
Evolution of cellular structures during Ge1−xSix single-crystal growth
by means of a modified phase-field method

W. Miller
Leibniz Institute for Crystal Growth (IKZ), Max-Born-Str. 2, 12489 Berlin, Germany

I. Rasin
Department of Chemical Engineering, Technion, 32000 Haifa, Israel

D. Stock
Innovent Jena, Prüssingstr. 27b, 07745 Jena, Germany

�Received 24 July 2008; revised manuscript received 29 September 2009; published 17 May 2010�

We have studied the evolution of cellular structures in Ge1−xSix single-crystal growth as a function of
process parameters. Because these structures are much larger than those occurring during the solidification of
metals, we developed a modified phase-field method, which is able to handle these structure within reasonable
computer times using the real material parameters. The model has been tested for computing equilibrium
shapes of crystals, dendritic growth, and cellular growth of NixCu1−x. We also performed classical molecular
dynamics calculations in order to compute the diffusion coefficients of Si and Ge in melts of various
compositions.
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I. INTRODUCTION

The evolution of cellular structures during the solidifica-
tion of metals is of great interest for the quality of the solidi-
fied material. In the case of single-crystal growth in most
cases cellular growth is avoided by choosing the right growth
parameters but there are several examples, where a well-
defined cellular structure is the prerequisite for the final func-
tionality of the material. One example are Ge1−xSix single
crystals used to build up lenses for hard X and gamma rays
�see, e.g., �1,2��.

Numerical calculations of the pattern formation of cellular
or dendritic structures are still very challenging because the
evolution is very sensitive to material and processes param-
eters. Unfortunately, material parameters are often not well
known which needs additional computations on a much
smaller time and length scale like, e.g., molecular dynamics
or ab initio calculations. For instance, the diffusion coeffi-
cient for Si in the Ge-rich melt is one of these parameters.
We have performed molecular dynamics studies in order to
compute the diffusion coefficients for both Si and Ge for
different compositions of the melt.

Another problem of computing the pattern formation is
the complicated topology of the phase boundary, which
might occur during its evolution. During the last years phase
field methods has emerged as powerful tools to handle such
situations. They use a continuous order parameter to distin-
guish between solid and liquid. Therefore, the interface is not
sharp but diffuse, which dispenses us from a using a moving
grid. First introduced for pure substances �3,4� the methods
have been extended to binary alloys �5–7�, eutectics, peritec-
tics �8,9�, and others.

In general, they have been used for large constitutional
undercooling, where the resulting structures are of the order
some �m. In the case of Czochralski growth of Ge1−xSix the
structures are of about ten times larger and a high number of

grid point in the vicinity of the phase boundary is needed in
order to resolve the Gibbs-Thomson effects by the phase-
field method and to cover a crystal area of sufficient size for
analyzing the growth patterns. We developed a modified
phase field model which allows to use a reasonable thickness
of the interface while taking the physical Gibbs-Thomson
coefficient of the system.

The first phase-field model for binary alloys was intro-
duced by Wheeler, Boettinger, and McFadden �WBM model�
�7� assuming that the concentrations of the solid and liquid
phase in the diffuse interface are identical. Their model has
a constraint on the interface thickness because the chemical
energy in the diffuse interface puts an extra contribution
to the surface energy. This can be avoided by introducing
an “antitrapping” term �5,10� or by introducing separate
concentration fields for the liquid and solid phase �6�. We
used the latter �KKS model, named after the authors Kim,
Kim, Suzuki� for our computations and recall it shortly in
Sec. II C.

II. PHASE-FIELD METHOD

A. Phase-field model for pure substances

Solidification and melting of pure substances can be de-
scribed by the thermal field T and an order parameter field �.
The phase-field variable � switches continuously between
pure liquid state ��=0� and pure solid state ��=1�. The
equations for the time evolution of T and � can be derived in
a thermodynamically consistent way from the definition of
the internal energy and the entropy of the system �3,11�:

��t� = �S
2�� − W��g −

L

Tm
2 ��pT̃ , �1�
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�tT = DT�T +
L

cp
�th��� , �2�

where DT, L, and cp are the thermal diffusivity, the latent

heat, and the specific heat, respectively. T̃ is the temperature

related to the melting point temperature Tm : T̃=T−Tm.
�S /�2W is the length scale of the model and defines the
surface tension and � /W is the time scale and defines the
relaxation of the system. The function g��� represents the
potential of the system in the equilibrium state and is mostly
taken as a double-well potential:

g��� = �2�1 − ��2, �3�

and W is the height of the barrier between the wells. The
relations between the model and the physical parameters �ki-
netic coefficient � and capillary length d0� can be obtained
by an asymptotic analysis for a thin interface �12�:

�−1 = a1
�Tm

2 �W

L�S
− a2

�SL

cpDT
�W

, �4�

d0 = a1
�ScpTm

2 �W

L2 , �5�

where a1 and a2 are constants which depend on the choice of
p��� and h���. p��� is a monotonically increasing function
which fulfills the conditions p�0�=0, p�1�=1, ��p�0�
=��p�1�=0. Different polynoms have been tested �see
�12,13�� and a polynom of fifth order seems to be a good
choice for stability and computational reasons:

p��� = 30��3

3
−

�4

2
+

�5

5
� . �6�

By strict thermodynamical derivation h��� should be same
function as p���. For practical reasons often h���=� is cho-
sen regardless of the function p���. Calculations with differ-
ent functions for h��� exhibited same results as were shown
by Karma and Rappel �12� as well as by Kim et al. �13�.

