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We experimentally address the locations of maximal curvature on crystalline cellular or dendritic interfaces
that directionally grow in a thin sample of a transparent material. Local curvatures are determined on the whole
dendrite tips by considering the intersection of nearby normals. It is found that, at the location of the curvature
maximum, the interface normal points toward a particular direction solely set by the crystal lattice and equal in
practice to the dendrite growth direction at large pulling velocity. This property is independent of the growth
conditions �thermal gradient, velocity, dendrite spacing, and crystal orientation�. It enables crystal orientations
to be recovered from dendrite shapes and provides a bridge to understand the implications of anisotropy on the
forms and orientations of directionally solidified dendrites.
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I. INTRODUCTION

Many materials displayed in nature or in industry result
from the solidification of a dilute melt in a nonuniform tem-
perature field. They then refer to directional solidification as
opposed to the free solidification exhibited when the tem-
perature field is uniform. Examples include cast objects pro-
duced in metallurgy �1� or rocks solidified in lava lakes or in
the earth crust �2�. In each of them, the efficiency of melt
freezing drives the velocity of isothermal lines with respect
to the liquid phase and thus the actual velocity of the solidi-
fication interfaces. This provides interface shapes aligned on
an isotherm at low solidification velocity but undergoing,
above a critical velocity, the spontaneous formation of cells
�3�. Beyond another velocity threshold �4�, a secondary in-
stability makes these cells emit sidebranches, according to
which they are called dendrites.

Dendrites actually stand as the dominant microstructure
of directional solidification in dilute alloys. In particular,
they occur on any material involving rough interfaces and on
most of their usual ranges of solidification velocities �1�.
Interestingly, as the impurity concentrations vary on these
curved interfaces, solidification results in the formation of
composition modulations in the solid at the dendrite scale
with noticeable implications on the physical and mechanical
properties of the alloys. Accordingly, dendrites stand both for
the spontaneous emergence of time-dependent forms at a mi-
croscale and for a source of material microsegregation. For
these reasons, their nature appears both challenging on a fun-
damental ground and of paramount importance for metallur-
gical purposes.

Interestingly, crystal anisotropy, no matter large or small,
no matter relative to surface tension or to kinetic undercool-
ing, has proved to be essential to dendrites. In particular, it
has been recognized as playing a major role in their very
existence �5–10�, instead of seaweed structures or doublons
otherwise �11,12�. However, beyond this existential issue, it
also proved to monitor the orientation and the overall shape
of dendrites. For instance, in the free solidification of isother-
mal media, dendrites are found to grow along specific crys-
talline directions �1� with respect to which they are usually
symmetric. They then display a close to parabola tip �13–15�.

Sometimes however, they appear to grow along atypical di-
rections for reasons still referring to anisotropy �16�.

In directional solidification, however, a fundamental dif-
ference raises from the existence of two characteristic direc-
tions for monitoring growth: the direction of the thermal gra-
dient G and a direction a set by the crystal orientation. Their
competition is then parametrized by microstructure spacings
and growth velocities. In particular, at large solidification
velocities, all dendrites grow along the direction a, whatever
the direction of G �1,17–23�, and with a close to parabola tip
�24�. In contrast, at low velocities, microstructures are found
to grow close to the heat flow direction G, whatever the
direction a �18–22�, and with a digitlike tip �25–29�. In be-
tween, as the solidification velocity increases, they then ro-
tate from the direction G to the direction a �17–22� while
raising their inclination, their tip curvature, their asymmetry,
the amplitude of their secondary branches and the distance to
their neighbors �20–22�.

Crystal anisotropy, although extremely weak in terms of
temperature modulations of solidification interfaces, thus ap-
pears surprisingly efficient in governing the growth direc-
tions and the shapes of directionally solidifying cells and
dendrites. The way it acts on microstructures however shows
peculiar properties. In particular, the rotation of dendrites
proved to satisfy an internal symmetry, a scale invariance
with respect to a Péclet number, whose validity englobes the
whole parameter ranges �20–22�. This first indicates that
growth directions refer to a single physical regime, whatever
the growth conditions or the cellular or dendritic nature of
the microstructure, so that the issue might be simpler to un-
derstand that might have been feared. However, this rotation
law also suggests that the magnitude of the thermal gradient
and of the crystalline anisotropy play no role in the dendrite
orientations, even if their respective directions G and a ac-
tually do �21�. If so, this strange ambivalence would indicate
that thermal gradient and crystal anisotropy act as singular
perturbations in the growth system, so that pointing out their
respective role might well be a subtle analytical task.

On a general viewpoint, the intrinsic difficulty in dealing
with the implications of crystalline anisotropy on directional
dendrites traces back in the scale difference inherent to the
involved phenomena: the molecular scale for crystal lattice,
the micrometric scale at least for dendrites and the millimeter
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scale or more for the thermal gradient. In particular, deter-
mining the interplay between thermal gradient and crystal
orientation on dendrites turns out simultaneously handling
the implications of a macroscopic phenomenon �the heat
flow� and of a microscopic modulation �the crystal-induced
anisotropy� on a mesoscopic object �the cell or the dendrite�.
In addition, the hardness of this issue is enhanced by the fact
that a free boundary is sought for in a context where nonlocal
interactions are provided between distant interface parts by
the diffusive and advective solute transports.

A way to render this issue more tractable might be to
reduce its extension in scale space by determining a mesos-
copic implication of crystal orientation. Then, the coupled
roles of heat flow direction and crystal lattice orientation on
solidification could be handled at a single mesoscopical scale
by using this crystal-induced property together with a con-
stant thermal gradient. A natural candidate for that is the
dendrite shape whose crystal-induced features could be used
as additional conditions for solving the free-boundary prob-
lem. This has motivated us to seek whether crystal aniso-
tropy could yield a definite geometrical implication on den-
drites, preferentially a local implication for simplifying the
further understanding of this nonlocal growth system. This
led us to investigate the extremal features of dendritic inter-
faces and, especially, that of lowest differential degree: the
localization of the maximal curvature.

The central issue of our study has thus consisted in deter-
mining how, in directional solidification, the location of the
maximal interface curvature evolves with the growth condi-
tions on dendrites and in comparing this evolution with that
of the dendrite growth direction.

Would the study had taken place in free growth, its con-
clusions had been more direct. As the thermal gradient van-
ishes, the only specific orientations that remain are provided
by the crystal lattice. Except in case of competition between
cubic harmonics of the interfacial energy �16� or between
kinetic and surface tension anisotropy �30�, dendrites grow
along a principal crystallographic axis a on which the inter-
facial stiffness is minimal. They then display a symmetrical
form with respect to this axis and thus a maximal curvature
there. The growth direction Vg of dendrites, their normal
direction nc at the location of their maximal curvature and
the crystalline direction a are then all the same: nc / /Vg / /a.

