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We have investigated the critical behavior of a three-dimensional random-bond Ising model for a series of
the disorder strength by a finite-time scaling combining with Monte Carlo renormalization-group method in the
presence of a linearly varying temperature. The method enables us to estimate a lot of critical exponents of
both static and dynamic nature independently as well as the critical temperatures. The static exponents obtained
agree well with most existing results, verify both the hyperscaling and the Rushbrooke scaling laws and their
combined scaling law, which in turn validate their asymptotic nature, and corroborate the universality of the
relevant random fixed point with respect to the forms of disorder. The dynamic critical exponent z is estimated
to 2.114�51�, which is compatible with those obtained from experiments and renormalization-group analyses.
The exponents at low and high disorder strengths do not satisfy all scaling laws and are argued to be crossover
exponents that reflect crossover from the random fixed point to the pure and the percolation fixed point. They
also indicate that the exponents that were previously suggested to be a distinct universality class for strong
disorder strength in the literature may be just crossover. Our results demonstrate the effectiveness of the
finite-time scaling method.
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I. INTRODUCTION

Any real materials will inevitably contain impurities,
whose effects on phase transitions are thus of great impor-
tance. For a pure system exhibiting a second-order or con-
tinuous phase transition, the effects of disorder are well
known from the Harris criterion �1,2�, namely, uncorrelated
quenched randomness coupled to local energy density is ir-
relevant and the universality class of the pure system persists
when its specific-heat critical exponent ��0, while such
randomness will lead to a new universality class controlled
by a new random fixed point when ��0. The Ising model is
a paradigmatic model to test the prediction. In two-
dimensional �2D�, its �=0, which is the marginal case and
has attracted great interest in the past years �3�. In three-
dimensional �3D�, its �=0.1103�1��0 �4�. Accordingly, dis-
order is relevant and a random fixed point characterized by
new critical exponents is expected. Recent experiments have
showed that the critical exponents of the site-diluted Ising
model are different from the corresponding pure version and
are independent on impurity concentrations for sufficiently
low ones �5,6�. The field-theoretic studies on the 3D Ising
model in the present of weakly diluted quenched disorder
have reached a level of up to six loops in the
renormalization-group �RG� analysis and have also con-
firmed the random fixed point �5,7�. Also, high-temperature
series expansions of the susceptibility provided evidence for
the random fixed point by existence of a plateau in the varia-
tion in the critical exponent � with bond-diluted concentra-
tions �8�. Numerical investigations of the 3D disordered

Ising model have also found different critical exponents.
However, usual methods always obtain apparent exponents
that depend on the strength of disorder in contradiction to the
expectation of a single random fixed point �5�. These expo-
nents may be only effective that contain effects from correc-
tions to scaling and/or may reflect crossover arising from the
competition of the random fixed point with the pure and also
the percolation fixed point. These complexity and also pos-
sible lack of self-averaging �9� make it difficult to correctly
identify the asymptotic critical exponents at the random fixed
point. Dilution-independent numerical results were first
achieved by taking into account corrections to scaling and a
subsequent proper infinite volume extrapolation in a 3D site-
diluted Ising model �10�, a later study found it difficult, how-
ever, to extract the correction-to-scaling exponent in a bond-
diluted Ising model �11�. To avoid the difficulties,
temperature scalings of the susceptibility and magnetization
were invoked to obtain concentration-independent critical
exponents �11�. Another solution is to select a particular spin
concentration �10,12–14� which was estimated to suppress
corrections to scaling or crossover effects �15–17�.

So far, the static critical exponents obtained from
RG analysis, �7� Monte Carlo �MC� simulations
�10,11,16,18,19�, and experiments �6� agree in general quite
well. However, �=1.306 from a nonperturbative approach
�20� and �=1.305�5� from a high-temperature series expan-
sion �8� are slightly smaller than �=1.400�30� �6�, �
=1.330�17� �7�, �=1.342�10� �10�, �=1.341�4� �16�, �
=1.342�7� �18�, and also �=1.34�1� of the bond-diluted Ising
model �11�. Also, there is a small difference between the
experimental �=−0.10�2� �6� and other results of �
=−0.034�30� �7�, �=−0.051�9� �10�, and �=−0.049�6� �16�.
So is the leading correction-to-scaling exponent �14�. Be-*Corresponding author; stszf@mail.sysu.edu.cn
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sides, a recent investigation suggested that there are two uni-
versality classes corresponding to strong and weak dilutions
�18,21�. Thus, further investigations are still needed.

In addition, there exists an issue concerning with the va-
lidity of the scaling laws �2�. Up to now, most investigations
including the RG analyses �7,22� produced results of �, �,
and/or �. Other exponents were derived from the scaling
laws. However, in some cases, the random-field Ising model
for instance, at least one of them is indeed broken �23�. Al-
though in the present case, no evidence indicates that they
would be broken, their direct numerical verifications are rare.
On the other hand, owing to the difficulty in determining
asymptotic critical exponents as mentioned above and the
fact that the perturbative series of RG functions are not Borel
summable �24�, whether or not the obtained exponents are
asymptotic is a serious question. A method to check is thus to
test them with the scaling laws if they are valid because
asymptotic critical exponents should then satisfy them al-
though the reverse is not necessarily true. In fact, validity of
the scaling laws, �=��2−�� in the six-loop RG analysis �7�,
for instances, has been invoked to reckon the correctness of
the obtained exponents. On the other hand, in the bond-
diluted Ising model, the scaling law 2� /�+� /�=d �d the
space dimensions� was found to be satisfied by effective ex-
ponents of several different dilutions �11�. Therefore, it is
desirable to test the scaling laws to check both the validity of
the laws themselves and the problem of the asymptotic na-
ture of the exponents obtained.

