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We study a refrigerator model which consists of two n-level systems interacting via a pulsed external field.
Each system couples to its own thermal bath at temperatures Th and Tc, respectively ���Tc /Th�1�. The
refrigerator functions in two steps: thermally isolated interaction between the systems driven by the external
field and isothermal relaxation back to equilibrium. There is a complementarity between the power of heat
transfer from the cold bath and the efficiency: the latter nullifies when the former is maximized and vice versa.
A reasonable compromise is achieved by optimizing the product of the heat-power and efficiency over the
Hamiltonian of the two systems. The efficiency is then found to be bounded from below by �CA= 1

�1−�
−1 �an

analog of the Curzon-Ahlborn efficiency�, besides being bound from above by the Carnot efficiency �C= 1
1−�

−1. The lower bound is reached in the equilibrium limit �→1. The Carnot bound is reached �for a finite power
and a finite amount of heat transferred per cycle� for ln n�1. If the above maximization is constrained by
assuming homogeneous energy spectra for both systems, the efficiency is bounded from above by �CA and
converges to it for n�1.
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I. INTRODUCTION

Thermodynamics studies principal limitations imposed on
the performance of thermal machines, be they macroscopic
heat engines or refrigerators �1–3�, or small devices in nano-
physics �4�, and biology �5�. Taking as an example a refrig-
erator driven by a source of work, we recall three basic char-
acteristics applicable to any thermal machine:

�i� Heat Qc transferred per cycle of operation from a cold
body at temperature Tc to a hot body at temperature Th
�Th�Tc�.

�ii� Power, which is the transferred heat Qc divided over
the cycle duration �.

�iii� Efficiency �or performance coefficient� �=Qc /W,
which quantifies the useful output Qc over the work W con-
sumed from the work-source for making the cycle. Note that
work consumption is obligatory since the heat is transferred
from cold to hot, i.e., against its natural gradient.

The second law imposes the Carnot bound

� � �C = Tc/�Th − Tc�

on the efficiency of refrigeration �2�. Within the usual ther-
modynamics the Carnot bound �both for heat-engines and
refrigerators� is reached only for a reversible, i.e., an infi-
nitely slow process, which means it is reached at zero power
�2,3�. The practical value of the Carnot bound is frequently
questioned on this ground.

The drawback of zero power is partially cured within
finite-time thermodynamics �FTT�, which is still based on
the quasiequilibrium concepts �6�. For heat-engines FTT
gives an upper bound 	opt�	CA�1−�Tc /Th, where 	opt is
the efficiency at the maximal power of work extraction �7�.
Naturally, 	CA is smaller than the Carnot upper bound 1
−Tc /Th for heat engines.

Heat engines have recently been studied within micro-
scopic theories, where one is easily able to go beyond the
quasiequilibrium regime �8–15�. For certain classes of heat
engines the CA efficiency is a lower bound for the efficiency
at the maximal power of work �8–10�. This bound is reached
at the quasiequilibrium situation Th→Tc in agreement with
the finding of FTT. The result is consistent with other studies
�11,12�.

The interest in small-scale refrigerators is triggered by the
importance of cooling processes for functioning of small de-
vices and for displaying quantum features of matter
�4,15–20�. In particular, the theory of these refrigerators can
provide answers to several basic questions such as how the
third law limits the performance of a cooling machine at low
temperatures �16�, and how small are the temperatures reach-
able within a finite working time and under a reasonable
amount of resource. Naturally, the small-scale refrigerators
should also operate at a finite power. Note that the mirror
symmetry between heat engines and refrigerators, which is
well known for the zero-power case �2�, does not hold more
generally �21�.

The present situation with finite-power refrigerators is
somewhat unclear �21–24�. Here maximizing the power of
cooling does not lead to reasonable results since there is an
additional complementarity �not present for heat engines�
�17,18,21,22�: when maximizing the heat-transfer power one
simultaneously minimizes the efficiency to zero, and vice
versa.