In the present directional system, things are complexified
by the presence of two directions G and a that compete in
fixing the specific directions of a dendrite, i.e., its growth
direction Vg and its normal direction nc at its highest curva-
ture location. Several possible outcomes may then be ex-
pected: �i� the maximal curvature may point toward G:
nc / /G; �ii� it may follow the rotation of the growth direction
Vg from G to a: nc / /Vg; �iii� it may remain pointing toward
the crystal defined direction a: nc / /a; �iv� it may exhibit an
intermediate behavior.

In the former case, nc / /G, the most curved point would
be independent of crystal orientation even at large velocities.
In the second case, nc / /Vg, the quickest growing point
�whose normal points toward Vg� would be, as in free
growth, the most curved point. But it would no longer point
toward a crystal defined axis. In the third case, nc / /a, the
quickest growing point would no longer be confused with the

most curved point, except at large velocity where Vg / /a.
Finally, in the last case, no simple behavior might be a priori
expected.

Nevertheless, it is usually expected that, at large velocity,
the dendrite tip stands as the most curved part of the inter-
face with a normal pointing toward the crystal defined direc-
tion a. On the other hand, at low velocity, the growth direc-
tion Vg is known to match the thermal gradient direction G
whatever the crystal orientation. This supports a cell form
corresponding to the digitlike solution proposed in the low
Péclet number regime �25� and with a maximal curvature
pointing to direction G too. This would therefore select the
case �ii�, nc / /Vg, or the case �iv�. We shall find that this is
contradicted by our experiment.

In this paper, we have experimentally determined the lo-
cal curvatures displayed along the tips of directional cells
and dendrites from a geometrical method based on the inter-
section points of neighbor normals. We have surprisingly
found that the maximum of the interface curvature is reached
at a point whose interface normal n keeps aligned with the
crystal defined direction a, whatever the solidification veloc-
ity, the dendrite spacings, their asymmetry, or the sidebranch
development: nc / /a. This property, which enables the crystal
orientation to be recovered from the dendrite shapes, proved
to extend to transient states and to dendritic patterns exhib-
iting different spacings. It thus provides a definite geometri-
cal implication of crystal anisotropy on microstructure
shapes which is both independent of the growth conditions
and robust to disturbances. It may therefore open a valuable
track for understanding the role of anisotropy on microstruc-
ture features.

Section II reviews the main difference between free and
directional solidification regarding the present issues and
states the expectation that can be drawn as to the location of
maximal interface curvature in directional solidification. The
setup and procedures used in our experiment are then de-
scribed in Sec. III and the evolutions of the forms and the
growth directions of microstructures are reported in Sec. IV.
Section V then discusses the geometrical method applied for
measuring local curvatures. Applying it in Sec. VI provides a
quantitative evidence that the interface normals at the loca-
tion of the curvature maxima coincide with the crystal de-
fined direction a. This is followed by a discussion and a
conclusion about these results.

II. CURVATURE, GROWTH DIRECTION, AND
ANISOTROPY

The implications of anisotropy on the growth direction of
dendrites or on the location of their maximal curvature has
mainly been addressed in free solidification and compara-
tively much less in directional solidification. Yet, this latter
case involves a major difference that deserves a special at-
tention: the presence of an additional prescribed direction,
that of the thermal gradient G. To better grasp its specificity,
we first review the main conclusions reported in free growth
on this topic, then emphasize the implications brought about
by a thermal gradient and finally conclude about the expec-
tations that may be drawn in directional solidification on the
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evolutions of the most curved interface point.
The main information regarding the shape and the loca-

tion of the solidification interface comes from the Gibbs-
Thomson relationship which relates its temperature TI to its
solutal concentration cI up to capillary and kinetic correc-
tions

TI = TM − mcI −
TM

Q
��1�1 + �2�2� − �Vn. �1�

Here, TM denotes the melting temperature of the pure sol-
vent, −m the liquidus slope, Q the volumic latent heat, i
=1,2 the indexes of the two principal planes, �i=�
+�2� /��i

2 the interface stiffnesses, � the surface tension, �i
the polar angles in the principal planes, �i the interface cur-
vatures, and Vn the normal interface velocity. The two last
terms of the right hand side, respectively, stand for the cap-
illary and kinetic corrections to the interface temperature.
They involve a dependence of the stiffnesses �i and of the
kinetic factor � on the relative orientation of the interface
with respect to the crystal, i.e., on the angles � j = �a j ,n� be-
tween the directions of the lattice principal axes a j, j
=1,2 ,3, and the interface normal n: �i��i�� j�, ����� j�.

This orientational dependence must satisfy global rotation
and reflexion symmetries as well as the discrete symmetries
consistent with those of the crystal lattice. For a cubic crystal
and at the lowest order in an expansion in the components
�n1 ,n2 ,n3� of the interface normal n in the lattice frame, it
expresses as a function of the fourth-order harmonic combi-
nation �n1

4+n2
4+n3

4� or, equivalently, of the fourth-order har-
monic function f4�n�=4�n1

4+n2
4+n3

4�−3 �31�. The variables
���, �i, or � then write

��n� = �0�1 + 	0f4�n�� + o�	0� �2�

with ��0 ,	0� labeled ��0 ,
4� for surface tension, ��0 ,−
c� for
stiffnesses, and ��0 ,−
k� for the kinetic factor. When the
principal planes are crystallographic planes �1,0,0�, the angu-
lar dependence f4�n� then reduces at the dominant order to a
sinusoidal modulation f4�n�=cos�4� j�. However, in more
general situations, higher order terms may need to be con-
sidered.

It should be noted that surface tension or kinetic correc-
tions to the temperature interface are weak and that their
anisotropic modulations are even weaker. In particular, for
the present solvent, succinonitrile, the values of surface ten-
sion and of its anisotropy coefficient amount to �0=�0
=8.94�10−7 J .cm−2 �32� and 
4= �0.55�0.15�% �33�. For
a typical radii of curvature  of dendrite tips, of order ten
micrometers, the mean surface tension correction �T
=�0TM /Q appears as low as 6 mK since TM =331.23 K
�34� and Q=46.7 J .cm−3 �35�. Surface tension anisotropy
thus acts as a weak modulation �
c=15
4=8%� of a tiny
relative temperature correction ��T /TI��0 /Q�2.10−5�. In
particular, in the thermal gradient of 70 K.cm−1 that has
been used here, this correction is equivalent to a shift in
dendrite tip position lower than a micrometer and its modu-
lation to about 70 nanometers. Nevertheless, it surprisingly
proves to have a considerable effect on the growth direction
and, as we shall see, on the location of the most curved point.