Using p��� as defined by Eq. �6� and h���=� the con-
stants a1 and a2 are given by

a1 =
1

3�2
, a2 = 0.3519. �7�

For the case of equilibrium Eq. �1� can be solved in one
dimension yielding an expression for the phase field as a
function of the distance x to the interface:

� =
1

2
�1 + tanh

�Wx
�2�S

� . �8�

B. Modified phase-field model

Since there is only one length scale in the phase-field
model as introduced in the previous section, namely,
�S /�2W, the width of the diffuse interface w�=6�S /�2W is
coupled with the capillary length d0. In order to ensure a
numerically stable system the barrier between liquid and

solid state in the temperature-driven system should be not

too small compared to the isothermal case. For LT̃ /WTm
2 =1

the barrier in one direction is only 0.2% of the isothermal
value. Using this value as a limiting criteria and take Eq. �5�
into account we can derive the relation

1

18

cp

L
T̃

w�

d0
� 1. �9�

Typically, cp /L�10−3 K−1, d0�10−10 m, and T̃�1–5 K
so that w� should be less than 1 �m.

Replacing �2�� by a tensorial expression ��	���	� al-
lows the introduction of a second length scale in the system.
In order to derive an expression for ��	 we start from the
classical phase-field equation

��t� = �S
2�n�n	���	� + �� − n�n	���	��� − Wg� +

L

Tm
2 p�T̃ .

�10�

The term n�n	���	� corresponds to the second deri-
vative of the phase field along an isosurface. The term
��−n�n	���	�� corresponds to the curvature of an isosur-
face. We introduce two parameters �� and �	 for the first and
second terms:

��t� = ��
2 n�n	���	� + �	

2�� − n�n	���	�� − Wg�

+
L

Tm
2 p�T̃ . �11�

The equilibrium solution in one-dimensional �1D� is the
same as before and so the relation for the phase field perpen-
dicular to the interface is given by Eq. �8� with �S
��.
Using the same kind of asymptotic analysis for a thin inter-
face limit as in �12� one obtains

�−1 = a1
�Tm

2 �W

L��

− a2
��L

cpDT
�W

, �12�

d0 = a1
��cpTm

2 �W

L2 
�
2. �13�

For convenience we introduced the factor 
�=�	 /��. Setting

��	 = ���
2 − �	

2�n�n	 + �	
2��	 �14�

we can write Eq. �11� as

��t� = ��	���	� − Wg� +
L

Tm
2 p�T̃ . �15�

Let us analyze the advantage of the modified phase-field
model vs the classical one. Condition �9� states that w�

should be scaled linearly with d0 / T̃. The capillary length is
given by Eq. �13� with ��=w�2�W /6. Therefore, the inter-
face thickness w� and space step �x can be increased be
taking large values of 
�:
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�xmod

�xclassical =
w�

mod

w�
classical = 
�

−2. �16�

The corresponding simulation time for an explicit finite dif-
ference scheme is scaled as


�
−2�Nd+2�,

where Nd is the number of dimensions.
The choice of 
� is limited by the physics of the system

considered. The interface thickness should be significantly
smaller then the minimum radius of surface curvature: w�

�rcurv. In addition, the temperature should not change sig-
nificantly across the diffuse interface. Thus, the modified
phase field model is well applicable for systems with small
temperature gradients, e.g., for the solidification of Si for
photovoltaic applications.

Real materials exhibit an anisotropy in the surface tension

. Therefore, 
 and d0 are functions of the surface normal n� .

Let d0�n��= d̃0�1+ fd0
�n���. In the phase field model the aniso-

tropy is expressed by �S�n��. This means that the thickness of
the interface varies with the orientation. Since the anisotropy
is in the order of some percent, this is only a weak effect. In
the modified phase field model the anisotropy enters only �	.

We write �	�n��= �̃	�1+ f��n��� and define 
� as 
�= �̃	 /�� so
that 
� is independent of the growth direction n� . The con-
tinuum limit should now converge towards Herring’s instead
of the Gibbs-Thomson equation leading to d0+�n�

2d0 on
the left-hand side of Eq. �13�. On the right hand side we have
to replace 
�

2 by 
�
2�1+ f��n���. Thus, we obtain the relation

1 + f��n�� = �1 + fd0
�n�� + �n�

2fd0
�n�� . �17�

Note that Eq. �17� is undefined for the missing directions in
a crystal �1+ fd0

�n��+�n�
2fd0

�n���0�. Therefore, a cutoff is in-
troduced in the numerical calculations guaranteeing that 1
+ fd0

�n��−�n�
2fd0

�n��
0. In all calculations of this paper we set
the cutoff as 1�10−6. �� is unaffected and so is the width of
the diffuse interface and also the relaxation time � �see Eq.
�12��. Consequently, the phase field equations are not the
same for the classical and the modified model even if 
�=1.
McFadden et al. showed that the classical phase field model
gives in a first-order approach of the sharp interface limit
Herring’s equation �14�.

The derivation given above is both for two-dimensional
�2D� and three-dimensional �3D�. In the rest of this paper we
will give several examples for the application of the modified
phase field model in 2D. Applying the model to 3D is
straightforward but computations are much more time con-
suming. Firstly, we performed calculations for three types of
problems in order to test the accuracy of the modified phase
field model. All computations have been performed with 
�

=1. Firstly, we investigated the evolution of a small nucleus
with isotropic surface tension. The change in its radius is
described by

�tr = ��T̃ +
�

r
� , �18�

with the analytic solution

t =
�

T̃2�
log� rT̃ + �

r0T̃ + �
� −

r − r0

T̃�
, �19�

where r0 is the radius at t=0. The numerical results for three
different Gibbs-Thomson coefficients are presented together
with the analytic solution in Fig. 1.

