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A phenomenological approach to the ferromagnetic two-dimensional �2D� Potts model on square lattice is
proposed. Our goal is to present a simple functional form that obeys the known properties possessed by the free
energy of the q-state Potts model. The duality symmetry of the 2D Potts model together with the known results
on its critical exponent � allows us to fix consistently the details of the proposed expression for the free energy.
The agreement of the analytic ansatz with numerical data in the q=3 case is very good at high and low
temperatures as well as at the critical point. It is shown that the q�4 cases naturally fit into the same scheme
and that one should also expect a good agreement with numerical data. The limiting q=4 case is shortly
discussed.
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I. INTRODUCTION

The Potts model1 is the most natural generalization of the
two-dimensional �2D� Ising model, and it is deeply con-
nected with many areas of both statistical physics and math-
ematics �for nice detailed reviews, see �1–5�; for the relation
with the problem of color confinement, see �6� and review
�7��.

It has been very difficult at the moment to compute di-
rectly the analytic free energy of the ferromagnetic Potts
model in two dimensions on square lattice �which is the main
object of the present paper� as it was done by Onsager in the
Ising case �8�. Thus, it will be proposed here a less direct
approach which is, nevertheless, able to give nontrivial ana-
lytic information on the free energy. The main purpose of
this approach is not to give an exact solution for the free
energy but rather to present a simple functional form that
obeys the known properties possessed by the free energy of
the q-state Potts model. In particular, this method may give a
reasonable approximation of the free-energy function in all
the range of temperatures even the not yet explored ones,
i.e., outside the results of high and low temperatures or the
neighborhood of critical point. Following the point of view
of the phenomenological Regge theory of scattering �see
�9,10�; two detailed reviews are �11,12��, a reasonable ana-
lytic form for the free energy in terms of one free parameter
will be derived. In the present case it plays the role of
Regge’s trajectories in high-energy physics since it param-
etrizes some analytical features of the Potts model such as its
duality properties and the Fisher zeros, in an analog way as
the Regge trajectories encode the nonperturbative duality
properties of scattering amplitudes, as was first observed in
�13�. This can be done by requiring that the sought analytic
expression for the free energy of the 2D Potts model should
be compatible �in a suitable sense explained in the next sec-

tions� with the proposal made in �14–16� for the free energy
of the three-dimensional Ising �3DI� model. The proposal of
�14–16� is in a very good agreement with numerical data so
that one should expect that this approach should provide one
with a formula for the free energy of 2D Potts which fit
equally well the available numerical data. It will be shown
that this is indeed the case. A nontrivial by-product of the
present approach is that the proposed free energy of the 2D
Potts model has the locus of the Fisher zeros which coincides
with the well-known and well-tested conjecture in �17�.

The paper is organized as follows: in the second section, it
will be discussed a suitable consistency condition �called
here “dimensional compatibility”� which allows to derive an
analytic ansatz for the free energy of the 2D Potts model in
terms of few q-dependent curves. In the third section, it will
be analyzed how the known duality symmetry of the Potts
model and its known critical behavior fix all but one curve.
In the fourth section, the proposed ansatz will be compared
with the available numerical data both at high and low tem-
peratures as well as at the critical point in the case q=3. In
the fifth section, the q�4 cases will be discussed. In the
sixth section it will be shown how the proposed ansatz auto-
matically predicts the locus of Fisher zeros consistent with
the well-known conjecture.

II. DIMENSIONAL COMPATIBILITY

It is well known that the main thermodynamical quantities
are combinatorial in nature. This fact makes the analysis of
three-dimensional lattices even more difficult than the two-
dimensional cases. In this respect, it is a rather surprising
result that one can even imagine to write down a simple
explicit functional form for the free energy of the Ising
model in three dimensions which obeys known physical
properties �in particular, good agreement with the available
numerical data�. Such simple expression is based on the as-
sumption that the change in the combinatorial complexity
when going from one to two dimensions is formally quite
similar to the analogous change in the combinatorial com-
plexity when going from two to three dimensions. One can
write the exact Onsager solution for the free energy in two
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dimensions as a convolution integral of the known exact free
energy in one dimension with a suitable kernel. This integral
kernel, which can be found explicitly, is the mathematical
object responsible for the change in the combinatorial com-
plexity when going from one to two dimensions �14�. Then,
one argues that the change in many combinatorial quantities
on hypercubic lattices �such as, for instance, the scaling of
the number of states of a given energy with the size of the
lattice� when going from one to two dimensions are similar
to the analogous change when going from two to three di-
mensions �this is somehow confirmed by a comparison with
the available numerical data �15,16��. Thus, it is not unnatu-
ral to assume that a suitable integral kernel exists such that
when one consider its convolution with the Onsager solution
one gets the �still unknown� exact free energy of the Ising
model in three dimensions. Our assumption based on the
above considerations is that such kernel is as similar as pos-
sible to the already known one allowing the jump from one
to two dimensions.