Dynamics of the disordered Ising model has also been
extensively studied. However, the dynamical critical expo-
nent z obtained shows less agreement. Early perturbative RG
results yielded z�2.336 �25� and z�2.11 �26�. Subsequent
RG analysis with resummation techniques of two- to three-
loop dynamical functions gave z=2.237 �27�, z=2.180 �28�,
z=2.191 �29�, z=2.165 �30�, z=2.172 �31�, and z
=2.1792�4� �32�, all of which appear to agree with z
=2.18�10� of experimental measurements on both
Fe0.9Zn0.1F2 �33� and Fe0.93Zn0.07F2 �34�. Numerical simula-
tions again produced results that were disorder dependent
�35–39�. Then, within a small disorder range, z�p=0.95�
=2.19�7� and z�p=0.8�=2.20�8� varied little and were sug-
gested to be asymptotic �35�, a value which appeared to
agree with the RG results, where p is the spin concentration.
On the other hand, suppressing effects of crossover �36� or
corrections to scaling �37,38� with a particular spin concen-
tration yielded z=2.4�1� for p�0.8 �36�, z=2.62�7� for p
=0.63 �37�, z=2.6�1� for p=0.8 �38�, and z=2.35�2� for p
=0.8 �39�. Whereas the middle two �37,38� of nonequilib-
rium results were quite close though the concentration that
suppressed corrections differed and the correction-to-scaling
exponent was not quite consistent and was not compatible
with the static one �10� as predicted by field theories �28�,
the latter �39� confirmed this and the universality against
equilibrium and nonequilibrium results. It also agrees with
z=2.36�9� found in the high-temperature paramagnetic phase
�14�. However, a recent investigation by short-time critical
dynamic method obtained close results between p=0.95 and
p=0.8 with an average z=2.196�17� after taking corrections
to scaling into account �19�, in agreement with another pre-
vious MC result of z=2.2�1� for p=0.85 again in an attempt

to minimize corrections to scaling �13�. Note that we have
only considered local dynamics arising from the single-spin
Metropolis algorithm �40� that is believed to fall in the iden-
tical universality class with those observed experimentally
and studied analytically by field theory. Cluster algorithms
such as the Swendsen-Wang �41� and the Wolff algorithm
�42� exhibit entirely distinct dynamic behavior �11,13,43�
due to their nonlocality and will not be considered hereafter.

Yet another issue that is less studied is the question of
universality of a random fixed point with respect to the forms
of disorder �11,16,17,39�. The site-diluted, the bond-diluted,
and the 	J Ising model are the three usual studied disor-
dered Ising models. They have been suggested to belong to a
single universality class as their fixed-point Hamiltonian was
found to be coincident in a numerical RG study �17�. The
first two models have also been estimated to share the same
static critical exponents by MC simulations �11,16�. Also the
dynamical critical exponent z of the three models has been
found to be identical �39�. An extension of the bond-diluted
model is a random-bond Ising model �RBIM� in which the
coupling J can select randomly from two values. If one of
the two values is zero, it reduces to the former model. In 2D,
the RBIM has been studied and suggested to show weak
universality in which exponent ratios such as � /� keep con-
stant though individual exponents vary with disorder
strengths �44�. Here, we shall study the model to investigate
the universality.

In order to study these issues, we shall apply in this paper
a finite-time scaling �45� combining with an extensive Monte
Carlo renormalization group �MCRG� approach in the pres-
ence of a linearly varying temperature �46,47� to study the
critical behavior of the 3D RBIM. The linearly varying tem-
perature drives the system out of equilibrium in such a way
that there is a finite-time scale proportional to the inverse of
the temperature sweep rate that can probe effectively the
slow dynamics induced by the randomness although the
usual Metropolis algorithm �40� is utilized. The critical ex-
ponents �, z, �, �, and � for various disorder amplitudes so
estimated independently and confirmed by scaling plots of
data collapses enable us to check the validity of the hyper-
scaling law, the Rushbrooke scaling law, and their combined
scaling law. These enable us in turn to identify the
asymptotic critical behavior controlled by the relevant ran-
dom fixed point and also possible crossover effects from the
fixed point to the tricritical and also to the possible percola-
tion fixed point. The static exponents obtained agree well
with most existing results, verify the three scaling laws,
which in turn validate their asymptotic nature, and corrobo-
rate the universality of the random fixed point. The dynamic
critical exponent is estimated to 2.114�51�, which is compat-
ible within the statistical errors with those obtained from
experiments and RG analysis but not supports recent results
of bigger values. Crossover exponents are also indicated at
low and high disorder strengths that do not satisfy all scaling
laws. The exponents at the high disorder strength appear
close to those that were suggested to belong to a new class,
indicating that the latter may probably just be crossover too.