The next example is the curvature driven flow in an iso-
thermal environment. Starting from a circle the shape of the
crystal will change to its equilibrium shape, which is given
by the Wulff construction. The equilibrium shape is given in
parametric form by r��n��=2Tm / ��Tm−T�LV��� , where LV
means the latent heat per volume �15�. In two dimensions ��
is obtained via

�x = 
 cos � − �d
/d��sin��� , �20�

�y = 
 sin � + �d
/d��cos��� . �21�

We use a fourfold symmetry for the surface tension:


�n�� = 
0�1 + �4 cos 4�� , �22�

where �4 is the anisotropy parameter. The computed and ana-
lytic shapes are shown in Fig. 2.

The third example is the 2D dendritic growth of a pure
material into an undercooled melt. For such a system in a
steady-state mode the theory is well developed and an equa-
tion for the tip velocity can be derived �see, e.g., �12��. In
Fig. 3 the measured dimensionless tip velocity is plotted for
two calculations of different strength of anisotropy. The di-
mensionless tip velocity is given by rescaling the tip velocity
vtip with the capillary length d0 �characteristic length scale�
and the thermal diffusivity D �defines the characteristic time
scale�: ṽtip=vtipd0 /2D.

C. Phase-field model for binary alloys

In addition to pure substances we have a third scalar field,
namely, concentration of the solute c�r� , t�, which also gov-
erns the phase transition. In this paper we will treat the tem-

time t (l.u.)

r
a
d
iu

s
r
(l.

u
.)

Simulation

Analytic solution

FIG. 1. Evolution of the crystal radius �in lattice units, l.u.�
for three different capillary lengths and comparison with the

analytic solution �Eq. �19��. r0=6 l.u., T̃=−0.55, �=0.361 l.u.,
dt=0.016 l.u., and �=2.77
 l.u. with 
=1.0,�1 /2,0.1 for bottom,
middle, top line, respectively.
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perature as a static quantity affecting the evolution of the
scalar fields only via external conditions. Instead of equa-
tions Eqs. �1� and �2� we now have the following set of
coupled nonlinear advection-reaction-diffusion equations:

��t� = �S
2�� − W��g��� +

L

Tm
2 ���p��� , �23�

�tc = ��D��� � c + D����cl − cs� � p���� + v� � cl, �24�

where c is the concentration and D is the diffusion coeffi-
cient of the solvent. cl and cs are the concentrations in the
liquid and solid phases, respectively. For �=0 and � they

correspond to the liquidus and solidus curves, respectively. v
is the �local� velocity of the flow field.

From the supposed equality of chemical potentials in the
phase-field model of Kim et al. �6� the following relation for
the concentrations can be obtained:

cl =
− � + c + �1 − p� + �D

2�1 − p�
, �25�

cs =
� + c + p − 1 − �D

2p
, �26�

D 
 �� + c + p − 1�2 − 4cp� , �27�

where � is a constant, which depends on temperature and
material parameters. It is related to the phase diagram of the
system. The constitutional undercooling � is given by

� =
T2

cLA + �1 − c�LB
�LB�T−1 − Tm,B

−1 � +
R

Vm
ln

1 − cl

1 − cs
� ,

�28�

where LA ,LB are the latent heats per unit volume of compo-
nents A and B, c is the concentration of component A and
Tm,B the melting point temperature of component B. R and
Vm are the gas constant and the molar volume, respectively.

Finally, we have to ensure zero diffusivity in the solid
phase. The simplest approach is

D��� = D0�1 − �� . �29�

We also use the switch function p��� for this purpose:

D��� = D0�1 − p���� . �30�

III. CONFIGURATION AND NUMERICAL
PROCEDURE

We have taken a small region including the interface from
the entire system of Czochralski growth. The diameter of the
crystal is typically 3 cm, whereas we have domains in the
order of millimeters. Our domain was rectangular with peri-
odic boundary conditions perpendicular to the growth direc-
tion. Per definition, the growth direction is up-down, i.e., in
the −y direction. The crystal was placed in the top part of the
domain. The temperature profile was defined by a constant
temperature gradient, GT, and was moving in time t with a
constant velocity vpull, representing the pulling velocity of
the Czochralski process. Thus the local temperature can be
defined by the expression

T�x,y� = T0 + GT�y + vpullt�, GT � 0.

The simulation domain follows the front of crystallization. In
order to keep the interface within this domain we apply the
following strategy: the computational domain “moves”’ with
the advancing solidification front. This is obtained by chop-
ping the solid volume top and adding a corresponding liquid
volume at the bottom of the computational volume. The
phase-field Eq. �23� is solved by a special nine-point-stencil

FIG. 2. �Color online� Equilibrium shapes for crystals of differ-
ent values for anisotropy of surface tension �from top left to bottom
right�: �4=0.05,0.1,0.2,0.5. Filled area and line represent the result
of the phase-field calculation and the analytic solution, respectively.

t̃

ṽ
t
ip

FIG. 3. �Color online� Normalized velocity of the tip for den-
dritic growth into an undercooled melt �St=0.55�. The straight lines
indicate the analytic solutions.
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finite difference scheme �16� similar to that of Karma et al.
�17�. The phase-field is computed only in the region where
10−4���1–10−4. In order to initialize the instabilities we
put a dynamical random noise of maximum 1% in the con-
stitutional undercooling. Since we use an explicit finite dif-
ference scheme there is an upper limit for the time step �t.
The diffusion constant for the moving phase field is given by
D�=��

2 /�. Taking the sharp interface limit �second term in
Eq. �12� is neglected� the diffusion constant can be expressed
by

D� = ��/
�
2. �31�

The linear stability analysis restricts

D�
� = D��t/�x2 �32�

to values D�
� �0.25 in two dimensions. This gives an upper

limit for the time step in relation to the grid spacing �x:

�t � 0.25�x2
�
2�−1�−1. �33�

The evolution equation for the concentration is solved by a
multirelaxation lattice Boltzmann scheme �18�. Though it is
explicit in time it does not suffer from stability constraints as
mentioned above. Therefore, the setting of the time step in
our calculations is only driven by the restrictions due to solv-
ing the phase-field equation. Typically, a fixed concentration
cl0 is used at the boundary of the melt �Dirichlet boundary
condition�, which is the bottom boundary in our definitions:

c�ly,t� = cl0. �34�

In order to achieve the concentration of Si in the solid, which
was observed in experiments, and to avoid a large fluid do-
main we fix the flux �Neumann boundary condition� at the
bottom by

J�ly,t� = �cly,t − cs0�vpull. �35�

cs0 is the required mean concentration in the solid. For all
computations we used a fixed uniform grid and a constant
time step. In principle, the numerical schemes can be run
both with an adaptive grid and an adaptive time step �19�.

IV. CELLULAR GROWTH OF NixCu1−x

Because NixCu1−x is a nearly ideal solution it has been
widely studied by means of phase field methods since the

beginning of establishing a phase field model for binary al-
loys �7�. The equilibrium phase diagram �see Fig. 4� was
recovered from the phase field model with the physical pa-
rameters of Ni and Cu by using the common tangent con-
struction �7�. Later Boettinger and Warren performed a sys-
tematic numerical study of the cellular growth using the
WBM model �20�. The calculations were repeated by Lan
and Chang using an efficient adaptive numerical scheme
�21�, using the same width of the interface �w�=4.5
�10−8 m�. We have performed the computations with the
same parameters as the previous authors �physical param-
eters see Table I� but using the KKS model with the modifi-
cation described in Sec. II B. Two different resolutions have
been used the coarser with a width of the diffuse interface of
w�=6 l.u. and the higher one with w�=10 l.u.. The results
are in reasonable agreement with the previous ones �see Fig.
5�.

Some remarks on the WBM and the KKS model are of
order. In the WBM model it is assumed that in the diffuse
interface the liquid and solid phases have the same compo-
sition �cl
cs�. This leads to extra chemical energy depend-
ing on the thickness of the interface which contributes to the
surface energy. The Gibbs-Thomson coefficient was effec-
tively six times smaller in our calculations than in the WBM
computations. All computations mentioned so far have been
performed with 
�=1.0. We also performed some with 
�

=3.0. We reduced the resolution by this factor, i.e., we now
have a computational domain of 365�292 grid points in-

0.2 0.4 0.6 0.8 1

1400

1500

1600

1700

NiCu

Solid+Liquid

Solid

Liquid

T
[K

]

FIG. 4. �Color online� Phase diagram for NixCu1−x. Data points
from �22�, line constructed from phase field model.

TABLE I. Physical parameters of Ni and Cu as used in �20�.

Nickel Copper

Melting-point temperature �K� 1728 1358

Latent heat �J /m3� 2.350�109 1.728�109

Diffusion coefficient in melt �m2 /s� 1.�10−9 1.�10−9

1.0

10.0

0.001 0.01

���������� �� ���

	
� �� ���

v [m/s]

λ
[µ

m
]

FIG. 5. �Color online� Wave length versus pulling velocity for
the cellular growth of NixCu1−x. For comparison the results by
Boettinger and Warren �20� and by Lan and Chang �21� are shown.
Filled triangles represent calculations with w�=6 l.u. and filled
circles those with w�=10 l.u..
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stead of 1094�875 ones and a diffuse interface width of
w�=1.35�10−7 m instead of w�=4.5�10−8 m. The reso-
lution of the diffuse interface remained 10 l.u.. Such a coarse
system with 
�=1.0 is unstable and will lead to a broadening
of the diffuse interface and liquid trapping. The results of the
runs with 
�=3.0 are presented in Table II.

V. Ge1−xSix

Ge and Si are completely miscible and the phase diagram
for this system is shown in Fig. 6. Typically, crystals are
grown either on the Si-rich or on the Ge-rich side. We con-
sider the second case because crystals with this composition
are of interest for applications in X- and gamma-ray lenses.
In the region of interest liquidus and solidus can be approxi-
mated by linear relations

Tl = Tm
Ge + 1500 KcSi, Ts = Tm

Ge + 270 KcSi, �36�

where Tm
Ge is the melting point temperature of Ge�Tm

Ge

=1210.35 K�. We will make use of this relation later in Sec.

V B. Please note that for the liquidus line only concentra-
tions less than 0.02 are relevant.

The experimentally measured phase diagram can be re-
covered from the free energy using the common tangent
method �7�. However, in contrary to NixCu1−x we have to
introduce a temperature-dependent latent heat LX=L0

X�1
+�XT�, where L0

X are the latent heats of the pure materials
X=Si,Ge at their melting-point temperatures. We adjusted
the parameters �X as �Si=2�10−4 K−1 and �Ge=9
�10−5 K−1 and observed the curves in Fig. 6.

A. Diffusion coefficients for Si and Ge

One critical material parameter in constitutional under-
cooling is the diffusion coefficient. In the literature different
values for the diffusion coefficients of Ge and Si in the liquid
phase can be found. Experimental measurements were made
more than 30 years ago by Romanenko und Smirnow �24�.
They performed solute segregation studies in Czochralski
grown crystals in the range of nearly pure Ge�DSi�2
�10−8 m2 /s� to nearly pure Si�DSi�1�10−7 m2 /s�. Dis-
mukes and Yim used DSi�3�10−8 m2 /s in their paper on
interface stability criteria �25�. They gave a citation for this
value but the cited paper �J. Appl. Phys. 2, 212 �1963�� does
not contain a value on the diffusivity of Si. Much later, the
self-diffusivity of Si was measured using pulsed laser melt-
ing technique by Sanders and Aziz �26�. They found the
self-diffusion coefficient of Si at the melting point to be
DSi= �4�0.5��10−8 m2 /s.