The Kallen-Lehmann representation �14� gives rise to an
ansatz for the free energy of the 3DI model of the following
form2:

F3D
��i,����� = F2D��� +

�

�2��2�
0

�

dz�
0

�

dy · log�1

2
�1

+ �1 − �2
�	�z� − 1��1

	�z� 	�2

sin2 y
�3	� ,

	�z� = �1 + �1 − kef f���2sin2 z��0
2, �0,�1,�2,�3 � 0,

0 
 �kef f����2 
 1, 1 
 	�z� 
 4, �1�

where the values of the parameters in the case of the
two-dimensional Ising model would be �=1, �i=1 /2 for
i=0, . . . ,3.

Namely, one may find the operator D1,2 �see Eq. �2��
which “dresses” the trivial one-dimensional solution of the
Ising model giving rise to the Onsager solution. Then, the
Kallen-Lehmann free-energy for the three-dimensional Ising
model is deduced �14� by modifying D1,2 in such a way that
the parameters which in D1,2 are fixed to be 1 and 1/2
�namely, in the two-dimensional case, �=1, �i=1 /2� become
the free parameters. Afterwards, one can use such a modified
operator to dress the Onsager solution obtaining a useful
ansatz for the free energy of the three-dimensional Ising
model. To be more precise, it is possible to define a class of
operators DD,q such that when they act on the free energy
FD,q of the q-state ferromagnetic Potts model on hypercubic
lattices in D dimensions give rise to the free energy F�D+1�,q
of the q-state Potts model in �D+1� dimensions

DD,q�FD,q���� = F�D+1�,q��� . �2�

To fix the arbitrariness of the above definition it necessary to
specify the domain of DD,q and how it acts. Since we want

that the free energies of reasonable systems belong to the
domain of DD,q, the domain of DD,q will be the class of
functions which are smooth on R+ besides at most a finite
number of points in which some of the derivatives of the
function may be discontinuous. The variable is the inverse
temperature and the singular point �or points� represents the
phase transition. The range of the operator coincides with the
domain since, by definition, when this operator acts on the
free energy of the Ising model on a hypercubic lattice it
generates the free energy of an analogous system in one
more dimension. A reasonable way to represent these opera-
tors is as integral Kernel �14�: the simplest of these integral
kernels can be constructed explicitly by comparing the On-
sager solution with the free energy of the one-dimensional
Ising model. Then, one can use an integral Kernel of the
same functional form to act on the Onsager solution obtain-
ing an approximate ansatz for the functional form of the free
energy of the Ising model in three dimensions �the compari-
son of the ansatz with the numerical data is quite promising
�15,16��.

Consistency condition

Let QD,q be the operators which when applied to the free
energy FD,q of the q-state ferromagnetic Potts model in
D dimensions give rise to the free energy FD,�q+1� of the
�q+1�-state Potts model in D dimensions

QD,q�FD,q���� = FD,�q+1���� . �3�

The domain of QD,q is the class of functions which are
smooth on R+ besides at most a finite number of points in
which some of the derivatives of the function may be dis-
continuous �again the singular points represent the phase
transitions of the system�. Also in this case the range of the
operator coincides with the domain. Therefore, being the
ranges and the domains of the operators DD,q and QD,q com-
patible, it makes sense to compose them. In particular, one
can observe that they have to satisfy a sort of commutativity
constraint:

Q�D+1�,q · DD,q = DD,�q+1� · QD,q. �4�

If one supposes that Eq. �1� is the exact free energy of the
three-dimensional Ising model for some values of the param-
eters, the simplest way to satisfy Eq. �4� is the following
approximate analytic formula for the free energy of the two-
dimensional ferromagnetic Potts model:

F2D�q,u� = Cq +
��q�
2�

�
0

�

dt log�1

2
�1 + �1

− �k2D�q,u��2sin2 t���q��� ,

�k2D�q,u��2 
 1; Cq = log�2
exp��� + �q − 1�

q

;

u = exp�− �� , �5�

where k2D�q ,u� is the function encoding the duality proper-
ties of the model, the function Cq can be found by comparing

2The parameters appearing in these formulas are related
with those appearing in �14� by the following identities �1=�,
�3=1 /2=�2, and �0=�.
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the high-temperature expansion of Ising and Potts models in
two dimensions �see, for instance, �1��; ��q� and ��q� are two
parameters.3 It is worth to note that we are still free to add a
constant �which depends on q� to the above free energy. Un-
fortunately this fact prevents us from using the Baxter’s re-
sults on the free energy on the critical point to fix ��q�. It is
trivial to verify that the critical point uc corresponding to the
free energy in Eq. �5� is determined by the equation

k2D�q,uc� = 1 �6�

as one expects on the basis of the Onsager solution.
When q
4, the curve ��q� and k2D�q ,u� can be fixed a

priori using theoretical arguments related to the duality sym-
metry and to the known results on the critical behavior.
While we will fix the normalization ��q� by a comparison
with the numerical data.

As it will be shown in the next sections, ��q� is related to
the critical exponent ��q�. Through the well-known critical
behavior of the Potts model, one can get an implicit func-
tional relation between � and �

��q� = ����q�� . �7�

In the q�4 cases �in which the transition is first order� one
can fix a priori ��q� in terms of ��q� using the known exact
results of Baxter on the latent heat. Indeed, the above for-
mula may look an ad hoc approximation or, at least, not very
natural at a first glance. On the other hand from the argu-
ments at the beginning of section 1 it stems a constraint on
the free energy of the Potts model in two dimensions.
Namely, we are interested in finding a functional form that
exactly obeys certain properties known to be possessed by
the true free energy. So, we search for an expression for the
free energy which is compatible with the properties of the
integral kernels discussed above. This gives a further con-
straint on the form of the free energy of the Potts model in
two dimensions. From the combinatorial point of view, this
makes the proposed form in Eq. �5� natural. In other words,
besides the known constraints on the free energy of the two-
dimensional Potts model �such as the critical exponent and
the duality symmetry�, the proposed form in Eq. �5� is also
the simplest compatible with the recursive structure proposed
in �14� �which has been proved to be in good agreement with
known results �15,16��. This explains why it is quite useful to
look at the recursive structure connecting the Ising models in
two and in three dimensionals to obtain an additional bit of
information in order to fix the residual arbitrariness left in
the choice of the free energy.

III. DUALITY AND k2D(q ,u)

The duality transformation in the case of the two-
dimensional Ising model was discovered in �18� before the
exact solution of Onsager �8�. In the case of the Potts model
we are considering the following Hamiltonian:

H = − J �
�ij�

��i�j
, �8�

and the duality is

D�u� =
1 − u

1 + �q − 1�u
. �9�

Note that this transformation is not a symmetry of the full
free energy per site in the thermodynamic limit: it leaves
invariant the nonanalytic part of the free energy, while the
trivial term log� e�J+q−1

�q
� is not invariant. Anyway the critical

point is determined by the properties of the nonanalytic part.
The fixed point of the duality transformation uc=uc�q� is

D�uc� = uc ⇒ uc�q� =
1

1 + �q
. �10�

Thus, one has to find a function k2D�q ,u� which encodes the
duality properties of the two-dimensional Potts model and
which reduces to the known result when q=2: that is

k2D�q,D�u�� = � k2D�q,u� , �11�

where the � signs appear because the Kallen-Lehmann free
energy in Eq. �5� depends on �k2D�q ,���2.

The simplest solution �let us call it k̃� of Eq. �11� is

k̃�q,u� = A
u�1 − �q − 1�u2 + �q − 2�u�

�1 + �q − 1�u2�2 . �12�

It can be easily seen that k̃�q ,u� fulfills Eq. �11� for any value
of the constant A which we will fix with the normalization
condition at the critical point in Eq. �10�

k̃�q,uc� = 1 ⇒
1

A�q�
=

uc�1 − �q − 1�uc
2 + �q − 2�uc�

�1 + �q − 1�uc
2�2 .

