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We report on ordering transitions of concentrated non-Brownian suspensions confined by two parallel walls
under steady shear. At a volume fraction as low as �=0.48, particles near the wall assemble into strings which
are organized as a simple hexagonal array by hydrodynamic interactions. The suspension exhibits a complex
phase behavior depending on the ratio of the channel height to the particle radius, Hy /a. In a strongly confined
system Hy /a�12, the order state and rheology depend on the commensurability between particle layers and
the channel height. At �=0.60, the order structure in the horizontal plane changes between hexagonal and
rectangular structures depending on Hy /a. It is shown that the relative viscosity is a function of both the
volume fraction and the ordered state.
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I. INTRODUCTION

Colloidal suspensions undergo an intriguing phase behav-
ior when subjected to a shear flow. In the absence of flow, a
colloidal suspension develops a crystalline structure above a
freezing volume fraction, � f =0.494 for hard-sphere colloids
�1,2�, which can be melted by applying a strong shear to the
system �3�. On the other hand, if a shear is applied to disor-
dered colloidal suspensions for the volume fraction ��� f,
crystallization takes place rapidly at low shear rate yet it
melts into a fluid at higher shear rate �4�. The shear melting
is observed when the Péclet number Pe=6���̇a3 /kBT is of
O�1�. Here, � is the viscosity of the solvent, �̇ is the shear
rate, a is the particle radius, and kBT is the thermal energy.
Interestingly, another disorder-order transition has been ob-
served at much higher shear rate Pe�1 �5�. Sierou and
Brady �6� have demonstrated the existence of shear-induced
ordering in homogeneous non-Brownian suspensions �Pe
→	� using the accelerated Stokesian dynamics simulations.
Subsequently, Kulkarni and Morris �7� performed numerical
simulations for a wide range of Pe, 1
Pe
104, and showed
the similar phase behavior for Pe�103. Nonequilibrium
phase transitions, in general, are of interest both in theoreti-
cal studies �8� and in engineering applications �9�. As the
dynamics are determined by a balance between driving
forces, the process can be controlled by altering external
fields. For example, in colloidal suspensions under an oscil-
latory shear, different types of crystalline structure can be
obtained by changing the frequency and magnitude of the
oscillation �10�.

When a concentrated suspension is confined by solid
boundaries, the dynamics of the suspension becomes dra-
matically different from the bulk properties �11–13�. In the
absence of flow �Pe=0�, phase behaviors of confined mo-
lecular or colloidal systems have been extensively studied
over the last two decades �see �14� for review�. Courte-
manche and Swol �15� showed that crystallization of hard-
sphere �HS� fluid occurs at a smooth boundary earlier than in
the bulk fluid, i.e., below liquid-crystal coexistence, which is

later known as “wall-induced ordering.” Schmidt and Löwen
�16� calculated the phase diagram of HS fluids confined by
two parallel walls for 2�H /a�4, where H is the separation
distance between walls and a denotes the particle radius.
Varying H /a for a fixed volume fraction �, they observed
strong discontinuous phase transitions between different
crystal structures, e.g., layered, buckled, and rhombic crys-
tals. Recently, Fortini and Dijkstra �17� performed extensive
Monte Carlo simulations and calculated the equilibrium
phase diagram of HS fluids for 2�H /a�10. However, con-
sidering the relevance of highly confined suspensions to
many industrial processes such as surface coating, lubricants,
and microfluidic devices �18�, surprisingly little is known for
the effects of confinement on the dynamics of concentrated
suspensions under shear flow. Sheared suspensions are dif-
ferent from the aforementioned equilibrium HS fluids in that
the dynamics are determined by both long-range multibody
hydrodynamic interactions and short-range lubrication and
interparticle forces. In colloidal suspensions under oscilla-
tory shear flows, Haw et al. �19� observed that crystal struc-
tures near a wall are more ordered than those in the center.
However, they did not show any quantitative results. Cohen
et al. �20� found that a new crystalline structure emerges in a
strongly confined system in colloidal suspensions for �
=0.61�0.02 under large oscillatory shear.