Numerical calculations by means of molecular dynamics
�MD� have been performed by several authors. From ab ini-
tio MD calculations Ko et al. obtained diffusion values of
DSi=1.9�10−8 m2 /s and DGe=1.5�10−8 m2 /s for
Ge0.5Si0.5 �27�. The temperature was T=1473 K, which is
melting point temperature for this composition according to
�28�. First-principles MD calculation are limited to very
short time scales. In the cited paper it was 3.2 ps. A self
diffusion coefficient of Germanium in the same range was
found earlier by Kulkarni et al. �29� �DGe=1.7�10−8 m2 /s
at 1400 K�. More recent computations with long-time runs
�66 ps� gave a value of DGe=9.0�10−9 m2 /s at 1253 K
�30�. Other authors obtained similar results for Ge �31,32�.

Classical MD calculations based on interatomic potentials
can be performed over much longer periods of simulation
time. For silicon, a well-established model potential consist-
ing of sums of two-body and three-body interactions was
proposed by Stillinger and Weber in 1985 �33�. They gave
only a parametrization for silicon, but later a parametrization
of the Stillinger-Weber model for Ge was applied by Yu et al.
to study thin film growth �34,35� and solidification of SiGe
alloys �36�. In the latter Yu et al. calculated diffusion coeffi-
cients of Si and Ge for a number of alloy compositions at
their congruent melting point temperature. They found that
the diffusion coefficients of Si and Ge do not differ very
much from each other at a given composition. For cSi=0.25
they obtained DSi=3�10−9 m2 /s. We have performed ex-
tensive MD simulations using the Stillinger-Weber model
with a parameter set given by Yu et al. �37� to calculate the
diffusion coefficient of Si in liquid GeSi alloys for a number

TABLE II. Wave lengths for two different set of runs.

vpull �ms−1� � ��m�

�=1 
�=3

1.25�10−3 5.8 5.6

2.5�10−3 4.6 2.9

5.0�10−3 2.1 2.9

1.0�10−2 1.7 1.8

1200

1250

1300

1350

1400

1450

1500

1550

1600

1650

1700

0 0.2 0.4 0.6 0.8 1
Ge Si

0.040.02

1212

1216

1218

T
[K

]

FIG. 6. �Color online� Phase diagram of the Ge1−xSix binary
alloy. The region of interest for the application is magnified and
shown in the upper part. The experimental values of solidus and
liquidus curve are marked by circles �23�. The black lines have been
computed using the free energy with temperature-dependent latent
heats. In the region of interest the solidus and liquidus lines can be
approximated by 1210.4 K+270 K cSi and 1210.4 K+1500 K
cSi, respectively. The solid �red� line was computed by the free
energy and the �green� dashed line by the linear approximation �Eq.
�36��. The lines are nearly undistinguishable.

MILLER, RASIN, AND STOCK PHYSICAL REVIEW E 81, 051604 �2010�

051604-6



of compositions cSi between 0.02 and 0.25. For a given com-
position the simulations were done at the corresponding con-
gruent melting temperature of the alloy as taken from �28�.
The calculated Si diffusion coefficient increases linearly with
cSi from 4.4�10−9 m2 /s to 5�10−9 m2 /s. The applied
melting temperatures of the GeSi alloys �28� based on a
regular solution model are smaller than those obtained from
the phase diagram in Fig. 6. For better comparison with ex-
perimental data an extension of the MD simulations to deter-
mine the appropriate alloy melting temperature is required.
The obtained diffusion coefficients for Si and Ge in the liq-
uid phase from classical MD simulations using the Stillinger-
Weber interatomic potential are in general smaller than those
from ab initio calculations. This difference is probably attrib-
uted to the inherent functional form of the Stillinger-Weber
potential �37�.

B. Cellular growth of Ge1−xSix

We have performed a series of computations for differ-
ent Peclet numbers Pe= l0vpull /DSi. l0 is a characteristic
length and can be chosen as the capillary length d0. Because

in experiments the pulling velocity was fixed to vpull
=6 mm /h but the diffusion coefficient DSi is not well known
as discussed in the previous subsection we discuss the results
in terms of physical values. We varied the temperature gra-
dient GT and analyzed the cell depth and wave length of the
cellular structures. The average concentration in the crystal is
adjusted to c̄s=0.02 by using the boundary condition Eq.
�35�. This average value is typical for most of the experi-
ments. All parameters for the different runs are listed in
Table III and the physical values are given in Table IV.

1. Cell depth

According to perturbation analysis, cellular structures
can occur for temperature gradients less a critical one: GT
��T0vpull /DSi � see p. 53 in �38��. �T0 is the temperature
difference between liquidus and solidus at the concentration
of the solid. Using the relations of Eq. �36� we obtain �T0
=24.6 K for cs=0.02. Cell depth and wave length should go
towards zero when approaching the critical value. The criti-
cal inverse temperature gradient for the pulling velocity of
vpull=6 mm /h is given by

TABLE III. List of computations for vpull=6 mm /h. The resolution �x was chosen to keep the relation of
the width of the diffuse interface w� and the cell depth ddepth of about the same order. The relaxation
parameter � is given by �=3.87�109�x s J /m4 K.