The structure of the rest is the following. Section II pre-
sents the model and the method used, and Sec. III estimates
the critical temperature and the critical exponents for various
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disorder amplitudes. Analysis and discussions of the results
are given in Sec. IV, with conclusions summarized in Sec. V.

II. MODEL AND METHOD

A. Model

The Hamiltonian of the RBIM is

H = − �
�i,j�

JijSiSj , �1�

where the classical spin Si= 	1 and �i , j� denotes the sum
over nearest-neighbor spin pairs on a cubic lattice. The inter-
action strength Jij can select from two positive values, J1 and
J2, with probability p and 1− p. The disorder amplitude is
defined as r0=J2 /J1. The pure system corresponds to r0=1
and the usual bond-diluted model to r0=0. Here we only
consider the case in which p=0.5. The physical observables
considered are the order parameter, the specific heat per site,
the magnetic susceptibility, and the nearest-neighbor correla-
tion function, which are defined, respectively, as

M =
1

N
�

i

Si, �2�

C =
Ld

T2 ��E2� − �E�2� , �3�


 =
Ld

T
��M2� − �M�2� , �4�

Gnn =	 1

dN
�
�i,j�

SiSj
 − �M�2, �5�

where N is the total number of spins, L is the lattice size
used, T is the temperature, E is the energy per site, and the
angle brackets denote averages.

B. Finite-time scaling

Finite-size scaling is an effective method to extract criti-
cal exponents �2�. The idea of finite-time scaling has been
used in simulated annealing �48� and forced oscillation �49�.
Recently, it is realized that the inverse rate of the sweeping
external field represents a controllable effective finite-time
scale that is the temporal analog of the length scale in finite-
size scaling and that affects the scaling of the system. A RG
theory of finite-time scaling is thus systematically proposed
�45�. Here, we shall apply the finite-time scaling in the case
of a linearly varying temperature to estimate critical expo-
nents.

According to the theory of finite-time scaling �45�, the
order parameter, for instance, transforms under a length res-
caling of factor b as

M�T,R� = b−�/�M��b1/�,Rbr� �6�

or the reduced temperature �=T−Tc, the sweep rate of the
temperature R, and the time t transform as

R� = Rbr,

�� = �b1/�,

�t − tc�� = �t − tc�b−z, �7�

where Tc is the critical temperature, r is a rate exponent,
and tc is the time at which T=Tc. For the linear sweep,
�=R�t− tc�, one finds a scaling law from Eq. �7� �45,50,51�

r = z + 1/� , �8�

which may be regarded as a definition of r.
Finite-time scaling forms of the order parameter can

therefore be found from Eq. �6�,

M�T,R� = R�/r�f1��R−1/r�� . �9�

Similarly, the nonequilibrium susceptibility and the specific
heat obey, respectively,


�T,R� = R−�/r�f2��R−1/r�� , �10�

C�T,R� = C0 + R−�/r�f3��R−1/r�� for � � 0, �11�

C�T,R� = R−�/r�f4��R−1/r�� for � � 0, �12�

where all fs are scaling functions and C0 is a constant. Equa-
tion �12� describes the case in which the specific heat di-
verges at criticality and thus possessing a positive �, while
Eq. �11� describes the case in which the specific heat exhibits
a finite cusp at the critical point and thus possessing a nega-
tive �. These scaling forms themselves allow us to find the
critical exponents by optimal data collapsing and thus check
the validity of scaling similar to the method of finite-size
scaling.

Nevertheless, to facilitate the estimate of the exponents,
one notes that at T=Tc at which �=0, all fs are regular. As a
consequence, one obtains from Eqs. �10�–�12�

M�Tc,R� � R�/r�, �13�


�Tc,R� � R−�/r�, �14�

C�Tc,R� = C0 + C1R−�/r� for � � 0, �15�

C�Tc,R� � R−�/r� for � � 0, �16�

where C1 is a constant. Fitting directly to Eqs. �13�–�16� can
then give rise to the exponents.

C. Extended dynamic MCRG method

A direct realization of Eq. �6� is to use the method of
extended dynamic MCRG �50–52�, which is an extension of
previous real-space MCRG methods �53�. The method has
been detailed previously �50–52�. Here we give a brief de-
scription to collect relevant formulas. For a temperature
sweep with a rate R, we perform a conventional block-spin
transformation on the configuration at each time t �measured
by MC steps per spin� corresponding to a temperature T by
means of a majority rule with a length rescaling factor b=2.
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Ties are broken by a random selection from the two states.
This RG transformation brings the system to a new state
characterized by R�, T�, and t�, which relate to their corre-
sponding unblocked ones by Eq. �7� if scaling exists. In or-
der to find these blocked variables, we resort to the peak of
the correlation function Gnn of a system of size Lb and as-
sume that it matches exactly after one blocking that of an-
other smaller system of size L without blocked �so that the
two systems whose Gnn is compared have the same size and
thus size effects are reduced�, viz.