Kinetic effects have not been quantitatively reported for suc-
cinonitrile but they are known to be even smaller than the
capillary effects. For this reason, we shall only focus atten-
tion on the latter below.

A. Free growth

We consider the free solutal growth of a melt in an iso-
thermal medium. Without interfacial corrections to the inter-
face temperature, dendrites steadily growing at velocity V
then involve a parabolic shape whose curvature radius  at
the tip satisfies the Ivantsov relationship �13�: V=2DP��I�
where �I denotes the interface undercooling, D the solutal
diffusion coefficient, and P� . � an explicit function derived
from the growth system. At a given undercooling, a family of
solutions � ,V� may thus arise whereas a single solution is
found experimentally �34�. This theoretical degeneracy
comes from an absence of characteristic scales that breaks
down once surface tension is considered. In particular, sta-
bility theories suggest the existence of a constant stability
parameter � such that 2�=2lDd0 where d0 denotes the cap-
illary length �5�. Combined with the Ivantsov scaling, this
yields the following determination for the dendrite velocity:
d0V=D�P2��I�. Some anisotropy is however required to ob-
tain a stable solution �7�. Let us address its specific effects on
both the growth direction and the location of the largest cur-
vature of dendrites.

1. Symmetric dendrites

Simple conclusions may first be easily reached by consid-
ering dendrites that are symmetric with respect to their
growth axis. Then, by symmetry, the interface point located
on the growth axis involves an extremal solute concentration
and an extremal curvature. From the Gibbs-Thomson rela-
tion �1�, this also implies an extremal stiffness and thus an
extremal capillary length d0. However, following stability
theories �5,7�, d0V is a constant at given undercooling, so
that a maximal growing velocity must be reached for a mini-
mal d0, i.e., for a minimal stiffness. Selecting this solution
for dynamical reasons yields dendrites growing along a prin-
cipal crystalline axis and with their largest curvature located
at their tip.

2. Microscopic solvability theory

Drawing on the linearity of the growth system with re-
spect to solute concentration enables to recast it into a
boundary integral equation by use of Green’s functions. In-
terestingly, in the two limit cases of one-sided model �no
diffusivity in the solid phase� and of the symmetric model
�equal diffusivity in both phases�, this equation reduces to a
closed integrodifferential equation for the interface position.
It then offers the opportunity of directly studying the effects
of surface tension and anisotropy on the dendrite shape. Con-
sidering a sinusoidal angular dependence of surface tension
and asking for a regular shape at the dendrite tip with no
angulous point then called for the existence of anisotropy
�
c�0,
k�0� to obtain a solution �7,9,30�. This implied the
selection of both the microsolvability parameter � �and thus
of the dendrite tip radius � and of the dendrite growth di-
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rection. In particular, for 
k�0 and 
c�0, the dendrite could
only grow on the principal crystalline axes whereas for 
k
�0, it was found to grow on these axes at low velocity but
on secondary crystalline axes at large velocity �30�. In any of
these cases however, the dendrite was found to be symmetric
with respect to its growth axis, with therefore a maximum
curvature at its tip.

3. Competition between surface tension harmonics

It appears however that the sinusoidal angular dependence
of the capillary length d0��� used in the above microscopic
solvability theory is only the dominant order of a more gen-
eral systematic expansion. In particular, in a three-
dimensional �3D� approach of dendrite growth, expansion of
the interface stiffness in terms of spherical harmonics points
out the possibility of a competition between the effects of the
two first dominant terms when they actually support growth
in different directions, i.e., one on a principal crystallo-
graphic axis and the other on a secondary axis �16�. It might
be guessed that this competition could be solved by identi-
fying the selected growth direction with the minimal stiffness
direction. This, however, only provides the main tendencies,
i.e., the growth on principal or secondary crystalline direc-
tions, but misses the intermediate atypical directions that are
provided at the transition between these two directions in the
parameter space �16�. In the former case, dendrites are sym-
metric with respect to their growth directions and thus dis-
play a maximal curvature at their tip; in the latter case of
atypical directions, dendrites are no longer symmetric so that
their tip no longer coincides with a maximal curvature.

4. Growth direction and maximal curvature

It thus appears that, already in free growth, the determi-
nation of growth direction and of maximal curvature stands
as a subtle issue capable of providing several outcomes as
soon as a competition between different tendencies is in or-
der. In particular, there exists no general principle capable of
yielding a simple definite answer as for instance the extrem-
alization of stiffness or of tip undercooling. This warns about
the difficulty in determining the analogous behaviors in di-
rectional growth where the competition between the respec-
tive orientations of the crystal lattice and of the heat flow sets
the rule.

B. Directional growth

In directional growth, another specific direction, that of
the thermal gradient G, is added to the system. Judging from
the effects of the competition between primary and second-
ary crystallographic axis in free growth, one may thus a pri-
ori expect large implications of the competition between
crystal orientation and heat flow direction.

Apart from introducing a specific direction, the thermal
gradient also yields the solidification interface to structure
itself in a cellular or dendritic array, above the onset of pla-
nar interface instability. This provides a mesoscopic scale,
the cellular or dendritic spacing �, which helps judging
about the degree of nonlocality of the growth system. For
this, the spacing � has to be compared to the natural length

provided by the interplay between advection and diffusion,
i.e., the diffusion length lD=D /V, which basically corre-
sponds to the influence length of a point source in the growth
system. This comparison is performed in the Péclet number
Pe=�V /D.

1. Large Péclet number: Peš1

At large Péclet number, the influence length of an inter-
face point, lD, is much smaller than the microstructure scale
�. Apart from cumulative effects of diffusion fluxes, the in-
terface dynamics may then be considered as local on the
scale lD. The effect of the thermal gradient on this scale may
then be evaluated by comparing the resulting temperature
difference across it, �T=GlD, to the shift in equilibrium tem-
perature �1� implied by solute concentration, mcI, and by
surface tension, ��TM /Q. It then appears that �T�mcI re-
quires V�Vc but that �T���TM /Q calls for a possibly more
severe criterion: V�Vc mcI /TM QR /�0, R denoting the mean
interface curvature radius.