Furthermore the critical point is located at u=uc in Eq. �10�
as it should be and it can be easily seen that when q=2 it
reduces to the expression of k2D in terms of the low-
temperature variable u.

Indeed, once one has found the simplest k̃ invariant under
duality transformation and which reduces to the Ising case
when q=2, one can construct many more solutions by simply

taking functions f of the k̃ in Eq. �12�

k2D�q,u� = f�A�q�
u�1 − �q − 1�u2 + �q − 2�u�

�1 + �q − 1�u2�2 � ,

such that f�x� has the maximum when x=1 and f�1�=1. The
simplest possibility is to consider f�x� of the form

f�x� = xE�q�.

One procedure to determine E�q� for q=3 is to look at the
coefficients of the low-temperature expansions �see �20,21��.
Using Eq. �5� one can compute the ratios �n for very small u

�n�q,u� =
an�q,u�

an+1�q,u�
,

3��q� is related to the overall normalization of the nonanalytic part
of the partition function while ��q� is related to the critical behavior.
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an�q,u� =� �nF2D�q,u�
�un �

u=0

for some small n and verify that it is possible to fulfill the
expected scaling in the cases q=3 with the choice

E�3� = 2, �13�

so that we will take

k2D�3,u� = �A�3�
u�1 − 2u2 + u�

�1 + 2u2�2 
2

,

while, of course, the compatibility with the Onsager solution
tells that E�2�=1. It is also interesting to observe that con-
sistency with the q→1+ limit �where the u dependence dis-
appears� would suggest E�1�=0. Thus, from now on, we will
fix E�3� as in Eq. �13�.

Critical behavior

The critical exponent ��q� for two-dimensional Potts
model �when q
4� is known to be �see �19��

��q� =
2�1 − 2x�
3�1 − x�

,

x =
2

�
arccos��q

2

 ,

where the positive values of x correspond to the tricritical
point while the negative values correspond to the critical
point.

One can fix a priori the curve ��q� by looking at the
critical behavior of the model: the specific heat is known to
have �see �22,23�� the following forms for q=3:

Cdiv�q = 3,u � uc� � �u − uc�3��−1/3. �14�

On the other hand, the second derivative of the �nonanalytic
part of the� free energy F2D in Eq. �5� reads as

�u
2F2D = −

��q���q�
2�

��u
2H��

0

� �sin2 x�	��q�−1dx

1 + 	��q�

+
��q���q�

2�
��uH�2�

0

� 	��q�−2�sin4 x�dx

1 + 	��q�

�����q� − 1� −
��q�	��q�

1 + 	��q� � , �15�

where

	 = 1 − H sin2 x, 0 
 ��q� 
 1,

H = �k2D�u��2.

Near the critical point, H�1 and �uH�0 since, as it has
been already discussed, the critical point is a smooth maxi-
mum of k2D�u�. For this reason, the most singular term is the
first one:

Cdiv � −
��q���q�

2�
��u

2H��
0

� �sin2 x�	��q�−1dx

1 + 	��q� , �16�

since the divergent term in the integral of the second term in
Eq. �15� are compensated by the vanishing first derivative of
H at the critical point �while �u

2H is of order 1�. By imposing
that the singular part of the specific heat in Eq. �16� repro-
duces the known critical behavior in Eq. �14� one gets an
implicit relation between � and � which fixes ��3� to be

��3� = 0.4. �17�

In the next sections we will draw a picture of the critical part
of the free energy in Eq. �5� against the known results at the
critical point which shows a excellent agreement.

IV. COMPARISON WITH NUMERICAL DATA FOR q=3

An explicit analytic expression for the free energy in Eq.
�5� of the two-dimensional ferromagnetic Potts model has
been constructed in which theoretical arguments �basically,
duality and the known critical behavior� can fix everything
but one curve ��q�. Indeed, it is easy to see that ��3� can
fixed in terms of the numerical expansion data at low tem-
peratures giving rise to a good agreement. We would like to
further emphasize that the main purpose of our work is to
obtain an unique approximate functional form for free energy
in the widest possible range of temperatures. This is concep-
tually different and complementary point of view with re-
spect to the known numerical analysis and perturbative ex-
pansions. So we have not just assumed the soundness of the
low temperature and the critical point numerical studies, but
we used them to fix the only free parameter of the ansatz. As
it is explained below the precision of our numerical algo-
rithm is not sensitive as the numerical data themselves, nei-
ther have we pretended to compete with the precision of
these methods. Rather we mean to give a global description
for the behavior of the free energy in a unified scheme com-
patible with the known results on their respective different
domains of applicability. Despite the functional simplicity of
the free energy in Eq. �5� a low-temperature Taylor expan-
sion, which involves many numerical derivations and inte-
grations, using the standard commercial software �available
to us� is very inaccurate and anyway beyond the goal of this
work.