In this study, we report on the ordering transition of con-
centrated suspensions confined by two parallel walls under
steady shear in the limit of infinite Pe, where dynamics are
solely determined by hydrodynamic interactions and short-
range interparticle forces. The particles near the walls start
forming hexagonally organized strings in the plane normal to
the flow at a volume fraction as low as ��0.48, while the
center of the channel remains disordered. The ordered state
depends not only on the volume fraction but also on the ratio
of the channel height to the particle radius Hy /a. The effect
of the channel height on the order structure is investigated
for 8
Hy /a
21 at �=0.52.

In Sec. II, a brief review of the numerical method is pre-
sented. The main results of the numerical simulations are
shown in Sec. III. Finally, the conclusions are given in Sec.
IV.*maxey@dam.brown.edu
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II. NUMERICAL METHOD

The particle-particle and particle-wall hydrodynamic in-
teractions are computed by the force-coupling method
�FCM� together with lubrication corrections �21,22�. In
FCM, far-field multibody interactions are calculated by solv-
ing the Stokes equations with a truncated, regularized multi-
pole expansions. Near-field lubrication interactions are ac-
counted for by inverting a resistance matrix constructed from
the sum of particle-pair resistance matrices. FCM has been
successfully employed for the numerical simulations of vari-
ous suspension flows �13,23�.

The equations of fluid motion with FCM for Stokes flows
are

�p

�xi
= ��2ui + �

n=1

Np �Fi
n
M�x − Yn� + Gij

n �

�xj

D�x − Yn�� ,

�1�

� · u = 0. �2�

Here, p is pressure, � is viscosity of fluid, u is fluid velocity,
Yn is the location of a particle center, and Fi and Gij are the
force monopole and force dipole moments, respectively. The
FCM force envelopes 
M and 
D are given by


M�x� =
1

�2��M
2 �3/2exp	−

x2

2�M
2 
 , �3�


D�x� =
1

�2��D
2 �3/2exp	−

x2

2�D
2 
 , �4�

in which �M =a /�� and �D=a / �6���1/3. The force mono-
pole and dipole moments are

Fi = Fi
P − Fi

lub, �5�

Gij = Sij
FCM − Tij

lub. �6�

Here, FP is an external force on the particles and Flub and
Tlub are the Stokeslet and couplet coefficients for the lubri-
cation corrections, respectively. The FCM stresslet SFCM is
related with the particle stresslet S as

SFCM = S + RESE	 − �RVS�V − V	� + R�S�� − �	�� , �7�

in which RAB is a resistance matrix relating A to B, and V
and � are, respectively, vectors for the translational and an-
gular velocities of the particles. The resistance matrix is con-
structed in a pairwise manner from the exact two-body resis-
tance matrix, subtracting the FCM two-body resistance
matrix, to account for the lubrication forces. V	, �	, and E	

are V, �, and a vector for the strain rate of the imposed
Couette flow, respectively. Once u is computed by solving
the governing equations, V and � are obtained by

Vn =� u�x�
M�x − Yn�d3x , �8�

�i
n =

1

2
� �ijk

�uk

�xj

D�x − Yn�d3x . �9�

Note that, since Flub, �lub, and SFCM are functions of both V
and �, an iterative procedure is necessary to solve the sys-
tem. An efficient iterative scheme is given in Yeo and Maxey
�22�.

Now, it is well known that short-range nonhydrodynamic
interactions between particles are responsible for the non-
Newtonian rheology of concentrated suspensions �24�. The
nonhydrodynamic effects may come from roughness ele-
ments on particle surface, residual Brownian forces, surface
charge, to name a few. For example, typically noncolloidal
particles �a�O�10 �m�� have roughness elements on the
order of 10−2a–10−3a �25� and the repulsive potential of
sterically stabilized colloids is softer than that of hard
spheres, which can be modeled as a hard core with a soft tail
potential �2,26�. To model these nonhydrodynamic effects,
we employ a contact force model. The contact force on par-
ticle i from particle j is given by

FC
ij = 
− 6���̇a2Fref	 Rref

2 − �r�2

Rref
2 − 4a2
6 r

�r�
if �r� � Rref

0 otherwise,
�

�10�

in which r=Yi−Y j, Fref is a constant, and Rref is a cut-off
distance. In the present study, the contact force is activated if
the shortest distance between two particle surfaces ��� is less
than 0.01a, i.e., Rref /a=2.01. Fref is chosen to keep the mini-
mum separation distance �min�0.002a. Fref =200 is used for
�=0.46–0.54 and Fref =600 for �=0.60. Once FC is com-
puted for all the neighboring particles, it is added to FP.