Gnn,Lb�Tp�,R�� = Gnn,L�Tps,Rs� , �17�

where Tp represents the dynamic transition temperature cor-
responding to the temperature at the peak of Gnn, and the
subscript s indicates quantities on the small lattice. In other
words, we identify the primed variables with their counter-
parts on the small lattice. Accordingly,

r =
log�Rs/R�

log b
,

� =
log b

log��Tps − Tc�/�Tp − Tc��
. �18�

Iterating this blocking procedure produces a series of expo-
nents which should be invariant after a couple of blockings
that iterate away the irrelevant variables if there is a fixed
point controlling the scaling behavior because the correlation
functions will then track each other.

Moreover, combining the first two equations of Eq. �7� at
Tp, one finds an invariant constant

a � 
 �p

R1/r���
=

�p

R1/r� � 
 �pR−1

teq
�1/r�

, �19�

under rescaling, where teq��p
−vz is the correlation time at Tp,

�pR−1 is the external time scale, and use has been made of
Eq. �8� in deriving the last step, which reflects the similarity
with finite-size scaling in which the ratio of the correlation
length of a system of linear size L at Tc, �L�Tc� to L, �L�Tc� /L
is scale invariant �54�. Therefore,

Tp = Tc + aR1/r�, �20�

which offers a method to estimate Tc �50,52� and a consistent
check of the obtained exponents. Equation �20� is reasonable
because at R=0 or equilibrium the correlation function ought
to exhibit a peak at Tc. At a finite-time scale R−1, there is an
overshoot or hysteresis embodied in Tp due to the driving out
of equilibrium.

We shall first determine Tc and then apply the extended
dynamic MCRG method to determine �, z, and r, on the
basis of which, other exponents are estimated from the finite-
time scaling.

III. NUMERICAL RESULTS

In order to study the influence of disorder from the ran-
dom bonds we choose r0=2, 4, 5, and 10. The pair of lattice
sizes used is 128 and 64. Periodic boundary conditions are

applied throughout. The sweep rate of the small lattice
ranges from 3
10−5 to 1
10−2 and that of the large lattice
from 3
10−5 to 3
10−4 for r0=2, 4, and 5, while that for
r0=10 from 5
10−5 to 5
10−4 because of stronger fluctua-
tions that demand more samples. For a given r0 and R, we
choose an initial temperature so far away from the transition
temperature that it has been checked to have no effect on the
results. Then, with one sample of a given realization of the
disorder, we run a MC simulation from the initial tempera-
ture and a completely ordered state with all spins Si=1. After
one MC step consisting of a sequential sampling of all the
spins in the lattice with the usual Metropolis algorithm �40�,
the temperature T is increased by the rate R. The system then
evolves with time and transforms finally to a disordered
state. The number of samples for average varies from 300 to
20 000 depending on lattice size and sweep rate used.

A. Critical temperature Tc

Fitting of Tp vs R to Eq. �20� yields the critical tempera-
ture. We use the data on the small lattice since more samples
are available. No finite-size effects, however, have been
found owing to the finite R−1 and �. Table I collects the
fitting results for all r0, where standard deviations from the
fitting are shown in the parentheses. The obtained Tc shows
almost a linear dependence on r0 as can be seen from Fig. 1.
Indeed, the fit gives Tc�r0=1�=4.67�5�, which is close to
T0=4.511 528�6�, the transition temperature of the pure sys-
tem �55�. This linear dependence appears to be similar to the
bond-diluted Ising model for not very large dilutions �11�.
However, there is a significant difference here. Whereas in
the bond-diluted case, there is a percolation dilution pc at

TABLE I. Estimated and fitted critical temperature and other
fitted parameters with various r0.

r0 2 4 5 10

Tc� 6.701 10.914 12.990 23.272

Tc 6.720�9� 10.964�10� 13.057�7� 23.439�15�
1 /r� 0.431�13� 0.409�11� 0.401�10� 0.386�10�
a 2.9�5� 3.3�3� 3.6�2� 5.6�2�

FIG. 1. �Color online� Dependence of the fitted �squares� and
estimated �circles� critical temperatures on r0. The errors arising
from the fits are much smaller than the size of the symbols. The
arrow marks the intercept at r0=0 of the linear fit to Tc.
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which Tc=0, which deviates Tc from the linear dependence
�11�, here Tc is always finite even for r0→� because p
=0.5 is larger than the percolation threshold of pc
�0.248 812 6�5� of the 3D simple cubic lattice �56�.

These fitted Tc can be well reproduced by an effective-
interaction approximation �57�. In the single-bond approxi-
mation, the transition temperature Tc� for p=0.5 is given by
�57�

1

e2/Tc�−2/T0 − 1
+

1

e2r0/Tc�−2/T0 − 1
+

2pc

1 − e−2/T0
= 0. �21�

The resultant Tc� are also listed in Table I and plotted in Fig.
1. It can be seen that they agree with our numerical results
quite well although deviations increase slightly with disorder
as fluctuations are stronger. For r0→�, Tc�=2.04, indeed dif-
ferent from 0. In fact, as p=0.5, r0=� is equivalent to r0
=0, and hence to the bond-diluted case with a dilution of the
same p, which has a Tc�2.07 �11� in good agreement with
ours. In addition, this Tc� is also not far away from the inter-

cept Tc�r0=0�=2.588�46� of the linear fit in Fig. 1.