DSi �m2 /s�
GT

�K/m� nx�ny �x ��m�
�t

�ms�
ttotal

�s�
ddepth

�mm�
�

�mm� w� /ddepth

3�10−8 700 3000�750 20.0 300.0 1.50�105 10.0 12.0 2.0�10−2

900 3000�850 9.8 76.0 6.08�104 5.5 5.9 1.8�10−2

2�10−8 900 1000�700 20.00 320.0 1.60�105 8.7 10.0 2.3�10−2

1000 3000�750 15.00 180.0 1.44�105 7.9 9.0 1.9�10−2

1100 3000�800 11.90 113.0 9.04�103 6.4 7.1 1.9�10−2

1200 3000�850 9.33 69.6 5.57�104 5.2 7.0 1.8�10−2

1300 3000�850 7.15 40.9 3.27�104 4.2 5.4 1.7�10−2

1500 3000�950 3.67 10.7 8.56�103 2.7 2.2 1.4�10−2

1�10−8 1300 1600�800 20.00 320.0 1.60�105 8.0 8.0 2.5�10−2

1500 1600�800 15.00 180.0 1.17�105 6.7 8.0 2.2�10−2

1700 1600�800 12.00 115.0 1.15�105 5.4 6.4 2.2�10−2

1900 1600�1000 8.50 57.5 1.15�105 4.4 4.5 1.9�10−2

2500 1600�1000 5.00 20.0 4.00�104 2.6 4.0 1.9�10−2

6�10−9 1300 2000�2150 10.00 50.0 1.00�105 10.4 6.7 9.6�10−3

1500 2000�700 20.00 300.0 1.50�105 7.6 6.7 3.2�10−2

2000 3000�750 11.00 96.7 7.74�104 5.5 5.0 2.0�10−2

2500 3000�750 7.60 46.2 3.70�104 5.0 5.0 1.9�10−2

3000 3000�850 5.33 22.7 1.82�104 2.9 2.7 1.8�10−2

1.9�10−9 3000 800�1300 5.00 5.0 8.00�103 4.6 2.0 1.1�10−2

5000 1200�1000 5.00 20.0 5.12�104 2.4 2.0 2.1�10−2

8000 2000�600 2.50 5.0 2.40�104 1.2 1.0 2.2�10−2

10000 600�200 8.00 50.0 2.00�104 0.4 1.0 2.0�10−1

12000 600�200 8.00 50.0 2.50�104 0.1 1.0 6.2�10−1

1�10−9 3000 800�1300 5.00 5.0 4.00�103 4.5 1.3 1.1�10−2

5000 800�600 10.00 80.0 4.00�104 2.3 1.6 4.4�10−2

8000 1000�400 5.00 5.0 1.00�104 1.4 1.0 3.6�10−2
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�1/GT�cr = 2.5 � 104 sm−1 K−1 DSi. �37�

In the following we will analyze the cell depth and the
wave length of the cellular pattern. We start with the cell
depth, which is plotted vs the inverse temperature gradient
for the different diffusion coefficients �Fig. 7�. For ddepth=0
we use the critical value obtained by Eq. �37�. A linear de-
pendence is observed for all diffusion coefficients:

ddepth = dd�DSi� +
�dT

GT
. �38�

The coefficient �dT is the same for all diffusion coefficients.
It was determined by shifting every curve in Fig. 7 by
−�1 /GT�cr and yields �dT=14.7�1.6 K. dd can be simply
computed from the fact that all curves cross �1 /GT�cr at
ddepth
0:

dd�DSi� = −
DSi�dT

vpull�T0
. �39�

Because of the constant temperature gradient the tempera-
ture difference between top and bottom of a cell can be com-
puted via �T=GTddepth. If we are in a steady-state situation,
i.e., the shapes of the cells are not changing in time, the

temperature difference �T is related to the difference in Si
concentration �c via the phase diagram. Using the linearized
equation �36� we can express the concentration difference as

�c = GTddepth/270 K−1. �40�

Two lines of constant �c according to this equation are
shown in Fig. 7. The line of �c=0.005 is given because in
the crystals grown the difference in concentration is less than
this value �39�. Consequently, this would require a large tem-
perature gradient at the interface which can be estimated not
to be the case in the experiments. However, in the experi-
ments a strong melt flow is present and this will have a
significant impact on the pattern formation. First results are
discussed in �39,40�.

The other line in Fig. 7 ��c=0.04� represents a critical
line, because the average concentration in the crystal is c
=0.02 and in a system with equally distributed Si concentra-
tion the maximum difference in c is 0.04. Beyond this line
the interface at the inner part of the cell becomes unstable.
This is shown for DSi=1.94�10−9 m2 /s in Fig. 11, where
also the concentration profile along three lines is shown. For
GT=5 K /mm �bottom� the cell depth is below the critical
line and the concentration profile in the crystal is of a nearly
sinusoidal profile �Fig. 11 right bottom�. For GT=3 K /mm
�top� the profile becomes quite different and the cell tip is
sharper in the first case, with a larger radius at the bottom.

The strength of anisotropy in the surface energy has only
a minor influence on the steady-state shape of the interface.
We used an anisotropy of �=0.03 and �=0.25 and observed
the same shape of the interface though there are some differ-
ences during the onset of the instabilities. A difference is
only observed in the cases with side arms, which will be
discussed later.

We can rewrite Eq. �38� in terms of dimensionless values:

d̃depth = � 1

G̃T

−
1

Pe
cT� . �41�

Here, we rescaled all lengths by d0 and the temperature by

�dT, i.e., G̃T=GTd0 /�T0. cT is the relation between �dT and

�T0. The dimensionless depth d̃depth is in the order of 107.
Since all results for deriving Eq. �38� have been observed
with a growth kinetics faster than the growth velocity of the
interface �vpull=6 mm /h� also Eq. �41� is valid only for such
cases.