Equations �1� and �2� are solved by using a Fourier spec-
tral method in the velocity �x� and the vorticity �z� directions
and a spectral element method in the velocity-gradient direc-
tion �y� �27�. The computational domain in x and z directions
are fixed, Hx /a=30 and Hz /a=20, and Hy is varied; 8

Hy /a
30. Periodic boundary conditions are used in x and
z directions. The number of particles ranges from 688 for
�=0.48 and Hy /a=10 to 2 235 for �=0.52 and Hy /a=30.

To generate initial configurations, small particles are
seeded randomly in the computational domain. Then, a mo-
lecular dynamics simulation with a repulsive potential is per-
formed, while slowly increasing the particle radius until the
desired volume fraction is reached. Figure 1 shows the de-
velopment of the relative viscosity �r in time for Hy /a=20.
Once shear is applied, the suspension exhibits a disordered
fluid state at first �Fig. 1�b��, which accompanies a sharp
increase in �r. The peak �r is observed to be in between the
high-frequency shear viscosity and the dynamic shear viscos-
ity. For �=0.60, the peak �r is around 70. As order develops
�Fig. 1�c��, �r drops slowly. In most cases, a stationary state
is reached after �̇t�40–50, which is much faster than for
the homogeneous shear results in Kulkarni and Morris �7�
��̇t�150�.
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III. RESULTS

In wall-bounded suspensions, the behavior of suspensions
near the wall is radically different from the center of the
channel. Depending on the microstructures, Yeo and Maxey
�13� showed that the wall-bounded suspensions of non-
Brownian particles can be divided into three regions, the
wall, buffer, and core regions. The wall region is distin-
guished by a strong particle layering. In the core region, the

suspension is similar to that in a homogeneous shear flow. In
the buffer region, the suspension microstructure is no longer
reflexional symmetric due to the interactions with particle
layers below �wall region� and the shear structure above
�core region�. To show the different levels of ordering near
the wall and in the channel center, we investigate the micro-
structures in the wall �W and the core �C regions; �W

= �0,Hx�� ��0,1.5a�� �Hy −1.5a ,Hy��� �0,Hz� and �C

= �0,Hx�� �5a ,Hy −5a�� �0,Hz�. For Hy /a=10, �C is de-
fined as �C= �0,Hx�� �4a ,6a�� �0,Hz�.

First, the ordering transition is investigated by varying �
for Hy /a=20. The pair distribution function in spherical po-
lar coordinates g�r ,� ,�� is calculated for particles in �W and
�C, in which r is the radial distance, � is the azimuthal angle
measured from the velocity direction, and � denotes the po-
lar angle measured from the vorticity direction. Figure 2
shows g�r ,� ,�� in the velocity gradient—vorticity �y−z�
plane, i.e., �=� /2. At �=0.46, the dominant structure in �W

is the particle layering and a weak hexagonal order is ob-
served, while g�r ,�� in �C shows an isotropic ringlike struc-
ture indicating the suspension is homogeneous. At �=0.48, a
hexagonal order begins to be developed in �W, while the
suspension in �C is still in disordered state. At �=0.52, the
whole channel is almost completely ordered �Fig. 2�c��. As
the suspension in �C is in the disorder-order coexistence
state, g�r ,�� for �=0.50 shows a mixture of the hexagonal
structure �Fig. 2�d�� and the ringlike structure �Fig. 2�c��.

Figure 3 shows the area fraction �A as a function of y for
Hy /a=20. �A is calculated by �A=����x�dxdz / �Hx�Hz�.
Here, ��x� is an indicator function which is nonzero if x is
inside of particles. For �
0.46, �A is higher near the wall.
The values of the first peaks near the walls are insensitive to
�. It seems that the high volume fraction near the wall leads
to the earlier transition in �W than in �C. At �=0.46, the
value of the local peaks is a decreasing function of distance

FIG. 1. �Color online� �a� Transient behavior of the relative
viscosity normalized by the relative viscosity in the stationary state.
The channel height is fixed; Hy /a=20. Snapshots �end view� for
�=0.52 and Hy /a=20 at �̇t=1 �b� and 50 �c�. For visualization, the
particle radius is reduced to 1/2 of the actual size.