A. Low and high temperatures

Because of the built-in duality invariance of the model,
we will only need to check the agreement at low tempera-
tures since the agreement at high follows from duality. Our
analysis is based on Refs. �20,21�: to be more precise, we
checked that the normalization in �21� is consistent with �and
reduces to� the normalization of �20� in the q=2 case of the
two-dimensional Ising model. In particular, the expansion of
the partition function in the above references corresponds to
only consider the interesting nonanalytic term �neglecting the
trivial term log cosh 2� in the Ising case�. Therefore, in the
Potts case one has to compare the low-temperature expan-
sions for q=3 with the second term on the right-hand side of
Eq. �5�. We consider the low-temperature expansion, up the
14th order, valid no more than uc�3� /100, since the Onsager
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solution already in the 2D Ising model deviates significantly
from the numerical expansion when u�uc�2� /100. The low-
temperature expansion of the free energy in �20,21� for the
q=3 case is

Fmc�u� = − log�1 + 2u4 + 4u6 + 4u7 + 6u8 + 24u9 + 24u10

+ 68u11 + 190u12 + 192u13 + 904u14�

and the best value we have found for ��3� is

��3� = 0.1543.

For this value of ��3� at low �and therefore high� tempera-
tures the “precision” of the Kallen-Lehmann ansatz versus
the numerical free energy may be measured in many differ-
ent ways; for instance, one can use the following:

p�Fmc,F2D� ª�� �Fmc − F2D�2du

� �Fmc�2du


 1%.

As one can see from Fig. 1 the agreement is very good.

B. Critical behavior

Because of the simplicity of the free energy in Eq. �5�,
one can perform the numerical graph using MATHEMATICA®.
Fig. 2, in which we plot the Kallen-Lehmann free energy
F2D�3,u� against the critical free energy

Fcritic = a + b�u − uc�3��2−�1/3�

in a neighborhood �sized 1% of uc�3�� of the critical point
show a remarkable agreement. Also in this region the preci-
sion p�Fcritic ,F2D� of the result maintains well below 1%.

To get a clearer idea on the precision of the proposed
ansatz, one could compare, using MATHEMATICA®, the exact
Onsager solution at high temperature versus the correspond-
ing high-temperature expansion in �20� in an interval of
u from 0 to uc�2� /100 �the Onsager solution deviates signifi-
cantly from the numerical small u expansion when u
�uc�2� /100�. If one would do this, one would recognize
how well the proposed ansatz describes the available numeri-
cal data in the 2D Potts case for q=3.

V. q�4 CASES

The q�4 cases are qualitative very different from the
cases q
4 since, when q�4, the phase transition is of first
order. Thus, one could expect that even if the ansatz in Eq.
�5� works very well for q
4, it is not at all obvious if it can
also work when q�4. Remarkably enough, it can be shown
that the free energy in Eq. �5� does indeed describe first-
order phase transition at the critical point uc�q� in Eq. �10�
provided ��q� becomes negative,

��q� 
 0.

When ��q� is negative ���q�=−���q���, the leading behav-
ior of the internal energy corresponding to the free energy in
Eq. �5� is

FIG. 1. �Color online� Numerical Fnm�u� and Kallen-Lehmann F2D�u� free energies at low temperatures for q=3.
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E2D�q,u � uc� � −
��q�
2�

�2k2D�uk2D�

��
0

� ���q��1 − �k2D�q,u��2sin2 t
−���q��−1sin2 t�dt

1 + �1 − �k2D�q,u��2sin2 t
−���q��

� −
��q�
2�

�2k2D�uk2D�

��
0

�

���q��1 − �k2D�q,u��2sin2 t
−1sin2 t�dt .