In practice, the latter criterion is usually an order of mag-
nitude more restrictive than the former. In particular here, at
a dendrite tip, R=�10 �m so that, with �0 /Q�0.2 nm,
QR /�0�5.104. As, usually, mcI is larger than 0.1 K and TM
of the order of 350 K, this criterion reads V�15Vc and even
V�150Vc if mcI is of the order of a Kelvin, as here. Usually,
the temperature difference implied by thermal gradient thus
stands in between those driven by solute concentration and
surface tension: ��TM /Q��T�mcI. This means that, on a
diffusion length, the interface is quasi-isotherm regarding so-
lutal effects but largely nonisotherm regarding capillary cor-
rections. The former property states that, at the diffusion-
advection scale lD, the interface can be considered as
analogous to a freely growing interface part. However, the
latter property warns us that surface tension effect and a
fortiori those of anisotropy are likely to be overcompensated
by the thermal gradient influence.

Skipping out this caveat has led a popular but insuffi-
ciently justified analogy between free growth and directional
solidification at large velocity. According to it, considering
the vicinity of the fastest growing point of a directional den-
drite as a freely growing dendrite tip and leaving aside the
competition between different sources of anisotropic correc-
tions to its interface temperature, one might expect it to grow
along a principal crystalline axis and involve a maximal cur-
vature: nc / /Vg / /a.

2. Small Péclet number: Pe�1

At small Péclet number Pe�1, the influence length lD of
an interface point extends over the whole microstructure
scale �. The interface dynamics is then nonlocal and in-
volves interactions with neighbor microstructures. The
smallest scale to consider is thus � and even more if the
microstructures displayed on the interface look different. The
temperature difference brought about on this scale by the
thermal gradient is �T=G��mcIPec where Pec=�Vc /D de-
notes the Péclet number at the planar interface destabiliza-
tion. As usually Pec is at least 0.1 �as here�, the interface
cannot thus be considered as isothermal. Accordingly, the
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thermal gradient must play a dominant role on the cellular or
dendritic form and thus, on both its growth direction and the
location of its maximal curvature. In particular, the micro-
structure tip appears to be much more accurately described
by a Saffman-Taylor finger �25–29� than by a free growth
parabola. In addition, as its growth direction is close to that
of the thermal gradient G, whatever the crystal orientation
�20–22�, its maximum curvature might be expected to point
toward this common direction: nc / /Vg / /G. This is sup-
ported by the fact that the anisotropic corrections to the in-
terface temperature TI �1� are largely dominated by the tem-
perature difference brought about by the thermal gradient on
the tip.

3. Growth direction and maximal curvature

In directional solidification, both the maximum curvature
and the growth direction are thus expected to turn from a
crystallographic direction to the heat flow direction as the
Péclet number decreases. This is well-known for the growth
direction and has been largely documented in our experiment
�20–22�. However, we shall show here that, contrary to this
expectation, the maximal curvature keeps pointing toward
the crystallographic direction for decreasing Pe, despite the
increasing influence of the thermal gradient.

III. EXPERIMENT AND PROCEDURES

The experimental setup is designed so as to provide a
nonintrusive observation of the directional solidification of a
single microstructure layer. It thus consists in pushing, at a
controlled velocity and in a prescribed thermal gradient, a
thin sample of a transparent alloy. It is described in detail in
references �4,22� and is briefly reported below �Fig. 1�.

Heaters and coolers are made of copper blocks electroni-
cally regulated to better than 0.1 K. The sample is pushed in
between them by a ball-screw driven stage coupled to a step-
per motor by a 5 mm thread screw and a reductor of factor

74.1. The motor involves 6 400 microsteps per turn and is
slowed at each step by Foucault current to prevent vibra-
tions. This provides a regularity of the pushing velocity bet-
ter than �3%, as controlled by a Michelson interferometer.
The sample is long �15 cm�, large �5 cm� and thin �50 �m�.
It is made by gluing together two glass plates separated by
thin spacers. It is filled by capillarity with a transparent ma-
terial, a succinonitrile �C4H4N2� alloy purchased by Sigma
Aldrich. Observations are made by visualizing on a CCD
camera the distortions undergone by an initially parallel light
beam crossing the sample. This enables the visualization of
the interface as a sharp line of contrast.

Analysis of the alloy by nuclear magnetic resonance and
by infrared spectroscopy identifies a single chemical bond
other than those of succinonitrile: an ethylenic bond. This
excludes contamination by common substances as water and
points to ethylen or acrylonitrile as the dominant impurity.

The sample is thin enough to allow a single layer of cell
or dendrite to grow in it. Compared to a 3D growth, this
layer then experiences forced conditions imposed by the
sample, i.e., thermal and solutal boundary conditions and a
fixed thickness. The thermal conditions impose a thermal
field which satisfies the temperature change imposed by
heaters and coolers but in a sample that slowly drifts toward
the latter. Temperature advection then weakly distorts the
temperature field out of a linear variation �see appendix of
�36��. However, the implication on the thermal gradient at
the solidification interface is only of second order when the
interface is placed, as here, in the middle of the gap �4�.
Solutal boundary conditions impose a vanishing flux at the
top and bottom boundaries. This, however, corresponds to
the natural conditions encountered in 3D when the top and
bottom neighbor layers are identical to the one they sand-
wich.

The effects of confinement in a direction normal to the
sample can be addressed by phase field simulations. It then
appears that, above a value of about d=30 �m, the influence
of the sample thickness d on both the projected shapes and
the undercooling of cells or dendrites is negligible �37�. This
property echoes the independence of the critical velocity of
planar destablization Vc on d in this domain �38�. It means
that the two dimensions which define the cell boundaries,
i.e., the sample thickness d and the cell spacing �, decouple
so that the form and the dynamics of the two-dimensional
�2D� interface seen from above actually refers to a 2D issue.
This has been explicitly evidenced on the onset of side-
branching since its value for lateral �respectively, transversal�
branching only depends on a single dimension, the dendrite
spacing �respectively, the sample thickness�, whatever the
value of the remaining dimension �4�.

Altogether, these properties show that the 2D interface
visualized in thin samples here exhibit the same behavior as
in 3D except that the third dimension, that of the sample
thickness direction, is frozen. In particular, the independence
of the microstructure undercooling on the sample depth d
above d=30 �m points to a negligible influence of the out-
of-plane curvature on the variations in interface temperature.
We shall then overlook it in the following.

