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Truly random number generation based on measurement of phase noise of a laser
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We present a simple approach to realize truly random number generator based on measuring the phase noise
of a single-mode vertical cavity surface emitting laser. The true randomness of the quantum phase noise
originates from the spontaneous emission of photons and the random bit generation rate is ultimately limited
only by the laser linewidth. With the final bit generation rate of 20 Mbit/s, the truly random bit sequence
guaranteed by the uncertainty principle of quantum mechanics passes the three standard randomness tests
(ENT, Diehard, and NIST Statistical Test Suites). Moreover, a continuously generated random bit sequence,
with length up to 14 Gbit, is verified by two additional criteria for its true randomness.
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Random number generator (RNG) has wide applications
in statistical sampling [1], computer simulations [2], random-
ized algorithm [3], and cryptography [4]. Traditionally, pseu-
dorandom number generator (PRNG) based on computa-
tional algorithms is adopted to generate random bits and is
competent in many fields. However, it cannot produce intrin-
sically unpredictable and irreproducible bit sequence and so
may result in potential dangers in security-related applica-
tions, say, in quantum cryptography [5]. Actually, the uncon-
ditional security of quantum key distribution can only be
guaranteed when a truly random number generator (TRNG),
based on quantum-mechanical process rather than the intrac-
tability assumption of classical algorithms [6], is available.

Distinct from PRNG, the TRNG can only be realized by
quantum-mechanical process instead of by algorithm or de-
terministic physical process (e.g., chaotic lasers). The
quantum-mechanical processes, such as radioactive decay [7]
and those based on laser (photon) emission or detection
[8—11], can ensure the inability of pre-estimation on random
numbers and so can be adopted as candidates to implement
TRNG. In particular, those based on the detection of laser
field has attracted tremendous interests in recent decade. Re-
cently, the chaotic lasers were utilized for GHz random bit
generation [12-14]. However, although the quantum noise is
also amplified therein, the observed signal is mainly due to
the chaotic behavior of the laser(s) rather than the quantum
noise. Therefore, the chaotic laser-based RNG is not inher-
ently random owing to its deterministic nature [15,16]. On
the other hand, the abovementioned TRNGs [7-10] cannot
offer the high generation rate as the PRNG based on chaotic
laser(s) [12-14]. The typically maximal generation rate of
recent TRNGs is around 4 Mbit/s for photon detection
scheme [9]. Moreover, the statistical bias and correlation for
long random bit sequence were not investigated in those
schemes.

In this paper, we propose a simple TRNG scheme based
on measuring the quantum phase noise, which is a Gaussian
random variable [17,18], of a single-mode vertical cavity
surface emitting laser (VCSEL). The true randomness of the
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quantum phase noise is originated from the random nature of
spontaneous emission. In the following, it shows that the
generation rate of this TRNG is ultimately limited only by
the laser linewidth. In our experiment, the final generation
rate reached 20 Mbit/s; and further, the true randomness is
not only guaranteed by quantum-mechanical uncertainty
principle and three standard randomness tests, but is also
verified by two additional criteria (statistical bias and corre-
lation coefficient) for the long (up to 14 Gbit) random bit
sequence.

The schematic setup is shown in Fig. 1 and the delayed
self-homodyne method is used to measure the phase noise of
the VCSEL. In this case, the output alternative current (AC)
voltage of the avalanche photodetector (APD) detecting the
beat signal is V% AC[ly, ]=2E()E(t+ T)cos[ p(1) - ¢
(t+7)], where the amplitude fluctuations of £(z) and E(¢+7)
are negligible compared to the phase fluctuation correspond-
ing to cos[@(t)—p(t+7)] [17,18]. When the delay time is
much longer than the coherence time of laser (i.e., 7> 7.,,),
the phase difference A¢p(t)=@(r)— p(t+7) is a Gaussian ran-
dom variable [17] and then

(E(E(t + 7)) = exp(= | /7. ) — O, (1)

where 7.,,=(7Av,,) "' [18] and Awv,,,,, is the laser line-
width. This indicates that the electric field amplitudes of the
laser at different time are mutually independent if the time
interval (i.e., delay time) is much longer than the coherence
time of the laser. Further, similar calculation procedure can
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FIG. 1. (Color online) Schematic setup of TRNG based on the
phase noise measurement using delayed self-homodyne method.
BS, beam splitter; APD, avalanche photodetector with the low
(high) cutoff frequency of 50 kHz (I GHz). ADC, 8-bit binary
analog-digital converter working at 40 MHz.
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FIG. 2. (Color online) (a) The quantum phase (classical ampli-
tude) noise of the laser field is observed with (without) the beat
signal. Inset is the power spectral density of the beat signal. (b)
Autocorrelation function of the beat signal vs time interval. In our
experiment, the sampling interval of 25 ns (40 MHz sampling rate)
is chosen.

be applied to obtain the autocorrelation function of the beat
signal [Ep. (0] as (E},.(t)Epea(t+A1)), where Af is the
sampled time interval of voltages for original random bit
generation. Using E,,,(5)=E(f)+E(r+7) and Eq. (1), it is
evident that when the sampling interval Az meets Ar> 7
+ 7,5, NO autocorrelation of the beat signal will be observed.
Thus, the bits extracted from the beat signal are mutually
independent and can be adopted to generate truly random
numbers.