FIG. 2. �Color online� Two-dimensional pair distributions in the velocity-gradient-vorticity �y−z� plane for Hy /a=20 obtained in �a� and
�b� �W and �c� and �d� �C.
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from the wall. Similar to �=0.40, if Hy /a is large enough,
�A may become uniform around the core of the channel.
However, once the ordered structure is present across the
entire channel ��=0.52�, �A is no longer a decreasing func-
tion of distance from the wall. The peaks of �A are almost
constant across the channel. The area fraction profiles sug-
gest that the particles form a layered structure at high volume
fractions in confined suspensions, in which the suspension
dynamics are dependent on the interaction between discrete
particle layers, and, thus, the previous continuum model ap-
proaches, which rely on the rheological functions based on
well-mixed suspensions, may not be suitable to apply for
suspensions near the ordering transitions.

Figure 4 shows the hexagonal order parameter C6 esti-
mated in �W and �C. Similar to the bond-orientational order
parameter, C6 is defined as �7�

C6 =
�0

2�g���cos�6��d�

�0
2�g���d�

, �11�

in which g��� is the pair-distribution function in the y−z
plane averaged over 2a�r�2.1a. The values of C6 lie in the
range 0
C6
1, i.e., C6=1 for a perfect hexagonal structure
and C6=0 for an isotropic microstructure. In general, C6 in
�W is larger than that in �C consistent with the wall-induced
ordering. For Hy /a=15, the hexagonal ordering in �W is not
evident when �
0.48. On the other hand, for Hy /a=20,
C6�0.8 at �=0.48, indicating that the particles in �W begin
to be ordered into hexagonal strings at �=0.48. When �
�0.52 and Hy /a=20, C6 in �C and �W are almost the same,
implying the presence of the hexagonal order in the whole
channel. The decrease in C6 in �W at high volume fraction is

mainly due to the small sampling volume. Since the sam-
pling volume of C6 for �W is small, even if there are only a
few defects in the sampling volume, C6 can be significantly
reduced by these defects. If C6 is computed for the whole
domain, it is a nondecreasing function of � for a given Hy /a.

In a larger channel �Hy /a=30�, the wall effects become
weaker in the channel center, which in turn weakens the
ordered structure in �C. At �=0.50, C6 in �C are 0.65 and
0.5 for Hy /a=20 and 30, respectively. On the other hand, a
better order is observed near a wall. Figure 5 shows snap-
shots for different Hy at �=0.52. For Hy /a=20, most par-
ticles are assembled into nearly linear strings which are or-
ganized as a hexagonal array with a few defects. However,
for Hy /a=30, a disordered fluid region emerges in the chan-
nel core. Typically, most experiments of noncolloidal suspen-
sions are performed in a wide channel, for example Hy /a
�40 �28�. Therefore, it is likely that the suspension is in the
disorder-order coexistence state, for which the bulk behavior
resembles that of the homogeneous suspension. This may be
one reason that ordering transitions in the noncolloidal sus-
pension has not been investigated so far in experiments.

The relative viscosity �r is shown in Fig. 6. For Hy /a
=15 and 20, �r begins to decrease at �=0.48 as the hexago-
nal order develops. Once the hexagonal order is dominant
across the entire channel, �r increases again ���0.52�. The
value of �r for Hy /a=30 is larger than those in the smaller
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FIG. 3. �Color online� Area fraction profiles for Hy /a=20.
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FIG. 4. �Color online� Order parameter C6 in �a� �W and
�b� �C.

FIG. 5. �Color online� Snapshots �end view� for �=0.52; �a�
Hy /a=20 and �b� Hy /a=30. For visualization, the particle radius is
reduced to 1/2 of the actual size.
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FIG. 6. �Color online� The relative viscosity for various � and
Hy /a.
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channels due to the emergence of disordered region in �C, in
which �r is higher. It is expected that, in a large channel
Hy /a�40, the disordered region is much larger than the or-
dered region so that the bulk properties would resemble
those without the ordered structures. Unlike the results in the
three wider channels, �r for Hy /a=10 is an increasing func-
tion of �.