TABLE IV. Parameters for the simulations of the growth of
Ge1−xSix crystal.

Parameter Value

Latent heat Si 4.225�109 J /m3

Latent heat Ge 2.82�109 J /m3

Gibbs-Thomson coeff. 6.0�10−9 K m

Si concentration in crystal �0.02

Width of transition region 10 l.u.
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FIG. 7. �Color online� Cell depth ddepth as a function of the
inverse temperature gradient 1 /GT for different diffusion constants
DSi. From left to right: 1.0�10−9 m2 /s �open circles�, 1.94
�10−9 m2 /s �filled squares�, 6�10−9 m2 /s �open squares�, 1
�10−8 m2 /s �stars�, 2�10−8 m2 /s �crosses�, and 3�10−8 m2 /s
�plus signs�.

8 mm

7
.9
m
m

a

b

c

FIG. 8. Cell shapes for �a� DSi=1�10−8 m2 /s, vpull=6 mm /h,
�b� DSi=2�10−8 m2 /s, vpull=12 mm /h, and �c� DSi=3
�10−8 m2 /s, vpull=18 mm /h. All other parameters were the same
in both runs �GT=1.3 K /mm�. Cell tips are at the bottom. The
straight line is the interface in case �a�, the middle dashed line is the
one in case �b� and the one at bottom represents the interface in case
�c�.
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In order to minimize the computational costs we used a
kinetic coefficient as small as possible, which guarantees still
a growth kinetics faster than the macroscopic growth veloc-
ity. Due to Eq. �33� there is a linear relation between the
inverse of the kinetic coefficient and the maximal possible
time step. We chose �=5�10−6 m / �s K� and checked nu-
merically for distinguished cases that a larger kinetic coeffi-
cient does not change the result. The influence of finite
growth kinetics can be seen when increasing the growth ve-
locity and keeping the kinetic coefficient constant. We chose
three different pulling velocities vpull=6, 12, and 18 mm/h
keeping the Peclet number constant by choosing correspond-
ing diffusion coefficients DSi=1�10−8, 2�10−8, and
3�10−8 m2 /s, respectively. The temperature gradient was
GT=1300 K /m. The larger the growth velocity is the
sharper the tip is at the top of the cell �Fig. 8�.

In contrary to investigations on the �m scale, the width
of the diffuse interface in our case is rather thick compared
to the diffusion length. Therefore, we checked the influence
of the different interpolation schemes for the diffusion con-
stant DSi. In Fig. 9 we show the analysis for DSi=1.94
�10−9 m2 /s and GT=5 K /mm: the concentration profiles
along the two lines normal to the surface �as indicated in Fig.
11� are plotted. Small differences can be observed. In the
linear interpolation �Eq. �29�� a slight overshooting in con-
centration at the diffuse interface is present. This is com-
pletely removed when using Eq. �30�. The depth of the cells
is slightly larger in second case �ddepth=2.02 mm� than in the
first one �ddepth=1.97 mm�. Therefore, also the concentration
variation is larger: �c=0.0349 when using Eq. �30� and �c
=0.0327 when using Eq. �29�. The theoretical values com-
puted by using Eq. �36� are larger in both cases ��ctheor
=0.0374 and �ctheor=0.0365�. The difference between theo-
retical and numerical value is due to the finite width of the
interface. In the current example the temperature drop within
the diffuse interface is 0.5 K, which corresponds to a con-
centration drop of 0.002 in the melt. The results in Fig. 7
were obtained using Eq. �30�.

2. Secondary arm spacing

For the case beyond the critical line ��c=0.04 in Fig. 7�
the instabilities at the inner interface are much pronounced if
we use Eq. �30� and a secondary arm spacing is observed
�see Fig. 12�. Secondary arm spacing is well known from
other systems. From theoretical considerations and experi-
ments Billia et al. derived an expression for the critical
growth velocity, where the cellular growth changed to a den-
dritic one �41�. Rewriting this equation in terms of a critical
inverse temperature gradient �1 /GT�c−
d in relation the criti-
cal inverse temperature gradient �1 /GT�cr for the planar-to-
cellular growth transition one gets:

�1/GT�c−
d =�4 �

kPe
�1/GT�cr, �42�

where � is a constant characteristic for a particular material
system. Several theoretical and experimental work has been
done on analyzing the secondary arm spacing �see, e.g.,
�42��. Estimating the factor of �1 /GT�cr in Eq. �42� for our
cases with �=1 we get a factor near to 100. This means we
should not observe secondary arm spacing for all the runs we
have performed. Indeed, after the originally planar interface
becomes unstable and the first small structures formed no
secondary arm spacing occurred. Looking more carefully to
the growth behavior in the early stage of runs near the criti-
cal line �c=0.04 one can observe a fingerlike growth. There
is a high concentration of Si in the solidified fingers and a
small concentration at the bottom of the grooves. Some
planes at the sides of the solidified fingers are almost parallel
to the temperature gradient. The temperature gradient normal
this plan is almost zero and when this plane starts to grow
the interface becomes immediately unstable. If we consider
the line of �c=0.04 as the critical line for the transition from
cellular to dendritic growth, we can derive an expression for
the critical inverse temperature gradient �1 /GT�c−
d of this
transition. Using Eqs. �40� and �38� we obtain

�1/GT�c−
d = �1/GT�cr
�dT

�dT − 270 K�c
. �43�

In our case ��c=0.04� we get �1 /GT�c−
d=2.9�1 /GT�cr.
Equation �43� does not depend on the Pe number of the
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FIG. 9. Comparison of concentration profiles at top and bottom
of cells for two different functions of DSi in the diffuse interface.
Dotted line: Eq. �29�, solid line: Eq. �30�. The straight lines repre-
sents the liquidus and solidus concentration according to the tem-
perature field and the phase diagram.
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FIG. 10. �Color online� Depth of the cells for two different
cases: DSi=3�10−8 m2 /s, GT=0.7 K /mm �filled circles� and
DSi=1.94�10−9 m2 /s, GT=8.0 K /mm �filled boxes�.
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system. Please notice that Eq. �43� was derived from the
numerical results for an averaged concentration in the solid
of c̄s=0.02 and a fixed relation of the kinetic coefficient to
the growth velocity.