�18�

Indeed, the derivative of k2D�q ,u� at the critical point is still
zero but the divergence of the integral is stronger so that it
gives rise to a finite contribution; for u�uc one has

��uk2D� � 2� � 1, k2D � 1 − �2,

while the integral in Eq. �18� is dominated by the region t
�� /2. Thus, one gets a finite discontinuity of the first de-
rivative

E2D�q,u � uc�

� �
��q���q�

2�
�4���

−a

a � 1

1 − �1 − �2��1 − �2�	d�

� �
2��q���q�

�
�

−�

� 1

1 + y2dy = � 2��q���q� ,

where a is a small positive number, the − sign refers to
taking the limit to the critical point from the left and the +
from the right. Therefore the internal energy acquires a finite

jump �namely, a nontrivial latent heat� at the phase transition
as it should be. Furthermore, the jump is symmetric in agree-
ment with the result of Baxter. With the same arguments one
can see that when ��q� is positive and less than one �as it is
the case for q
4�, both left and right derivatives are zero at
the critical point so that the transition is second order. This is
a very interesting fact in itself since it allows us to describe
with the same analytical ansatz also the region in which a
first-order transition takes place.

The above reasoning tells that to describe the first-order
region ��q�
0 and to describe the second-order region
��q��0. In the second-order region it has been shown that
��q� is related to the critical exponent �. Below it will be
discussed that in the first-order region one can fix the discon-
tinuity of the first derivative of the free energy at the critical
point �which, roughly, is proportional to ��q���q�� using
some exact results obtained by Baxter.

A. Comparison with the Baxter results

Baxter �see �2�; for a review, see �1�� was able to compute
the latent heat L�q ,uc� at the critical point in the q�4 case:

L�q,uc� = 2�1 + q−1/2�	�q�tanh��

2

, q � 4,

	�q� = �
n=1

�

�tanh�n���2, cosh � =
�q

2
.

Thus, one can fix the discontinuity 	Ec of the first derivative
of the free energy in Eq. �5� at the critical point

FIG. 2. �Color online� Critical behavior of free energy Fcritic and Kallen-Lehmann F2D�u� near the critical point �q=3,
a=−0.014 723 2, and b=0.677 394�.
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	Ec = E2D�q,uc
+� − E2D�q,uc

−� ,

in terms of the Baxter result:

	Ec = L�q,uc� . �19�

Such equation allows, in principle, to fix one of the two
curves in terms of the other �for instance, one can choose to
express ��q� in terms of ��q�� living us with only one curve
which could be fixed by looking at the numerical expansion
at low temperatures. Unfortunately, at least in the cases q
=5 and q=6 �which we analyzed more closely�, we have not
been able to develop a suitable software to test at the same
time the low temperatures and the critical behavior. Even if,
at first glance, the numerical problems to be solved for q
�4 are similar to the ones which appear for q
4, there are
two important differences. The first is that for q
4 the
known critical behavior is only related to ��q� which there-
fore can be fixed, while for q�4 the Baxter result on the
latent heat determines 	Ec which is a rather complicated
function of both ��q� and ��q� and this does make the nu-
merical analysis more involved. The second is that, at least in
the cases q=5 and q=6, the numbers which arise in the
low-temperature expansions are very small and this makes
our software extremely slow.

Nevertheless, we have verified using the software MATH-

EMATICA® that looking at the low temperatures only, it is
possible to achieves an almost perfect agreement with the
series expansion of �20,21�, both for q=5 and q=6. This is a
strong indication that this framework also works in the case
q�4 since, because of the built in invariance under the du-
ality transformation in Eq. �9�, an excellent matching at low
temperatures by construction implies an equivalent agree-
ment at high temperatures. Thus, taking into account that in
the ��q�
0 region the free energy in Eq. �5� has a first-order
phase transition, one should expect that the present method
provides an explicit analytic description of the free energy
both for q
4 and for q�4 in terms of only two q-dependent
curves,4 in excellent agreement with numerical expansion
data.

B. q=4 case

The q=4 case is the more delicate. The first obvious rea-
son is that q=4 is the boundary between the range in which
the model exhibit a second-order phase transition �q
4� and
the range in which the transition is first order �that is, q�4�.
As a matter of fact, for q=4: the specific heat singularity has
logarithmic correction �see �22� or �23��:

Cdiv�q = 4,u − uc� �
�u − uc�4��−2/3

log�u − uc�4��
. �20�

The present formalism provides one with a very natural
mechanism for the arising of logarithmic corrections.