Succinonitrile is a body-centered crystal. To enable an
accurate determination of its orientation and avoid grain

FIG. 1. Sketch of the experimental setup. �a� Side view. The
sample is pushed at a prescribed velocity V in a controlled thermal
gradient G. �b� Top view. The thermal gradient direction is moni-
tored by turning the direction of the thermal boundaries. This en-
ables its angle with a preferred crystalline direction a to be rou-
tinely changed. The projection of the pushing velocity V on the
thermal gradient direction is labeled VG.
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boundary competitions, a single crystal has been iteratively
selected by a controlled solidification/fusion process. In par-
ticular, grain orientations have been evidenced from the
growth directions of rapidly solidifying dendrites and have
guided the selection of a single convenient grain.

Interestingly, one principal direction of the crystal proved
to be normal to the sample to the accuracy of our observation
�Fig. 2�a��. This has been attested by the fourfold symmetry
of the cross shape displayed by free dendrites and by the
left/right symmetry of the sidebranches developed in the
sample depth by directional dendrites. Although the observa-
tion of these symmetries do not exclude a slight tilt of crystal
orientation off the sample normal, it restricts its angle to a
few degrees at most. On the other hand, detailed studies of
the effects of anisotropy in thin samples have shown that a
relevant effective anisotropy to consider was that referring to
an interface normal n belonging to the sample plane �39�,
i.e., to the 2D interface seen by projection along the sample
normal. Then, by symmetry, anisotropy corrections should be
even, and thus of second order, in the tilt angle. This prop-
erty, together with the weakness of this angle, allows us to
neglect this tilt here, if any, and thus to reduce crystal orien-
tation to that of a vector in plane.

To identify this vector, it is convenient to consider a den-
drite direction solely linked to the crystal orientation. This is
provided by the growth directions of rapidly solidifying den-
drites which actually prove to only depend on the crystal
orientation, irrespective of the thermal gradient direction.
Two of them, a and a�, one perpendicular to the other, are
displayed in the sample plane �Fig. 2�a��. We shall call here-
after a that corresponding to the asymptotic growth direction
of the dendrites under study. In practice, it corresponds to the
closest direction to G.

To finely control the misorientation angle �0= �a ,G� be-
tween the thermal gradient G and the crystal defined direc-
tion a, we preferred varying the former which is macroscopi-
cally established rather than the latter which is
microscopically controlled by growing germs. This has been
achieved by designing the boundaries of heaters and coolers
so as to rotate the thermal gradient by prescribed angles �Fig.
1�b��. Several rotation angles of G were used on several
crystal orientations so as to span the range �0° ,45°� for �0.

Measurements of dendrite growth directions were
achieved from the recordings of their tip trajectories as they
drift in the observation field �22�. This field corresponds to
the rectangular video frame, �X ,Y�= �768,512� pixels wide,
oriented so that its Y axis is parallel to the pushing velocity
V. The tilt angle �= �Vg ,V� of dendrite growth directions
with respect to the pushing velocity V then writes tan���
=X /y where y denotes the distance made on the Y axis by a
dendrite tip during its drift in the video frame. As this dis-
tance is computed from the drift time T by a linear relation-
ship, y=VT, its relative uncertainty writes �y /y=�T /T. Here,
the uncertainty on T follows from the uncertainty in localiz-
ing the dendrite tip on the interface or, equivalently, in de-
termining the interface length L in the video frame from the
drift of a dendrite along it. This means that, denoting Vd the
dendrite drift velocity on the interface, T follows from L by
a linear relationship too, T=L /Vd, so that its relative uncer-
tainty reads �T /T=�L /L. With ��45°, �L=1, L�X and
X=768 in pixel units, this finally yields ��=sin�2���y /2y
�1 /2X�0.04°. The same uncertainty is found for the angles
�V ,G� and �V ,a�, thereby yielding, for the angles �0
= �a ,G� and �= �a ,Vg� �Fig. 2�b��, a net uncertainty less
than 0.1°.

The succinonitrile alloy displayed a melting point of
56 °C, close to the melting point of the pure substance,
58.1 °C. The solutal diffusivity has been measured at D
=1350�50 �m2.s−1 and the partition coefficient of the melt
at k=0.29�0.05. The thermal gradient was fixed at G
=70 K·cm−1. It provided a critical velocity of about Vc
=1.15 �m.s−1. Pushing velocities and microstructure spac-
ings varied from V=5 to 50 �m.s−1 and from �=70 to
230 �m.

IV. MICROSTRUCTURE EVOLUTIONS

Figure 3 reports a series of snapshots showing the evolu-
tion of microstructures with velocity V and misorientation
angle �0. In each of them, to a good accuracy, the line join-
ing the microstructure tips corresponds to an isothermal line
�40� and the microstructure axes are close �but not equal� to
the microstructure growth directions �22�. The angle between
these two lines then provides with the naked eye the depar-
ture of growth directions from the thermal gradient direction
G. Dendrite tilting is thus found to increase with either the
velocity or the misorientation angle �0.

At large �0 and small V, one notices a transition to a
repetitive tip-splitting mode, so-called degenerate mode,
which prevents a definite growth direction to be identified
�Figs. 3�p� and 3�q��. Other instabilities, not displayed here,
bound the allowable spacing by nucleation or elimination of

FIG. 2. Sketch of the relevant directions and variables: �a� di-
rections of the principal crystalline axes with respect to the sample.
One axis is normal to the plane. The remaining axis that is the
closest to G is labeled a. This crystal defined direction corresponds
to the growth direction of large velocity dendrites. �b� Thermal
gradient G, crystal defined direction a, growth velocity Vg, and
microstructure spacing �. The angles �= �a ,Vg� and �0= �a ,G�
measure the relevant directions with respect to a. The velocity of
isothermal lines is given by the projection VG of the pushing veloc-
ity V on the direction of G. Image width is 545 �m.
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a microstructure �41–43�. Within the allowable band, various
stable spacings can then be obtained on homogeneous pat-
terns depending on the growth history �4,43�.

As dendrite tilting increases, the asymmetry of cells and
dendrites gets more pronounced. In particular, in the vicinity
of their tip, the interface standing on the side of the tilting
gets more rounded than on the opposite side. In addition, its
groove remains smooth whereas that on the opposite side
develops sidebranches. Finally, the distance between den-
drites raises with tilting, as a result of sidebranches succeed-
ing in reaching the isothermal line joining the dendrite tips.

These observations reveal a large implication of crystal
orientation on the growth directions and the morphologies of
microstructures. In particular, even at large velocities where
dendrite growth directions are ascribed to the direction a,
important variations in morphologies are in order depending
on whether the misorientation angle �0 is small �Fig. 3�e�� or
large �Fig. 3�t��. In the first case, nearly symmetric dendrites
are displayed whereas, in the latter case, largely asymmetric
dendrites exhibiting a long sidebranch wake and a wide spac-
ing are in order.