Because in the runs beyond �c=0.04 small structures re-
main during the evolution of the cell structures surface ten-
sion has an influence on the long time development. If the
anisotropy is increased from �=0.03 to �=0.25 in the run for
DSi=1.94�10−9 m2 /s and GT=3 K /mm �see Fig. 12� a
third finger remains and the amplitudes of the secondary arm
spacings are smaller �computations have been performed up
to 1 h 23 min physical time�.

3. Wave length

From the viewpoint of applications the cell depth is the
most interesting quantity of the computation, because it de-
termines directly the concentration variation in the grown
crystal. However, besides the vertical length scale there is the
lateral one, namely the wave length of the structures. Be-
cause of the periodic boundary condition the width of the
domain should be as large as possible but the computational
costs limit the extend. In our calculations we had 4–9 cells in
a computational domain, which means one has to expect er-
rors of 10–20 % for the wave length.

We checked the dependence of the wave length � on the
cell depth ddepth and found that � increases linearly with the
square root of ddepth �see Fig. 13�, which can be written as

� = �0 + �a�
�ddepth, �44�

with �0= �−3�1� mm and a�= �21�10� mm. Runs with a
�c
0.04 �marked by ellipses in Fig. 13� seem to obey the
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FIG. 11. Shape of cells and concentration distributions for DSi=1.94�10−9 m2 /s and two temperature gradients in the vicinity of
�ccrit :GT=3 K /mm �top� and GT=5 K /mm �bottom�. On the very left the concentration profile along two lines is presented. On the
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FIG. 12. �Color online� Cell shapes for DSi=1.9�10−9 m2 /s
and GT=3 K /mm. Different morphologies are observed if using an
anisotropy �=0.03 �left� or �=0.25 �right�.
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same rule �Eq. �44�� but with a different �0. For cellular
growth the following equation has been derived by geomet-
ric considerations �see, e.g., p. 83 in �38��:

� = 2�ddepthashapeRtip, �45�

where ashape is a geometric factor taking into account the
shape of the tip �ashape=1 for elliptic and ashape=2 for para-
bolic shape�. Thus, in all cases the wavelength is propor-
tional to the square root of the cell depth. However, the dif-
ferent shapes at the bottom of the cells lead to a different
shift �0. For ddepth→0 the wavelength should also vanish,
i.e., �0=0 as it is in Eq. �45�.

4. Influence of interface thickness

We tested the dependence of the structure on the thickness
w� of the diffuse interface by increasing the number of mesh
points in the computational domain. The number of grid
points in the diffuse interface was fixed to 10 and the growth
dynamics was the same for all computations, i.e., D�

�

�see Eq. �32�� was kept constant �D�
� =0.24�. In Fig. 10 we

present the results for high diffusivity and low-temperature
gradient �DSi=3�10−8 m2 /s , GT=0.7 K /mm� and for low
diffusivity and high-temperature gradient �DSi=1.94
�10−9 m2 /s , GT=8.0 K /mm�. Constant D�

� means that
the time step is also changing when changing the resolution.
The influence of the time step with constant resolution can
be seen from Table V. Here also three calculations with dif-
ferent domain width are presented. For nx=1000 and nx
=1300 there are only two cells in the domain, for nx=3000
there are six.

VI. CONCLUSIONS

We developed a modified phase field method, which en-
ables us to calculate cellular structures in the range of �m to
mm. The method has been tested for several cases, where
analytic solutions are known. The main focus of the paper is
on a detailed study of pattern formation in a Ge1−xSix system.
One of the critical material parameters in the evolution of the
cellular structures is the diffusion coefficient of Si in the
Ge-rich melt. We used MD calculations in order to obtain
diffusion coefficients for different compositions of the melt.

Our calculations are in agreement with those of other com-
putations but they are smaller than those obtained by experi-
ments. In order to test the sensibility of the growth system on
the diffusion coefficient we have performed runs with differ-
ent diffusion constants and also for different temperature gra-
dients. For all diffusion coefficients we found the same linear
relationship between the inverse of the temperature gradient
and the cell depth. The cell depth becomes zero at the critical
value of the inverse temperature gradient, which was ob-
tained from perturbation theory. Except for very small wave
length of the cellular structure, the wave length is propor-
tional to the square root of the cell depth regardless of the
diffusion coefficient and temperature gradient used.
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FIG. 13. �Color online� Wave length versus square root of cell
depth for pulling velocity vpull=6 mm /h. From left to right: 1.0
�10−9 m2 /s �filled circles�, 1.94�10−9 m2 /s �filled squares�, 6
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�compare with Fig. 7�.

TABLE V. Results of different runs for DSi=3�10−8 m2 /s and GT=700 K /m.

nx�ny

�x
��m�

�t
�ms� D�

�
ddepth

�mm�
�

�mm�

3000�1000 20.0 320 0.24 11.8 12.0

3000�750 20.0 300 0.225 9.9 10.0

3000�750 20.0 150 0.113 10.0 10.0

2250�560 30.0 675 0.225 9.2 13.5

2250�560 30.0 338 0.113 9.6 13.5

1500�400 40.0 1280 0.24 5.4 8.6

1500�400 40.0 320 0.06 8.2 12.0
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