B. Exponents estimated by the dynamic MCRG

Applying the MCRG method with the obtained Tc then
produces a series of exponents r, �, 1 /r�, and z for each R of
the large lattice as shown in Table II, where m is the number
of iterations. One can see that they exhibit no systematic
finite-time effects, i. e., no systematic dependence on R, and
indeed tend to almost constant values after the second itera-
tion, suggesting that irrelevant variables have been iterated
away. However, results of the fifth iteration fluctuate a lot
because of the small lattice size there. Accordingly, we aver-
age over those of the third and fourth iteration with the re-
sults shown in Table III, where in the parentheses are given
standard deviations from the averages only. Errors arising
from the RG have not been taken into account. One finds
1 /r� indeed agrees well with that from fitting in Table I,
showing its reliability and the consistency of our results. The
dependence of r, �, z, and 1 /r� on r0 are depicted in Fig. 2.

TABLE II. The exponents obtained by successive MCRG for various r0.

r0 R

m=1 m=2 m=3 m=4

r � 1 /r� z r � 1 /r� z r � 1 /r� z r � 1 /r� z

2 3
10−5 6.071 0.347 0.475 3.187 4.495 0.503 0.442 2.508 3.694 0.627 0.432 2.098 3.642 0.644 0.427 2.088

5
10−5 6.203 0.341 0.473 3.269 4.498 0.504 0.441 2.513 3.588 0.665 0.419 2.084 3.664 0.622 0.439 2.055

7
10−5 6.053 0.348 0.475 3.177 4.532 0.491 0.449 2.497 3.494 0.670 0.427 2.002 3.576 0.642 0.436 2.017

1
10−4 5.944 0.367 0.459 3.217 4.590 0.492 0.443 2.556 3.582 0.653 0.428 2.051 3.641 0.647 0.424 2.096

3
10−4 6.110 0.351 0.467 3.257 4.480 0.505 0.442 2.498 3.551 0.668 0.422 2.053 3.555 0.669 0.420 2.061

4 3
10−5 6.474 0.379 0.408 3.833 4.329 0.547 0.422 2.501 3.521 0.690 0.412 2.072 3.364 0.674 0.412 2.119

5
10−5 6.385 0.387 0.405 3.799 4.325 0.556 0.416 2.526 3.640 0.669 0.411 2.144 3.604 0.710 0.403 2.085

7
10−5 6.221 0.389 0.413 3.651 4.305 0.558 0.416 2.512 3.518 0.697 0.409 2.083 3.633 0.678 0.406 2.159

1
10−4 6.103 0.398 0.412 3.588 4.287 0.562 0.415 2.509 3.582 0.654 0.427 2.052 3.563 0.683 0.411 2.098

3
10−4 6.805 0.398 0.413 3.571 4.240 0.564 0.418 2.467 3.641 0.667 0.412 2.141 3.552 0.703 0.401 2.129

5 3
10−5 6.434 0.423 0.367 4.072 4.371 0.603 0.380 2.711 3.597 0.703 0.396 2.174 3.594 0.683 0.408 2.129

5
10−5 6.479 0.440 0.362 4.005 4.337 0.606 0.381 2.685 3.512 0.697 0.408 2.077 3.625 0.668 0.413 2.128

7
10−5 6.326 0.436 0.363 4.033 4.267 0.613 0.382 2.635 3.547 0.679 0.415 2.074 3.512 0.713 0.400 2.109

1
10−4 6.263 0.426 0.375 3.914 4.266 0.615 0.381 2.641 3.490 0.704 0.407 2.070 3.649 0.665 0.412 2.145

3
10−4 6.254 0.433 0.370 3.943 4.315 0.602 0.385 2.653 3.610 0.672 0.412 2.123 3.576 0.707 0.395 2.162

10 5
10−5 6.581 0.427 0.356 4.237 4.379 0.669 0.341 2.886 3.541 0.746 0.379 2.201 3.403 0.795 0.370 2.145

7
10−5 6.599 0.420 0.361 4.220 4.336 0.658 0.351 2.816 3.561 0.745 0.377 2.218 3.472 0.770 0.374 2.173

1
10−4 6.407 0.415 0.376 3.996 4.348 0.616 0.374 2.724 3.430 0.774 0.376 2.139 3.440 0.784 0.371 2.165

3
10−4 5.877 0.441 0.386 3.607 4.243 0.615 0.383 2.618 3.543 0.762 0.371 2.229 3.495 0.739 0.387 2.143

5
10−4 5.735 0.443 0.394 3.478 4.212 0.605 0.392 2.560 3.457 0.756 0.383 2.135 3.486 0.779 0.368 2.203

TABLE III. The critical exponents for various disorder amplitudes r0.

r0 r � 1 /r� z � � � � /� � /�

2 3.60�6� 0.651�18� 0.427�7� 2.061�32� 0.374�6� −0.035�16� 1.389�18� 0.575�18� 2.13�7�
4 3.57�5� 0.682�18� 0.410�7� 2.108�35� 0.349�6� −0.046�17� 1.330�22� 0.512�16� 1.95�7�
5 3.57�5� 0.689�18� 0.407�7� 2.119�37� 0.343�6� −0.052�17� 1.333�22� 0.498�16� 1.93�7�

10 3.48�5� 0.765�19� 0.376�6� 2.175�35� 0.354�6� −0.130�29� 1.420�32� 0.463�17� 1.86�5�
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C. Exponents estimated by finite-time scaling

We have applied the finite-time scaling forms Eqs. �9�,
�10�, and �12� to obtain �, �, and �, respectively, in the 3D
random-bond Potts model by searching the exponents that
give optimal data collapses �47�. Here, we shall use directly
Eqs. �13�–�15� instead. To this end, we find the values of M,

, and C at T=Tc for various R from 1
10−4 to 1
10−2 and
every r0 and fitting them according to Eqs. �13�–�15�, respec-
tively, as shown in Fig. 3. To check the resultant exponent
ratios, we insert them along with Tc and 1 /r� estimated
above in Eqs. �9�–�11� and show the resulting scaling in Fig.
4. One sees that the curves collapse remarkably, confirming
the exponents. We found that if we chose Eq. �16� to fit
C�Tc ,R�, we would obtain indeed a positive �, but then the
data collapse according to Eq. �12� would be bad. This is just
opposite to the case found in the 3D random-bond Potts
model in which ��0 �47�.

From the exponent ratios, �, �, and � can then be ob-
tained. Their errors are estimated by error propagation. All
results are shown also in Table III and Fig. 2.

IV. ANALYSIS AND DISCUSSION

As finite-size effects have been found to be important to
the critical behavior in disordered systems, we first check the

possible size effects of our results. We apply the dynamic
MCRG method again to a smaller lattice pair of size 64 and
32 with r0=4 as an instance. More samples �e.g., 3000
samples for R=0.0001� are used because of the strong fluc-
tuations on small lattice sizes. The critical temperature and
the hysteresis exponent obtained from fitting data on lattice
sizes of L=32 are Tc=10.969�10� and 1 /r�=0.415�16�, re-
spectively, which agree well with previous results from L
=64 in Table I. Estimates of the exponents for successive
blockings are listed in Table IV. The averaged critical expo-
nents over those from m=3 and m=4 in Table IV are com-
pared with the results from the larger lattices in Table V,
confirming that finite-size effects can be neglected for the
two-lattice RG methods as expected.

Qualitatively, our � increases with r0, consistent with the
results of the 3D bond-diluted Ising model �11� and also
those found on the 3D four-state bond-diluted Potts models
�58,60� and the 3D three-state random-bond Potts model
�47�. Our � shows a plateau near r0=4–5 and increases
when r0=10, similar to that found in the high-temperature
series expansion �8,59�. Our � /� and � /� decrease with r0,
similar to those found in the 3D bond-diluted Ising model
�11� but different from the 2D RBIM that appeared to show
weak universality �44�. While the former is consistent with
results found from the disordered Potts models �47,58�, the
latter is different from those on the Potts models in which it
was found to be nonmonotonic �47,58,60�. In fact, this dif-
ference arises from the distinct variation in � with r0.
Whereas � there increases with r0 �47� in agreement with
results on the 3D site-diluted Ising model �11,21,61�, here it
shows a nonmonotonic variation, which agrees with that
found in �62� by Heuer. Yet, the same author also found
another variation trend of � in �15�. In spite of these differ-
ences that probably arise from crossover, we shall find later
on that the asymptotic behavior appear right. In addition, in
agreement with other studies �36,47,63�, the increase in z
with r0 indicates reasonably slower critical relaxation, which
implies in turn more severe hysteresis and hence a decreas-
ing of 1 /r�. Also, our � satisfies the bound ��2 /d �64�
except that at r0=2 which lies at the verge and ��0 in the
whole range of disorder strength in sharp contrast to the 3D
random-bond Potts model �47�.

In the extended MCRG method, we just recorded the re-
sultant exponents in each blocking without monitoring the
behavior of operators other than � and R. However, as can be

FIG. 2. �Color online� Variations in critical exponents with the
disorder amplitudes r0 for the 3D RBIM.

FIG. 3. �Color online� Dependence on R of �a� the order parameter M, �b� the specific heat C, and �c� the susceptibility 
 at Tc. Lines are
fits according to Eqs. �13�–�15�. For clarity, the curves have been shifted vertically by 0.05, 0.03, 0, −0.01 in �a�, −0.1, 0, 0.1, 0.3 in �b�, and
5, 3, 0, −3 in �c� for r0=2, 4, 5, and 10, respectively. Note that the error bars in �b� represent only the width of the C curves. The widths of
the M and 
 curves are tiny and thus are not shown.
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seen from Table II, the exponents obtained level off within
statistical fluctuations in the third and fourth blockings. This
indicates that all those irrelevant couplings should have been
iterated away to those numbers of iterations. More impor-
tantly, as pointed out, the resultant 1 /r� agrees well with that

obtained directly from fitting the peak temperatures Tp. We
have checked that if we chose a Tc with an appreciable de-
viation and inserted it into the MCRG method, the resultant
1 /r� would not agree with that fitted from that Tc and would
exhibit clear finite-time effects or would not level off. Ac-

FIG. 4. �Color online� Finite-time scaling forms of the order parameter M, the specific heat C, and the susceptibility 
 for r0=2 �a1, b1,
c1�, 4 �a2, b2, c2�, 5 �a3, b3, c3�, and 10 �a4, b4, c4�, respectively. Insets show the original curves. All curves are from the small lattice. The
sweep rates are 0.0001, 0.0005, 0.001, 0.005, and 0.01 from left to right.