As shown in Fig. 1, in experiment, a 795 nm VCSEL laser
works at 1.5 mA, a little above the threshold current 1.0 mA.
The laser linewidth Av,,,,=200 MHz (7,,,=1.59 ns) is in-
versely proportional to the laser power, while the classical
noises (e.g., occupation fluctuation and 1/f noise) are inde-
pendent of the laser power [19,20]. Therefore, the quantum
phase noise of laser dominates over its classical amplitude
noise to ensure the true randomness of generated numbers.
The delay time 7 is set to be about 10 ns (corresponds to 3.0
m space delay) in order to fulfill 7>7,,. So, the self-
homodyne method with delay time 7 is used to obtain the
beat signal with 3 dB linewidth of 400 MHz (detected by an
APD) and its power spectral density is shown in the inset of
Fig. 2(a). From Fig. 2(a), it can be seen that the classical
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FIG. 3. (Color online) A 200 ns trace of the APD-detected volt-
ages of the beat signal (small black dots) is recorded at 10 GHz,
while the random signal (big red dots) is sampled at 40 MHz rate
(25 ns interval). The final random bit is obtained from the least
significant bit (LSB, i.e., its parity) of a sequence of 8-bit binary
derivatives obtained by performing subtraction between two con-
secutive sampled voltages (shown in the bottom strip).

amplitude fluctuation is negligible compared to the quantum
phase fluctuation within 200 MHz (the gap between them is
about 20 dB). Using Wiener-Khintchine theorem [21,22],
i.e.,

TABLE I. Results of Diehard statistical test suite. Data sample
containing 100 Mbits is used for the Diehard test. For the cases of
multiple p values, a Kolmogorov-Smirnov (KS) test is used to ob-
tain a final P value, which measures the uniformity of the multiple
p values. The test is considered successful if all final P values
satisfy 0.01=P=0.99.

Statistical test P value Result
Birthday spacings 0.910531[KS] Success
Overlapping permutations 0.294899 Success
Ranks of 31X 31 matrices 0.322213 Success
Ranks of 32X 32 matrices 0.482575 Success
Ranks of 6 X 8 matrices 0.749427[KS] Success
Monkey tests on 20-bit words 0.019887[KS] Success
Monkey test OPSO 0.079864[KS] Success
Monkey test OQSO 0.725649[KS] Success
Monkey test DNA 0.293543[KS] Success
Count 1’s in stream of bytes 0.244463 Success
Count 1’s in specific bytes 0.062188[KS] Success
Parking lot test 0.806898[KS] Success
Minimum distance test 0.326209[KS] Success
Random spheres test 0.902946[KS] Success
Squeeze test 0.815876[KS] Success
Overlapping sums test 0.806025[KS] Success
Runs test (up) 0.817356 Success
Runs test (down) 0.805323 Success
Craps test No. of wins 0.502035 Success
Craps test throws/game 0.403322 Success
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TABLE II. Results of NIST statistical test suite. Using 1000
samples of 1 Mbits data and significance level a=0.01, for “Suc-
cess,” the P value (uniformity of p values) should be larger than
0.0001 and the proportion should be greater than 0.980 560 8 [25].
For the tests which produce multiple P values and proportions, the
worst case is shown. As advised by NIST, the fast Fourier transform
test is disregarded [26].

Statistical test P value Proportion Result
Frequency 0.679846 0.9916 Success
Block frequency 0.248571 0.9897 Success
Cumulative sums 0.858032 0.9888 Success
Runs 0.816029 0.9907 Success
Longest run 0.648795 0.9935 Success
Rank 0.609895 0.9860 Success
Nonperiodic 0.569334 0.9823 Success
Overlapping 0.565500 0.9916 Success
Universal 0.143336 0.9888 Success
Approximate 0.590520 0.9879 Success
Random excursions 0.016388 0.9880 Success
Random variant 0.029796 0.9865 Success
Serial 0.946683 0.9916 Success
Linear complexity 0.732979 0.9915 Success
4o
Rbeat(t) = f Pbeat(a))exp(_ i(l)t)d(x), (2)