In the equilibrium phase transition �Pe=0� of strongly
confined colloidal suspensions, a sequence of crystal layers
is observed depending on the commensurability of the crys-
tal structures with the channel height; n�→n�→ �n+1��
→¯ Here, n� and n�, respectively, denote n crystal layers
of square and hexagonal lattice symmetries in the horizontal
�x−z� plane. Depending on the commensurability, first-order
melting and freezing transitions are observed between differ-
ent crystal structures �16�. At higher volume fractions, the
alternating sequence of square and hexagonal crystal layers
is disturbed by the emergence of other crystal structures such
as rhombic, buckling, or prism phases �17�. In flowing sus-
pensions, the particle layers slide over each other and or-
dered structures must accommodate this. Hence, it is not ex-
pected that the ordered structures and the commensurability

will exactly follow what has been observed in the thermody-
namic phase transitions of HS fluids or colloidal suspensions.

To investigate the effects of Hy /a on the ordering transi-
tion in flowing suspensions, the numerical simulations are
performed for varying Hy /a from 8 to 20 for �=0.52 and
0.54. Figure 7 shows snapshots for �=0.52 at different chan-
nel heights Hy /a. Increasing Hy /a from 9 to 11, it is shown
that the suspension exhibits phase transitions from the hex-
agonal order �Fig. 7�a�� to a mixed state �Fig. 7�b�� and, then,
again to the ordered state �Fig. 7�c��.

Figure 8 shows the order parameter C6 as a function of
Hy /a for �=0.52 and 0.54. It is shown that the order struc-
ture is very sensitive to Hy when Hy /a
11. For �=0.52, the
suspensions are in an ordered state for Hy /a=9 and 11 and in
a disordered state for Hy /a=8 and 10. The similar behavior
is observed for �=0.54. The oscillation in C6 becomes
smaller for larger Hy. When Hy /a is changed from 10 to 11,
C6 decreases from 0.88 to 0.50, while, increasing Hy /a=19
to 20, it changes from 0.94 to 0.78.

The change in the order state is due to the commensura-
bility of the order structures with the available space between
two walls. As the most distinguishable structure is the simple
hexagonal lattice in the y−z plane, a characteristic gap width
can be defined as

� =
Hy − 2a

�3a
+ 1. �12�

The characteristics gap width are shown in Table I together
with the number of particle layers N and the order parameter
C6. The number of particle layer is well approximated by �.
As expected, the suspension is in more ordered state �large
C6� when � is close to an integer, or small �N−��. When � is
increased or decreased from an integer, the distance between

FIG. 7. �Color online� Snapshots �end view� for �=0.52; �a�
Hy /a=9, �b� Hy /a=10, and �c� Hy /a=11. For visualization, the
particle radius is reduced to 1/2 of the actual size.
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FIG. 8. �Color online� The order parameter as a function of
Hy /a for �=0.52 and 0.54.

TABLE I. Channel height Hy /a, characteristic gap width �, number of particle layers N, and order parameter C6 for �=0.52.

Hy /a 8 9 10 11 12.5 15 17.5 19 19.5 20 21

� 4.46 5.04 5.62 6.20 7.06 8.51 9.95 10.82 11.10 11.39 11.97

N 5 6 7 8 10 11 11 11 12

C6 0.59 0.88 0.50 0.82 0.88 0.67 0.89 0.94 0.86 0.78 0.86
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particle layers increases making particles more mobile. As a
result, the order structure becomes unstable and the suspen-
sion becomes disordered.

The mean-square displacement �MSD� in the vertical di-
rection ��Y2�t�−Y2�0��2� normalized by a2 is shown in Fig. 9.
After a short ballistic regime ��̇t�O�10−1��, MSDs for
Hy /a=8 and 10 show a subdiffusive behavior, ��Y2�t�
−Y2�0��2�� t� with the exponent �=0.86 on the intermediate
time scale of the present simulation. Yeo and Maxey �29�
showed that confined non-Brownian suspensions for �
=0.40 exhibit subdiffusion on the time scale of �̇t�O�100�.
In the long term, the vertical particle displacement is con-
fined by the size of the channel height. When an ordered
structure is developed, the vertical displacement of particles
is restricted by the cage formed by neighboring particles. For
Hy /a=19 and 20, in which the suspensions are in a mixed
state, the particles in the core of the channel behaves simi-
larly to the disordered state, while mobility of the particles
near the walls is significantly reduced due to the ordered
structure. Hence, MSDs for Hy /a=19 and 20 are signifi-
cantly lower than those in a disordered state �Hy /a=8 and
10�. For Hy /a=9, the entire channel is in an ordered state
and the vertical displacement of particles is observed only
near defects. Hence, there is a large increase in MSDs be-
tween ordered �Hy /a=9� and mixed states �Hy /a=12.5, 19,
and 20�.