TABLE IV. Exponents obtained from dynamic MCRG for the disorder amplitude r0=4 and a lattice pair of 64 and 32.

R

m=1 m=2 m=3 m=4

r � 1 /r� z r � 1 /r� z r � 1 /r� z r � 1 /r� z

3
10−5 6.674 0.379 0.395 4.035 4.364 0.568 0.404 2.603 3.620 0.691 0.400 2.173 3.440 0.705 0.413 2.021

5
10−5 6.486 0.387 0.398 3.902 4.355 0.557 0.413 2.558 3.440 0.669 0.434 1.946 3.534 0.691 0.410 2.087

7
10−5 6.221 0.389 0.413 3.652 4.205 0.558 0.426 2.414 3.497 0.708 0.404 2.085 3.571 0.689 0.406 2.120

1
10−4 6.103 0.398 0.412 3.590 4.256 0.573 0.410 2.510 3.613 0.695 0.399 2.174 3.461 0.653 0.442 1.930

3
10−4 5.823 0.408 0.421 3.372 4.240 0.565 0.418 2.468 3.574 0.657 0.426 2.051 3.633 0.683 0.403 2.170
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cordingly, the consistency of Tc and 1 /r� between the two
methods should provide a strong evidence for their reliabil-
ity.

Figures 3 and 4 show that Eqs. �9�–�11� describe our nu-
merical results quite well. This implies that corrections to
scaling that have been found to be important �10,16� are not
significant here. Assume that the leading irrelevant variable
is Y and its corresponding exponent ��0, Eq. �6� is modi-
fied to

M�T,R,Y� = b−�/�M��b1/�,Rbr,Yb−�� . �22�

Accordingly, Eq. �9� becomes

M�T,R,Y� = R�/r�f5��R−1/r�,YR�/r� , �23�

where f5 is anther scaling function. So, even at �=0,

M�Tc,R,Y� = R�/r�f6�YR�/r� . �24�

It is the scaling function f6 that induces the leading correc-
tions to scaling �65�. Exactly at the critical point, R=0 and
the corrections disappear, while near it, one can expand f6�x�
at x=0 as a series of YR�/r to find � /r. If these terms were
important, M�Tc ,R� would not be a pure power law as shown
in Fig. 3 and all the curves shown in the inset in Fig. 4 within
a remarkable two orders of magnitude could not collapse. So,
why do these corrections appear absent?

A possible reason is the following. The corrections are
YL−� in finite-size scaling and Yt−�/z in short-time critical
dynamics �19�. We note that generally, the corrections have
bigger magnitudes in finite-time scaling. Because, for
�Y�R�/r� �Y�L−�, R must smaller than L−r, which, for L
=100 and r=4, is 10−8, a figure which is out of our present
reach. The reason that the corrections are not significant lies
possibly in the smallness of � /r in comparison to � and � /z
because r is large from Eq. �8�, usually about 4. As result,
YR�/r varies little and can be taken as a constant and hence
ignored within a practical range of R in comparison to the
other two cases. For example, for the corrections to be half,
L needs only to increase to 21/��10 times that are usually
available but R must decrease to r powers of that number
that is about 104 for �=0.3 �7,16� and r=4. Although the
first arguments in Eq. �23� and its counterparts also change
identical amounts by these same ranges if � does not change,
the latter in fact varies with scales and thus they cannot be
simply compared. These then indicate that the importance of
the corrections to scaling increases from finite-time scaling
to short-time critical dynamics to finite-size scaling. For the
present case, � /r�0.1 is small. As a result, to precisely
estimate it and other critical exponents, one may need a wide

range of R. However, one sees that our results acquire com-
parable precisions with other usual methods even though we
have not taken corrections into account.

In order to reveal the nature of the exponents, we now test
the hyperscaling law �+d�=2, the Rushbrooke scaling law
�+2�+�=2, and their combined scaling law 2� /�+� /�
=d �2� in Table VI. One finds that all the three laws are
satisfied for r0=4 and 5. As finite-size effects and corrections
to scaling have been shown to be absent or unimportant, this
leads us to believe that the exponents within r0=4 and 5 are
asymptotic ones. Moreover, there exists another evidence for
the asymptotic nature of the exponents in the middle region.
Taking into account the error bars, one notices that all expo-
nents shown in Fig. 2 exhibit plateaux at least for 4�r0
�5 similar to the case of series expansions �8,59�. In fact,
similar reasoning of whether a scaling law is satisfied �7,58�
or there is a plateau in the variation with disorder strength
�8,59� has been invoked to identify asymptotic critical expo-
nents. Therefore, we conclude that those exponents at least
within 4�r0�5 are the asymptotic critical ones controlled
by the random fixed point. Averaging over them, we obtain
our final estimates of the critical exponents for the fixed
point as

� = 0.686�25�, � = 0.346�8�, � = − 0.049�24� ,

� = 1.332�31�, z = 2.114�51�, r = 3.57�7� ,

1/r� = 0.409�10�, �/� = 0.505�23�, �/� = 1.94�10� .