V. GEOMETRICAL MEASURE OF LOCAL CURVATURE

We aim at measuring local curvatures along solidification
interfaces in the vicinity of the microstructure tips. For con-

venience, we begin by rotating the interface images of the
angle �0, so that from now on the vertical axis will be
aligned with the crystal defined direction a on all images. It
appears that this makes the microstructure tips nearly sym-
metric with respect to the direction a. As a result, microstruc-
tures will thus be treated almost similarly by the forthcoming
algorithms.

We select the most curved steady part of the tip i.e., for
dendrites, the tip region which experiences no branching
and, for cells, their ahead region which is indeed the most
curved part of them �Fig. 3�. We then obtain a numerical
profile of the interface by the following process.

We first extract a skeleton along which a more detailed
localization of the interface is sought. This is achieved by
use of the intensity modulation profile found on the interface
normal. As reported in figure Fig. 4�a�, this profile is made of
a sharp raise followed by a small decrease toward a plateau.
We used it to unambiguously locate the interface as the lo-
cation of the sharp maximum. For this, at each point of the
skeleton, we considered a box, 48 pixels long, 8 pixels large,
in which a linear combination of an inverse hyperbolic tan-
gent function and a Gaussian function is fitted onto the nor-
mal profile. This provided us with both the interface loca-
tions and their uncertainties.

Following the irregularities of the skeleton �Fig. 4�b��, the
interface curve shows slight steady modulations at the micro-

FIG. 3. Experimental library showing the forms of microstructures and their tilt from the thermal gradient direction G to the crystal
defined direction a. The direction of G is normal to the line joining the microstructure tips. The direction a is close to the microstructure axes
at large velocity. Their angle is labeled �0= �a ,G�. The structures in �p� and �q� stand in the so-called degenerate mode where iterative tip
splittings prevent a permanent direction to be defined. In the remaining pictures, tilting, asymmetry and sidebranch development increase
with velocity V or misorientation angle �0. The scale is the same for all figures and is given in figure �t� by a 100 �m line.
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metric scale of a pixel. Usually, they would have been weak
enough to be overlooked. However, here, the determination
of local curvatures requires a fine spatial analysis of the in-
terface which would suffer from these perturbations. In par-
ticular, a weak distortion of the interface profile, even local-
ized, would be sufficient to induce a large change of the
interface normals and thus, of the interface curvature. How-
ever, no such steady distortion can be physically generated
on the interface at such a small scale, in particular following
the smoothing effects of capillarity. It is therefore legitimate
to eliminate them before proceeding further. For this, we
apply a gliding parabolic fit performed on window widths of
the order of the third of the mean curvature radius. As this
smoothing process is convergent, we apply here iteratively to
obtain the interface curve at the required smoothness for cur-
vature determination. As shown on Figs. 4�b� and 4�c�, the
resulting curve is hardly distinguishable from the initial skel-
eton with the naked eye. However, it ensures a signal to
noise ratio weak enough for applying the fine differential
analysis of the interface profile that is next required �Fig. 5�.
In addition, as the fluctuation scales filtered out are much
smaller than both the local curvature radii of the interface
and their spatial scale of variation, no significant drift of the
value of these radii or of the localization of their minimum
can be induced by the filtering. This has been checked by
applying additional random small scale perturbations to the
initial skeleton, as reported in the next section.

We now turn to the determination of local curvatures on
the interface tip. Usually, the curvature of a curve at a point
is determined as the curvature of tangent circles or best fit-
ting parabolas at that point �6,44�. These procedures however
raise intrinsic difficulties which originate from the fact that

the interface is neither a circle nor a parabola �14,45�, espe-
cially in directional solidification �29�. Then, determining a
tangent circle to a curve requires either a large data density
in the vicinity of the contact point or, on the negative, a fit on
some extended area around it. In the second case, actually
the most usual, the resulting curvature radius is not local but
refers to a mean curvature over some interface area. Fitting
to parabolae raises similar concerns which may yield to con-
sider quadratic corrections to the interface shape �45,46�. In
particular, the best fitting parabola evolves with the extent of
the interface part that is considered so that enlarging it makes
curvature radius first increase, then stagnate and finally de-

FIG. 4. �Color online� Digitalization processing. A rotation of angle �0 of the coordinates has been applied to the experimental images,
so that the y axis is aligned onto the crystal defined direction a. Here �0=12.9° and V=30 �m.s−1. �a� Intensity profile along the normal
to an interface skeleton. The interface location is taken at the intensity peak. �b� Interface skeleton obtained after thresholding. Colors �gray
levels� indicate the pixel intensity. The skeleton lies in the red �dark gray� zone of large pixel intensity �larger than 130�. Pixel intensity then
decreases to about 125 in the light blue �light gray� dendrite interior and to about 110 in the dark blue �dark gray� zone which surrounds the
dendrite. �c� Smoothed interface obtained by improving its localization using the intensity profile �a� and by smoothing out spurious
fluctuations at the micrometric scale.
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FIG. 5. Determination of local curvature radii by intersection of
curve normals. The intersection of two neighbor normals provides
the center of the circle tangent to this interface part. This geometri-
cal property yields an accurate measurement of local curvature radii
. The envelop of the normals displays a cusp singularity whose
turning point refers to a minimal curvature radius. Here �0=12.9°,
V=30 �m.s−1 and the interface is that displayed on Fig. 7�d� and
in Fig. 4.
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crease again �28�. A local measure of curvature radius would
thus require to restrict analysis to a small interface part but at
the prejudice of the fit accuracy.

In view of this, we preferred returning to the definition of
curvature radius  as the rotation rate of tangent vectors � on
a curve: d� /ds=−n / where s denotes the curvilinear ab-
scissa and n the curve normal. Writing, in complex coordi-
nates, �=exp�i�� and n=−i exp�i�� yields d� /ds=1 / where
� denotes the angle between a fixed direction ex and the
tangent vector �. This in particular means that, for an arbi-
trary elementary displacement �s on the curve, the resulting
normals would intersect at a distance �s� �Fig. 5�. This geo-
metrical property offers the opportunity of performing a local
measure of curvature radius by a simple but accurate mean.

The advantage of this measurement procedure is to be
accurate even on small portions of the interface and to be
independent of the global size of the form to analyze. In
particular, here, the measure �s� is not sensitive to the dis-
placement �s that is considered, provided that �s remains

much weaker than �s� and that fluctuations at the scale �s
are absent or smoothed out, as done here. Another advantage
of this procedure is to provide a global geometrical view of
the evolution of local curvatures from the figure made by the
set of intersecting normals: the curve evolute �Fig. 5�. In
particular, the normals envelop displays a cusp singularity
similar to a caustic in optics and whose turning point refers
to the minimal curvature radius on the interface.

