculated struc-
tures which corresponded to minimum energy were reason-
able from the physical point of view, namely, helicies dis-
torted by electric field without any defects. For the
determination of Eh the structures with one soliton and with-
out solitons were calculated in samples with periods from
3p0 to 6p0. For the structures with a soliton and without
solitons calculations were performed for different values of
the electric field. The electric field at which the energies of
the samples with a soliton and without solitons equaled was
taken as Eh. In ferroelectric structures with �f /a��4�10−2

the values of critical fields Eh obtained by means of the nu-
merical calculation and from the continuous theory �1� coin-
cided with accuracy better than 0.2%.

III. RESULTS AND DISCUSSION

The antiferroelectric and ferroelectric pitch p has been
calculated using Eq. �1� as a function of the electric field E.
Figure 2 shows p / p0 in Sm C� �Fig. 2�a�� and Sm CA

� �Fig.
2�b�� as a function of E /Eh. The model parameters were
taken to be a=−1 and f =1.975�10−2 in Sm C� �squares�,

and a=1 and f =1.975�10−2 in Sm CA
� �circles�, which cor-

respond to p0	159.2 layers in the ferroelectric phase and
p0	79.6 layers in the antiferroelectric phase. The triangle
and diamond in Fig. 2�b� show the results of calculations
correspondingly for a=0.75, f =1.975�10−2 and a=1, f
=2.965�10−2. All points correspond to the same depen-
dence, which represents the universal behavior of p / p0 ver-
sus E /Eh. In electric field the helix becomes distorted. In this
structure domains with smaller winding are separated by do-
main walls with a larger angle between nearest tilt planes.
The distance between domain walls and hence the pitch in-
crease with field. In the ferroelectric phase the numerical
calculations give a value of EhPi	4.8�10−4 where the tran-
sition to the unwound state occurs. For the ferroelectric the
equation describing the unwinding of the helix and the criti-
cal field Eh found in the continuum model �3–13� can be
rewritten in terms of the discrete model. The interlayer syn-
clinic interaction 1

2a��i ·�i+1� in Eq. �1� corresponds in the

FIG. 2. Field dependence of the relative pitch p / p0 for �a� ferro-
electric and �b� antiferroelectric structures is shown by symbols.
p0=79.6 layers in the antiferroelectric phase �circles� and p0

=159.2 layers in the ferroelectric phase. The model parameters are
a=−1, f =1.975�10−2 for the ferroelectric; a=1, f =1.975�10−2

for the antiferroelectric �circles�; a=0.75, f =1.975�10−2 �tri-
angle�; a=1, f =2.965�10−2 �diamond�. EhPi	4.8�10−4 in the
ferroelectric phase and EhPi	6.2�10−2 in the antiferroelectric
phase. The field dependence of p / p0 differs in the Sm C� and
Sm CA

� phases. For comparison, thin dashed lines are drawn in the
figure. They correspond to the dependence of p / p0 in the �a� anti-
ferroelectric and �b� ferroelectric structures. The dashed curves and
the solid curve for antiferroelectric are drawn to guide the eye.
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continuous model to Frank energy 1
2K� ��

�z �2 �1�, chiral inter-
action f��i��i+1�z—to a term 	� ��

�z �, where K is the twist
elastic constant and 	 is the Lifshitz parameter. Using the
linkage between two models �31� the analytical equation for
Eh is written as

Eh =
�2

8

f2

�a�Pi
. �2�

For the used model parameters EhPi	4.81�10−4, which
well coincides with the results of numerical calculations
�4.8�10−4�. The solid curve in Fig. 2�a� shows the variation
of p / p0 in the ferroelectric phase found from the continuous
model. So, in ferroelectric liquid crystals the field variation
of the pitch and the value of the critical field Eh calculated
from the discrete and continuous models well agree.