�25�

One sees that our � and � agree well with previous results
�6,7,10–12,19,20,22�. So does � that appears not to support
that of the nonperturbative RG �20� and series expansions
�59� albeit not far away when taking the error into account.
Our � also support the RG �7� and MC results
�7,10–12,16,18,19� but not the experimental one �6�. Our z
closes to recent RG �26–32�, MC �13,19�, as well as experi-
mental results �33,34�, but not support the larger values of
z�2.6 �37,38� and z�2.35 �14,39�. Reversely, the agree-
ment of our results with others implies that the three scaling
laws tested are indeed satisfied in the 3D disordered Ising
model.

For the exponents at the two ends, one sees from Table VI
that some scaling laws are satisfied or nearly satisfied but not
all are satisfied. In particular, the third law is violated in both
cases. This is at odd with the random-bond Potts model in
which exponents at the two ends all satisfy the third law but
not the other two laws �47�. Also, effective exponents of the
bond-diluted Ising model were also found to satisfied the

TABLE V. Exponents obtained from different lattice sizes for
the 3D RBIM with r0=4.

Lattice size r � 1 /r� z

128–64 3.57�5� 0.682�17� 0.410�7� 2.108�35�
64–32 3.53�7� 0.684�15� 0.414�15� 2.08�9�

TABLE VI. The values of �+d�, �+2�+�, and 2� /�+� /� of
the 3D random-bond Ising model for various disorder amplitudes.

r0 Exact value 2 4 5 10

�+d� 2 1.92�6� 2.00�6� 2.01�6� 2.17�6�
�+2�+� 2 2.10�3� 1.98�3� 1.97�3� 2.00�5�
2� /�+� /� 3 3.28�10� 2.97�9� 2.93�8� 2.79�8�
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third law �11�. This may stem from the different proximity to
the fixed point �28�. As corrections to scaling are not impor-
tant especially for r0=2 as seen in Fig. 3, the exponents that
dissatisfied the scaling laws cannot be asymptotic except un-
likely the scaling laws are themselves violated. Accordingly,
the most likely scenario is that the exponents in r0�4 and
r0�5 are, similar to the Potts model �47�, crossover ones
that reflect the crossover from the pure fixed point to the
random fixed point and the latter to the percolation fixed
point in the system, respectively. In addition, although
whether or not crossover exponents should satisfy scaling
laws is still an open problem �66�, our results seem to indi-
cate that at least not all of them are satisfied in these two
cases. In other words, validating of a single or even two
scaling laws may not be invoked as an indication of the
asymptotic nature.

Now we turn to the question of the possible existence of
two universality classes. It was found by a finite-size scaling
method without considering corrections to scaling that for
a spin concentration p=0.6, �=0.725�6�, �=1.446�4�, �
=−0.093�7�, and �=0.349�4�, which were different from the
lower disorder ones and thus were suggested to belong to a
new class �21�. Similar results were also obtained when con-
sidering corrections �18�. One finds from Table III that our
corresponding exponents for r0=10 are quite close to those
numbers. This seems to indicate that their results may just
also be crossover exponents that reflect the crossover to the
percolation fixed point. In fact, using their exponents listed,
one finds �+d�=2.082�19�, �+2�+�=2.051�11�, and
2� /�+� /�=2.957�27�. Accordingly, one sees that the first
two laws are broken by 4–5 times of their respective stan-
dard errors and the third one by about two times. In addition,
their exponents vary with p �21�. So do those in �18�. Con-
sequently, these exponents �18,21� may be more probably
crossover than a new class.

In order to distinguish possible different universality
classes among the site-diluted, the bond-diluted, the 	J, and
the RBIM, we list in Table VII the critical exponents of the
four kinds of disordered Ising model, along with the six-loop
RG results of random Ising model. One sees clearly that the
exponents all agree quite well, confirming the universality of
the fixed point with respect to the forms of disorder.

V. CONCLUSION

We have investigated the critical behavior of 3D RBIM
for r0=2, 4, 5, and 10 by the finite-time scaling combining

with MCRG method in the presence of the linearly varying
temperature. The method enables us to estimate a lot of criti-
cal exponents independently as well as the critical tempera-
tures. Our results listed in Eq. �25� show that the static ex-
ponents agree well with most existing results and the
dynamic critical exponent of z=2.114�51� support a lower
value found by RG analyses, experiments, and some MC
simulations. They also verify both the hyperscaling and the
Rushbrooke scaling laws and their combined scaling law,
which in turn validate their asymptotic nature. In addition,
they corroborate the universality of the site-diluted, the
bond-diluted, the 	J, and the RBIM. The exponents at r0
=2 and r0=10 are argued to be crossover exponents that
reflect crossover from the random fixed point to the pure and
the percolation fixed point and that do not satisfy all scaling
laws. So, validating of a single or even two scaling laws may
not be invoked as an indication of the asymptotic nature of
the obtained exponents. In addition, the crossover exponents
at r0=10 appear to close to those that were proposed to con-
stitute a distinct universality class. This indicates that they
are probably also crossover only. Our results also demon-
strate that the finite-time scaling method can directly probe
both static and dynamic critical behavior without taking cor-
rections to scaling into account with reasonable precisions
due to the small correction exponent for the method.
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