VI. NORMAL DIRECTION AT THE MAXIMAL
CURVATURE AND CRYSTAL ORIENTATION

The typical evolution of curvature radii along a solidifi-
cation interface is reported in Fig. 6�a�. They are found to
start from large values in a groove, then decrease to a mini-
mum on the microstructure tip and finally increase again on
the opposite groove.

We call C the point where the curvature radius is minimal.
Our issue consists in investigating a possible link between
this point and the crystal orientation. For this, we report on
Fig. 6�b� the crystal defined direction a and the normal di-
rection nc to the interface at point C with, for completion, the
thermal gradient direction G.

Interestingly, it appears that the interface normal nc at
point C stands very close to the crystal defined direction a.
Looking to Fig. 7 reveals with the naked eye that this prop-
erty seems to qualitatively extend to the whole microstruc-
ture library, whatever the Péclet number or the misorienta-
tion angle �0. In particular, as in Fig. 6�b�, the largest
curvatures seem to be located at the top of the interfaces, i.e.,
at locations where the interface normal is parallel to direction
a.

To quantitatively analyze the closeness between directions
nc and a, we introduce the angle �c= �a ,nc� and compare it
to the misorientation angle �0= �a ,G� which sets the varia-
tion range of the growth direction angles �. For this, we plot

FIG. 6. Analysis of curvature radii and normal orientations on a
solidification interface. Here �0=12.9° and V=30 �m.s−1 and the
interface is that considered in Figs. 4 and 5. The distance x refers
not to the curvilinear abscissa but to a Cartesian abscissa on the axis
normal to direction a. �a� Evolution of the curvature radius with the
abscissa of interface points. A minimal curvature radius is reached
at a point C. �b� Relevant directions at point C: the interface normal
nc, the crystal defined direction a and the thermal gradient G.

FIG. 7. Digital smoothed forms of the solidification interfaces listed in Fig. 3 �except those displaying a degenerate mode �Figs. 3�p� and
3�q���. The bottom-up axis points toward the crystal defined direction a. On each form, a thin line indicates a scale of 100 �m.
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in Fig. 8 with respect to the Péclet number Pe the reduced
angles �c /�0 and the curve � /�0�Pe� determined from pre-
vious studies in the same system �20–22�. In agreement with
their expected behaviors, both reduced angles are close to
zero at large Pe. However, at low Pe, whereas the reduced
growth direction � /�0 largely departs from zero to reach
unity at vanishing Pe, the reduced angle �c /�0 remains
close to zero on the whole Péclet range, even at the lowest
Péclet studied. This corroborates the qualitative impression
that interface normals nc remain comparatively much closer
to the crystal defined direction a than to the thermal gradient
direction G on the whole microstructure library �Fig. 7�. The
difference with the behavior of the growth direction ng
=Vg /Vg is exemplified in Fig. 9 on two interfaces referring
to low or large Péclet number.

On the graph of Fig. 8, the error bars on Pe result from the
uncertainties on � and V and those on the reduced angles
�c /�0 from the uncertainty on the interface forms. The latter
uncertainty mainly originates from thresholding, following
the fluctuations of intensity of the dark and bright zones that

surround the interface, and to a lesser extent from data pro-
cessing. In view of the number of processing stages, some of
them nonlocal, and of the difficulty of accurately determin-
ing their intrinsic uncertainties, we have preferred evaluating
their net resulting uncertainty by the following pragmatic
approach. We first apply random perturbations to the digi-
talized interfaces with an amplitude equal to that observed on
the images, as quantified by the fit of the normal intensity
profile �Fig. 4�a��. We then apply the remaining processing
and determine the resulting variations ���s� ,��c� in the
curvature radii �s� and the angles �c. The absolute varia-
tions ��c obtained this way provide a direct estimate of the
uncertainty of the angle measurements. They amount to �2°
whatever the Péclet number. The corresponding relative un-
certainties ��c /�0 are indicated by error bars on Fig. 8.

The microstructures reported in the library of Fig. 3 were
in a homogeneous and permanent state in the sense that mi-
crostructures displayed the same form and the same spacing
on the interface and that, apart from branching, no evolution
of form or of spacing was in order. To investigate whether
the link between maximal curvature and crystal orientation
extends beyond these particular states, we have addressed
time-dependent microstructures and spatially inhomoge-
neous interfaces. Time-dependence was considered through
the development of the Mullins-Sekerka instability on a pla-
nar front suddenly pushed at a velocity of 20 �m.s−1, i.e.,
about 17Vc �Fig. 10�a�� and through the microstructure dy-
namics induced by a dendrite elimination at V=20 �m.s−1

�Fig. 10�b��. Seven microstructures were analyzed. To our
uncertainty, they displayed in Table I vanishing angles �c
and vanishing reduced angles �c /�0, the amplitude of the
latters being below 0.1 for all. The coincidence between an
interface normal aligned with the direction a and a maximal
local curvature thus extends to these transient states.

VII. DISCUSSION

To better discuss our results, let us summarize them by
introducing, in complement to the most curved point C, the
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FIG. 8. Comparison between growth directions Vg and the nor-
mal nc at the most curved point C at various Péclet numbers Pe.
Data points correspond to the reduced angles �c /�0 with �c

= �a ,nc�. The curve refers to the reduced angles � /�0 with �
= �a ,Vg�. Whereas growth directions rotate from G to a �i.e., �
from �0 to 0�, the most curved point C keeps pointing toward
direction a �i.e., �c=0�, whatever the Péclet number.

FIG. 9. Characteristic directions on interface tips at low �a� or
large �b� Péclet numbers. Here, nc refers to the interface normals at
the most curved point C and ng=Vg /Vg to the growth direction. The
shapes in �a� and �b� correspond to those, respectively, labeled �f�
and �j� in Figs. 3 and 7.

FIG. 10. Unsteadiness and spacing gradients. Transients induced
by planar destabilization �a� or dendrite elimination �b�. Here �0

=22.4° and the figure widths are 495 �m. The numbered micro-
structures are analyzed in Table I. �a� Sudden step from V=0 to
20 �m.s−1. �b� V=20 �m.s−1.
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following interface points: the quickest growing point Q, the
hottest point H and the point A growing toward direction a.
Here the interface dynamics is considered within the normal
gauge according to which the interface points move normally
to the interface. Then points A, Q, H satisfy nA / /a, nQ / /Vg
and nH / /G. In particular, as microstructures globally move
at growth velocity Vg, normal velocities Vn=Vnn satisfy Vn
=Vn ·n=Vg ·n�Vg, thereby yielding the criterion for the
quickest point Q.