the autocorrelation function [Ry,,(f)] of the beat signal is
obtained from the power spectral density of the phase noise
[Ppea(®) in Fig. 2(a)] and is illustrated in Fig. 2(b). It can be
seen from Fig. 2(b) that no correlation of the sampled volt-
ages is observed when the sampling interval is set to meet
At> 1+ 1,,;,. Accordingly, the sampling rate is chosen as 40
MHz in our experiment, i.e., Ar=25 ns, so the bits extracted
from these sampled voltages are mutually independent.
These sampled voltages are digitized by an 8-bit analog-
digital converter (ADC), which is shown as the red dots in
Fig. 3. We take the least-significant bit (LSB) of each
sampled 8-bit voltage as the original random bit, i.e., the
parity of this 8-bit binary number, which represents whether
the voltage falls in an even or odd bin of the total 256 bins.
Since the probabilities of “even” and “odd” bins of the total
256 bins are not perfectly equal, the bit sequence shows a
statistical bias & which is smaller than 102 for 1 Gbit ran-
dom bit sequence. To lower the bias, we perform a subtrac-
tion between two consecutive sampled voltages to obtain a
sequence of N/2 8-bit binary derivatives as V,-V,V,
-V3,...,Vy—Vy_1, where N is the total number of the origi-
nal sampled voltages. During this process, each voltage is
used only once, so no correlation is introduced and the sta-
tistical bias is lowered to the magnitude of &* (smaller than
107). After that, we adopt the LSB of the 8-bit binary de-
rivatives to generate the final random bits. Therefore, we
obtain the final random bit at generation rate of 20 Mbit/s
with a software-based processing. Note that, based on the
independence of original sampled voltages, this processing
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FIG. 4. (Color online) (a) The statistical bias (B) of the final
random bit sequence. It can be seen that B<1.5/ N always holds
and converges to zero for large bit sequence, where p(1) is the
probability of ones in sequence. (b) The absolute value of the first-
order correlation coefficient |a;| of the final random bit sequence. It
can be seen that |a;| <3/\N always holds and |a,| converges to zero
for large bit sequence.

enhances the performance of the random bits sequence by
lowering the statistical bias while not introducing any addi-
tional correlations.

We continuously record a final random bit sequence of 1
Gbit, which passes three standard randomness tests, i.e., a
pseudorandom number sequence test program (ENT) [23],
Diehard [24], and the National Institute of Standards and
Technology-Statistical Test Suite (NIST-STS) [25]. The ENT
results are entropy=1.000 000 bit per bit (the optimum com-
pression would reduce the bit file by 0%). x* distribution is
0.53 (randomly would exceed this value by 46.62% of the
times). Arithmetic mean value of data bits is 0.5000. Monte
Carlo value for 7 is 3.141 725 650. Serial correlation coef-
ficient is —0.000 017. The Diehard and NIST-STS test results
are shown in Tables I and II, respectively. Additionally, it
should be noted that, for a TRNG, both the statistical bias
and the absolute value of the first-order correlation coeffi-
cient of the final random bit sequence are expected to be
smaller than three standard deviations (30y=1.5/\N for sta-
tistical bias [Fig. 4(a)] and 30,=3/\N for correlation coef-
ficient [Fig. 4(b)]) with the probability of 99.7%. In our case,
both criteria are well satisfied for the continuously recorded
final random bit sequence up to 14 Gbit. Here, we comment
that, both for applications and tests for TRNG, the long-bit
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sequence with true randomness and desired length is rather
crucial in practice.

It should be noted that, for a nonuniform distribution of
the probability of 256 8-bit binary derivatives, if more than 1
bit are extracted from each 8-bit binary derivatives in order
to improve the random bit generation rate (see, e.g., five
LSBs are adopted in [13]), an additive correlation in the final
random bit sequence will be introduced, even though this
additive correlation is not so significant to fail the standard
randomness tests. Taking five LSBs for an instance, due to
the nonuniform distribution, every set of the five LSBs pos-
sesses a different probability and thus these five bits from the
same set are correlated with some extent. Nevertheless, with
this additive correlation within the same set, both the random
bit sequence of extracting five LSBs (at sampling rate of 2.5
GHz in [13]) and four LSBs (at sampling rate of 40 MHz in
our scheme) from an 8-bit binary number both successfully
pass the three standard randomness tests. This fact also indi-
cates that the standard randomness tests are only a way to
examine whether the random bit stream is “sufficiently” ran-
dom, but not to judge whether it is truly random.

We propose a simple approach to realize a high-speed
TRNG, which is compact and convenient for implementa-
tion. The true randomness of our TRNG is physically guar-
anteed by the intrinsically random nature of the quantum
phase noise originated from the spontaneous emission of
photons. Moreover, here, the true randomness is verified by
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both the statistical bias and the correlation coefficient for
long random bit sequence up to 14 Gbit. It is worth noting
that this long random bit sequence possesses significant val-
ues for applications (even more important than the speed)
because it is the length of the random bit sequence that is
required in most applications and, essentially, it is a metric
for qualifying the true randomness. Compared to the chaotic
laser, the true randomness of intrinsic phase noise of a free-
running laser is confirmed by two additional criteria, besides
three standard tests. Further, this true randomness only de-
pends on its inherently quantum-mechanical process and
does not need the external optical feedback (which intro-
duces a photon round trip period). Although the random bit
generation rate is not as high as the PRNG based on chaotic
laser(s) [12—-14], its physically guaranteed true randomness,
together with its simplicity and compactness, is attractive for
the applications which need true randomness. Moreover, a
much higher generation rate is attainable when both larger
laser linewidth and faster data-acquisition hardware are
applicable.
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