In antiferroelectric the critical field Eh is essentially larger
than in ferroelectric. Figures 3 and 4 show the dependence of
EhPi on the model parameters. The results of numerical cal-
culations are shown by squares �Sm C�� and circles �Sm CA

��.
In ferroelectric, Eh changes in accordance with Eq. �2� �solid
curve�. The critical field Eh increases as the square of the
value of the chiral interaction f �Fig. 3� and is inversely
proportional to the synclinic interaction �a� between layers
�Fig. 4�. An essentially different dependence was found in
antiferroelectric. The critical electric field Eh is proportional
to the value of the chiral interaction f �Fig. 3� and does not
depend on the anticlinic interaction a between nearest layers
�Fig. 4�. To the best of our knowledge this behavior of the
critical field in antiferroelectric liquid crystals was not
known earlier. The linear dependence of Eh on f and its
independence on �a� were found with good accuracy for
�f /a��4�10−2. It is useful to know the dependence of Eh on
measured values, for instance, on the helical pitch. For a long
pitch �p0
30� in the ferroelectric phase p0=−�a / f , and in
the antiferroelectric phase p0=�a /2f . Usually the helical
pitch in mixtures is increased or decreased by changing
chirality �f in the discrete model�. The critical field in ferro-
electric Eh=�4�a� /8p0

2Pi is proportional to p0
−2. From Fig. 3 it

follows that in antiferroelectric Eh is proportional to f , that
is, Eh
 p0

−1.
The evolution of the pitch p with field differs in Sm C�

and Sm CA
� �Fig. 2�. In order to make the difference clear, we

draw in Fig. 2 dashed curves which correspond to p / p0 in the
antiferroelectric phase �Fig. 2�a�� and in the ferroelectric
phase �Fig. 2�b��. The antiferroelectric pitch changes slightly
at small electric field and increases drastically at high field
�Fig. 2�b��. This dependence of the pitch on field is related to
the structure of the Sm CA

� phase and its specific transforma-
tion in electric field. In ferroelectric in low electric field the
net local polarization PF

L is about nPi, where n� p0 is the
number of layers �PF

L 	2Pi for a synclinic pair�. In antifer-
roelectric the net polarization of an anticlinic pair PA

L

=2Pi sin � /2	 Pi� is essentially smaller than in ferroelec-
tric �Pi��2Pi�. This leads to a small change in the antifer-
roelectric pitch in low field. Reorientation of the molecules
in electric field decreases the local electrostatic energy FE. In
ferroelectric FE decreases due to rotation of PF

L toward the
direction of the field. In antiferroelectric FE decreases due to
reorientation of PA

L and increase in � and PA
L, which becomes

essential in high field. This leads to a sharper dependence of
the pitch on the electric field with respect to ferroelectric
close to the critical field �Fig. 2�b��. After the transition to the
unwound state polarization of all anticlinic pairs becomes
parallel to the electric field �19,32�.

The independence of Eh on the anticlinic interlayer inter-
action a may be explained in the following manner: with
increasing a the pitch p0 increases, but the angle between
nearest tilt planes also increases, i.e., the polarization of the
anticlinic pairs decreases. The increase in p0 and decrease in
the polarization of the anticlinic pairs lead to independence
of Eh on a. The same situation will take place in ferroelectric
�where Eh=�3f /8p0Pi� if we increase p0 and proportionally
decrease Pi. In antiferroelectric the increase in a automati-
cally increases p0 and decreases the effective polarization of
anticlinic pairs. This qualitatively explains the independence
of Eh on a.

FIG. 3. Dependence of the critical field Eh on the value of chiral
interaction f in antiferroelectric �circles� and ferroelectric �squares�
phases. a=1 in the antiferroelectric phase and a=−1 in the ferro-
electric phase. f =1.975�10−2 corresponds to zero-field pitch p0

=79.6 layers in the antiferroelectric phase and p0=159.2 layers in
the ferroelectric phase. The pitch decreases with increasing f . In the
ferroelectric phase the solid curve is drawn according to Eq. �2�. In
the antiferroelectric phase the solid line is a fit of the data by a
linear dependence.