The bulk particle pressure � normalized by ��̇ is shown
in Fig. 10. The definition of � is

� = −
1

3
��11 + �22 + �33� . �13�

Here, �ij denotes the particle stress computed from the
stresslet and the interparticle potential. In a strongly confined
system �Hy /a�12�, the oscillation of � is almost exactly
opposite to C6. However, in larger channels, the correlation
between � and C6 becomes less clear. Because the wall ef-
fect is strong across the entire channel in small channels, the
order structure and, thus, the rheological parameters are
mainly determined by the commensurability. On the other

hand, in a larger channel, there is a competition between the
confinement effect and the shear-induced hydrodynamic in-
teractions around the core of the channel. Therefore, rheol-
ogy does not exactly follow the commensurability of the
channel.

Figure 11�a� shows the order structure in the horizontal
�x−z� plane for �=0.52 and Hy /a=9. A rhombic phase is
observed for the horizontal structure. A stable rhombic phase
is also observed in the equilibrium phase transitions of con-
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FIG. 9. �Color online� The normalized mean-square vertical dis-
placements ��Y2�t�−Y2�0��2� /a2 for �=0.52.
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FIG. 10. �Color online� The particle pressure � ��� and the
order parameter C6 ��� as a function of Hy /a for �a� �=0.52 and
�b� 0.54.

FIG. 11. �Color online� Order structures in the horizontal plane
for �a� �=0.52 and Hy /a=9, �b� �=0.60 and Hy /a=9, and
�c� �=0.60 and Hy /a=10. Green �lighter� particles are in the lower
layer and red �darker� particles are in the upper layer.
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fined HS fluids as an interpolating structure between square
and hexagonal symmetric structures �16�. Fortini and Dijk-
stra �17� found that the rhombic phase is stable between n�
and n� for n
5, i.e., Hy /a�10. However, in flowing sus-
pensions, a rhombic phase is observed for a wide range of
Hy /a. When �
0.54, only rhombic phases are observed for
the range of parameters in the present study of non-Brownian
�infinite Pe� suspensions. In flowing suspensions, the distur-
bance flow induced by a particle decays slowly, which leads
to a long-range correlation. The long-range hydrodynamic
interactions result in the earlier order transition in sheared
non-Brownian suspensions than that seen in HS fluids. How-
ever, near the lower boundary of order transitions, the vol-
ume fraction is still too low to develop a fully three-
dimensional crystal structure. As the hydrodynamic force
induced by the shear flow is anisotropic, an ordered structure
is formed in the y−z plane first. It seems that the rhombic
phase in the x−z plane in Fig. 11�a� is a transitional structure
that supports a hexagonal structure in the y−z plane at the
given volume fraction. In contrast, suspensions at higher vol-
ume fractions may show a phase behavior similar to HS flu-
ids. At �=0.60, 5 layers of the hexagonal symmetric struc-
ture are observed for Hy /a=9 �Fig. 11�b��, which is followed
by 6 layers of nearly rectangular structure for Hy /a=10 �Fig.
11�c��.

IV. CONCLUSIONS

We have made a first investigation of ordering transitions
of non-Brownian suspensions confined by two parallel walls
under steady shear. We show that the shear-induced crystal-

lization of non-Brownian suspensions under a strong con-
finement is dramatically different from the previous results in
homogeneous suspensions. As the volume fraction is higher
near the wall than the bulk, an ordering transition occurs
earlier in the wall region. At �=0.48 and Hy /a�15, a hex-
agonal structure �y−z plane� of particle strings �x direction�
is observed near the wall, while the suspension in the core of
the channel is still in disordered state. For a strongly con-
fined system Hy /a
11, the order state and rheology depend
on the commensurability. However, due to the competition
between the wall effects and shear-induced hydrodynamic
forces, the relation is not so clear for larger channels Hy /a
�20. At �=0.60, it is observed that the order structure in
horizontal plane exhibits a transition from triangular to rect-
angular structures, similar to the equilibrium phase transi-
tions in HS fluids. It is shown that due to the complex phase
behavior, the rheological parameters, such as the relative vis-
cosity and the particle pressure, are nonlinear functions of
both the channel height and the volume fraction.
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