Assuming that ��q� is a continuous function of q, then
one could argue that ��4�=0 since in the first-order region

��q�
0 while in the second-order region 0
��q�
1. The
interpretation of the last sentence is that, when ��q�=0, the
present framework provides one with the appearance of the
expected “nested” logarithm inside the free energy:

F2D�4,u� = C4 +
��4�
2�

�
0

�

dt log�1

2
�1 + ��q,u�

�log�1 − �k2D�4,u��2sin2 t
�� .

Unfortunately, we have still not found a theoretical argument
to fix a priori � in an analytic way. Nevertheless, it is worth
to stress that the above formula does give rise automatically
to a second-order phase transition with a logarithmic correc-
tion of the type in Eq. �20� and, therefore, to find theoretical
arguments able to fix ��q ,u� is an interesting open problem.

VI. FISHER ZEROS

A powerful theoretical tool is the analysis of the Fisher
zeros �24� in which the inverse temperature � is extended to
the whole complex � plane �in the same way as Yang and
Lee complexified the magnetic field �25��. By looking at the
distribution of zeros of the partition function in the complex
� plane, one can determine the universal amplitude ratio
A+ /A− of the specific heat and write down simple expres-
sions �which only involve the density of zeros and the angle
which the line of zeros form with the real � axis at the
critical point� for the free energy and the specific heat close
to the critical point; see �26,27�. Such tools are also useful
when analyzing the strength of the phase transitions �see, for
instance, �28–30� and references therein�. Therefore, the
Fisher zeros contain very deep nonperturbative information
on the corresponding systems.

It is expected that also in the case of the two-dimensional
Potts model the Fisher zeros should lie on a circle: strong
theoretical as well as numerical evidences have been pro-
vided in �17� �for some more recent evidences, see �31,32�
and references therein�. The circle is given by �x�=1, where
x=v /�q and v=e�−1=u−1−1. To study the locus of the

Fisher zeros, it is convenient to express k̃�q ,u� as follows:

k̃�q,u� = 4
uD�u�

�u + D�u��2 . �21�

It is easy to observe from Eq. �21� that5 k̃�q ,u�
1 and

k̃�q ,u�=1 if and only if u=D�u�; this condition identifies the
real fixed point of the duality map. On the other hand accord-
ing to the conjecture, the locus of Fisher zeros of the 2D

4Furthermore, at least one of these two curves can be fixed a
priori analytically using known analytical results at the critical
point �see Eqs. �17� and �19��.

5One may notice that in the above expression in Eq. �21� for

k̃�q ,u� the dependence on q is implicit in the duality transformation

D�u�. Furthermore, k̃�q ,u� reduces to the known expression for
q=2. Therefore, when expressed in terms of u and D�u�, the equa-
tion determining the locus of Fisher zeros is formally exactly the
same as in the Ising case provided one replaces the duality trans-
formation of the Ising case with the corresponding Potts duality
transformation.
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Potts model on square lattice is the analytic extension of the
equation uc=D�uc�. Therefore our proposal is consistent with
the conjecture providing further support to this framework.

VII. CONCLUSIONS AND PERSPECTIVES

A phenomenological approach to the ferromagnetic two-
dimensional Potts model on square lattice has been devel-
oped. After introducing the D-dressing and the q-dressing
operators DD,q and QD,q, it has been described how the com-
patibility between DD,q and QD,q allows one to write down
an explicit analytic ansatz for the free energy in terms of one
free parameter �for each q�. The duality symmetries of the
2D Potts model together with the known theoretical results
on its critical exponent allow to fix a priori all but one curve.
The agreement of the proposed analytic free energy with
low- and high-temperature expansion as well as the critical
point is excellent for q=3. For q=5 and q=6 one can also
see that the agreement with numerical data at low and high
temperatures is also very good but we have not been able to
test the corresponding critical points because of some subtle
numerical problems. Nevertheless it has been proved that the
corresponding phase transition when �
0 is first order. The

q=4 case remains basically opens but we have some indica-
tions that the present framework is also able to capture im-
portant features of such subtle case since it predicts auto-
matically logarithmic correction to the power-law divergence
of the specific heat.
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