FIG. 4. Dependence of the critical field Eh on the value of an-
ticlinic �a� and synclinic �−a� interlayer interaction in the antiferro-
electric �circles� and the ferroelectric �squares� phases. f =1.975
�10−2 in ferroelectric and antiferroelectric. �a�=1 corresponds to
zero-field pitch p0=79.6 layers in the antiferroelectric phase and
p0=159.2 layers in the ferroelectric phase. The pitch p0
�a�, that
is, decreases with decreasing �a�. In the ferroelectric phase the solid
curve is drawn according to Eq. �2�. In antiferroelectric the critical
field does not depend on a �the solid line is EhPi=6.2�10−2�.
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We remind that the pitch p / p0 in the Sm CA
� phase

changes slightly in small field and increases drastically at
high field. This dependence may resemble a threshold behav-
ior especially in cells with the Fréedericksz transition
�17,18�, when surface anchoring plays a substantial role. In
our calculations of the Sm CA

� phase for fields E /Eh�0.3 we
cannot argue whether the helix unwinding is characterized by
a threshold or not. In materials with intermediate subphases
�33,34�, field-induced antiferroelectric-ferrielectric-
ferroelectric transitions can occur. We do not investigate sub-
phases in our paper since this is a special topic which will be
studied in another work.

It should be noted that model parameters in Eq. �1� de-
pend on the tilt angle �. In the discrete phenomenological
model interlayer interactions in Eq. �1� vary with the square
of � �25–31�; layer polarization Pi increases with �. So in
ferroelectric and antiferroelectric materials we may assume a
similar dependence of the critical field on �. For instance, in
materials with Pi
� the critical field Eh
�. When data are
compared at different temperatures these dependencies on �
should be taken into account.

In various systems with two or more competing periodici-
ties, sequences of structures known as the “devil’s staircase”
and the “harmless staircase” can appear �35–37�. Periods of
different structures in these sequences scale as rational num-
bers. Such a sequence of structures has been proposed as the
first model of intermediate subphases in polar liquid crystals
�14� and is expected to appear in the short-pitch smectic-C�

�

phase in external field �31�. This behavior should be most
pronounced in ultrashort-pitch structures when the zero-field
period is on the order of several molecular layers. With in-
creasing the helical pitch the field-induced evolution of
structures should approach to the one given by the continu-
ous model and can be effectively represented by a smooth
curve �31�. In our calculations the zero-field pitch is essen-
tially larger than the layer spacing.

Now we estimate the critical field Eh in antiferroelectric
from the free energy �1�. We use a similar procedure to that
used by Kamien and Selinger �2� for ferroelectric. The free
energy of the uniform twisted state is Ft=−N�1 /2a cos �
+ f sin ��, where �	2f /a and N is the number of layers

in the sample. The free energy of the unwound state is Fu
=−N�1 /2a cos �1+EPi sin �1 /2�, where �1 is the angle after
unwinding of the helix. The critical field Eh can be evaluated
by taking �=�1 and Ft equal to Fu. For small � our estima-
tion gives Eh=2f / Pi. This equation gives a right dependence
of the critical field on f �Fig. 3� and its independence on a
�Fig. 4�. However, the value of the critical field found from
the equation Eh=2f / Pi is smaller than Eh obtained in our
calculations. It is not a surprising result since in the estima-
tion of Eh we neglected the transformation of the helix in
electric field, i.e., we considered �=const. The actual un-
winding field is larger since the structure with the deformed
helix can adjust to the field and thus exist at a larger field
than 2f / Pi. The coefficient at f / Pi can be obtained from the
numerical calculations of the dependence of the critical field
Eh on the ratio f / Pi. It gives

Eh = 3.14
f

Pi
. �3�

The obtained coefficient is very close to �. We may guess
that it is not an accident and an exact equation exists for the
critical field of antiferroelectric in the form of Eh=�f / Pi.

In summary, the unwinding of the antiferroelectric helical
structure in electric field was studied using the discrete phe-
nomenological model. The field dependence of the helical
pitch and the critical field Eh at which the helical structure
transforms into the unwound structure were calculated. We
found that the dependence of the critical field Eh on the in-
terlayer nonchiral �a� and chiral �f� interactions differs es-
sentially in antiferroelectric and ferroelectric phases. In the
antiferroelectric phase the critical electric field Eh is propor-
tional to the value of chiral interaction and does not depend
on the anticlinic interaction between nearest layers, namely,
on the twist elastic constant. Based on our calculations, an
analytical equation is proposed for the critical unwinding
field of the antiferroelectric helix.
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