The four points C, A, Q, H, are sketched on Figs. 11�a�
and 11�b� together with their evolution in our experiment.
Our main evidence is that the most curved point C remains
close to point A whatever the Péclet number and the thermal
gradient G, i.e., whatever the spacing �, the diffusion length
lD=D /V and the direction of G �Figs. 11�a� and 11�b��.

In comparison, in free growth, apart from the atypical
directions sometimes displayed �16�, Q=A since dendrites
grow toward a principal crystalline direction, and C=A since
they are then symmetric. Point A then corresponds to a mini-
mum of both stiffness and curvature, and thus of the interfa-
cial undercooling. Labeling the interface point of minimal
undercooling �, one thus obtains A=C=Q=�. Accordingly,

in free growth, the relative evolution of these points raises no
question since they are all confused. In contrast, in the
present directional solidification, the difference between A
and H allows Q to go from A to G as Pe decreases while C
surprisingly remains located at A, whatever the growth re-
gime and the growth parameters.

The persistence of point C on point A whatever the diffu-
sion length and the thermal gradient orientation is quite in-
triguing. It actually states the insensitivity of the location of
the maximal curvature to the growth direction Vg and to the
thermal gradient G, even at low growth velocity where the
interface points are the most coupled by diffusion, the
growth directions the most distant from the crystal defined
direction a and the microstructure shapes the most modified
by the thermal gradient. This seems to indicate that C sur-
prisingly only refers to local considerations, independently
of the distance to neighbor dendrites, of diffusion effects or
of isothermal lines.

Whereas the local dependence of C remains to be legiti-
mized, we notice that it is self-consistent owing to the fol-
lowing considerations. Consider an elementary circular part
of a curved interface involving a surface tension �0 and in-
troduce interfacial anisotropy while assuming a local dynam-
ics. According to �1� �2�, the increase �TI of the interface
equilibrium temperature TI brought about by anisotropy will
be the largest for an interface normal n pointing toward di-
rection a: �TI=15
4 cos�4���0�TM /Q here with �= �a ,n�. It
will thus induce an interface bulge there, yielding an increase
of curvature � and, finally, a further amplification of the
anisotropy effects. This feed-back loop thus goes toward the
formation of small curvature radius at the point where the
interface normal points toward direction a. That neither the
thermal gradient nor the diffusion field from other interface
parts parametrize the location of the most curved point C
remains however to explain. Similarly, the fact that the most
curved part of the interface is solely set by a nanometric
phenomenon, the crystalline anisotropy, independently of the
sub-millimetric phenomena linked to diffusion, advection or
heat flow remains to elucidate.

In contrast with the most curved point C, the quickest
point Q moves with Pe from the hottest point H to point A
�Figs. 11�a� and 11�b��. This means that the most curved
point is thus no longer the quickest one, as it is in free
growth. This statement apparently goes against the tip power
principle following which curvature enhances diffusion and
thus growth velocities. This is because of the presence of the
thermal gradient which also parametrizes the interface posi-
tion and thus its normal velocity.

Whereas the property C=A remains to be explained, it
provides a useful geometrical implication of crystalline an-
isotropy at the scale of the microstructure: the part of the
interface pointing toward the crystal defined direction a is
the most curved. If confirmed in 3D, this would enable the
crystalline direction to be identified from the sole analysis of
the interface. In thin samples and on the present 2D inter-
faces, this property might be a valuable mesoscopic informa-
tion for further understanding the position of the quickest
point Q and thus the direction of the growth velocity Vg.
Similarly, it might be a relevant information for understand-
ing the overall shape of microstructures and thus their result-
ing segregation.

TABLE I. Angle �c= �a ,nc� between the normal direction nc at
the most curved point C and the crystal defined direction a on the
time-dependent microstructures of Fig. 10. This angle fluctuates
around 0° and remains far from the misorientation angle �0

=22.4° as shown by the low relative values of �c /�0.

Dendrite’s number
�c

�deg�
�0−�c

�deg� �c /�0

1 −0.13 22.53 −0.006

2 0.05 22.35 0.002

3 1.14 21.26 0.051

4 0.34 22.06 0.015

5 1.59 20.81 0.071

6 −1.01 23.41 −0.045

7 1.65 20.75 0.074

FIG. 11. Sketch of relevant directions and characteristic points
in directional �a,b� and free �c� solidification. Points respectively
refer to a normal pointing toward the crystal defined direction a �A�,
to the most curved point C, the quickest point Q, the hottest point H
and an extremal undercooling ���. �a� and �b� Directional solidifi-
cation. Point C remains stuck to point A but point Q goes from H to
A as Pe increases. �c� Free solidification. The four points A ,C ,Q ,�
remain confused one with the other at any velocity.
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VIII. CONCLUSION

Crystal anisotropy is known to play an important role in
the stability of directionally solidified microstructures and in
the tilting of their growth directions away from the thermal
gradient direction. In particular, dendrites grow at large Pé-
clet number Pe in a direction a solely set by the crystal
orientation and, at low Pe, in a direction solely set by the
thermal gradient G. The mechanism by which the tiny modu-
lations of temperature interface implied by crystal anisotropy
succeed in orientating the whole microstructure remains an
important issue to clarify for fundamental understanding and
metallurgical applications.

Here, we have evidenced experimentally another, more
geometrical, implication of crystal anisotropy: the largest in-
terface curvature is located at a point whose normal growth
is aligned with the crystal defined direction a. This property
has been found to be valid on all cells or dendrites, whatever

the Péclet number, the thermal gradient direction, the crystal
orientation, the steadiness or the spatial homogeneity of the
microstructure pattern. Whereas it is known to largely apply
in free growth, its extension to directional solidification re-
mains puzzling. In particular, the additional presence of the
thermal gradient might have been thought capable of signifi-
cantly shifting the location of the most curved point. This
possibility is stressed by the actual tilting of growth direc-
tions away from the direction a imposed by the thermal gra-
dient. The reason for which the thermal gradient succeeds in
monitoring growth directions but not the location of the larg-
est interface curvature remains to be elucidated. Conversely,
the geometrical link between crystal direction and interface
curvature might be used to shortcut the microscopic influ-
ence of the crystal lattice on the overall microstructure so as
to reach a better understanding of the mechanisms governing
dendrite morphology, dendrite tilting and therefore, dendrite
microsegregation.
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