Here we intend to study optimal regimes of finite-power
refrigeration via a model which can be optimized over al-
most all of its parameters. The model represents a junction
immersed between two thermal baths at different tempera-
tures and driven by an external work source. This type of
models is frequently studied for modeling heat transport; see,
e.g., �4,19,25�. Our model is quantum, but it admits a classi-
cal interpretation, because all the involved density matrices
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will be diagonal �in the energy representation� at initial and
final moments of studied processes.1

This paper is organized as follows. The model is intro-
duced in Sec. II. Here we also show that the efficiency of the
model is bounded by the Carnot value, and provide a general
discussion of the refrigeration power. We confirm the heat-
power-efficiency complementarity in Sec. III and conclude
that the most meaningful way of optimizing its functioning is
to maximize the product of efficiency and the heat power.
The optimization procedure is reported in Sec. IV. We dis-
cuss the quasiequilibrium limit of our model in Sec. V. There
we show that there is a lower bound �CA=−1+1 /�1−�
���Tc /Th� for the efficiency, in addition to the upper Carnot
bound �C= �

1−� . The same expression �CA was obtained
within finite-time thermodynamics as an upper bound when
optimizing the product of heat power and efficiency or the
ratio of the efficiency over the cycle time �21,22�. Section VI
discusses the attainability of the Carnot efficiency at a finite
power. Entropy production inherent in the functioning of the
model refrigerator is studied in Sec. VII, while in Sec. VIII
we outline consequences of constraining features of the
model to the quasiclassical domain. This constraint allows to
reproduce the prediction of FTT on the upper bound of �CA.
We summarize in Sec. IX. Some technical questions are rel-
egated to the Appendix.

II. MODEL

Consider two quantum systems H and C with Hamilto-
nians HH and HC, respectively. Each system has n energy
levels. H and C constitute the working medium of our re-
frigerator; see Fig. 1.

Initially, H and C do not interact and are in equilibrium at
temperatures Th=1 /
h�Tc=1 /
c �we set kB=1�,

� = e−
hHH/tr�e−
hHH�, � = e−
cHC/tr�e−
cHC� , �1�

where � and � are the initial Gibbsian density matrices of H
and C, respectively. We write

� = diag�rn, . . . ,r1�, � = diag�sn, . . . ,s1� , �2�

HH = diag�n, . . . ,1 = 0�, HC = diag��n, . . . ,�1 = 0� ,

�3�

where diag�a , . . . ,b� is a diagonal matrix with entries
�a , . . . ,b�, and where without loss of generality we have nul-
lified the lowest energy level of both H and C. Thus the
overall initial density matrix is

�in = � � � , �4�

and the initial Hamiltonian HH � 1+1 � HC.
The goal of any refrigerator is to transfer heat from the

cooler bath to the hotter one at the expense of consuming
work from an external source. The present refrigerator model
functions in two steps: thermally isolated work-consumption
and isothermal relaxation; see Fig. 1. Let us describe these
steps in detail.

�1� H and C interact with each other and with the external
sources of work. The overall interaction is described via a
time-dependent potential V�t ,�� in the total Hamiltonian

H�t,�� = HH � 1 + 1 � HC + V�t,�� �5�

of H+C. The interaction process is thermally isolated:
V�t ,�� is nonzero only in a short time window 0� t�� and
is so large there that the influence of all other couplings �e.g.,
couplings to the baths� can be neglected �pulsed regime�. The
time-dependent potential V�t ,�� may explicitly depend on
the coupling time �.

Thus the dynamics of H+C is unitary for 0� t��,

�f � ���� = U�iU†, U = Te−i/��0
�dsV�s,��, �6�

where �i=��0�=� � � is the initial state defined in Eq. �1�,
�f is the final density matrix, U is the unitary evolution op-
erator, and where T is the time-ordering operator. The work
put into H+C reads �1,2�

W = Ef − Ei = tr��HH � 1 + 1 � HC���f − �i�� , �7�

where Ef and Ei are initial and final energies of H+C.
�2� Once the overall system H+C arrives at the final state

�fin, V�t ,�� is switched off, and H and C �within some re-
laxation time� return back to their initial states �Eq. �1�� un-
der influence of the hot and cold thermal baths, respectively.
Thus the cycle is complete and can be repeated again. Be-
cause the energy is conserved during the relaxation, the hot
bath gets an amount of heat Qh, while the cold bath gives up
the amount of heat Qc,

Qh = tr�HH�trC �f − ���, Qc = tr�HC�� − trH �f�� , �8�

where trH and trC are the partial traces. Equation �1� and the
unitarity of U lead to

1This aspect is similar to the Ising model. This is a model for
quantum-mechanical spin-1

2 , but it can be given a classical interpre-
tation via an overdamped particle moving in a asymmetric double-
well potential. If the transversal components of the quantum spin
are excited, this analogy breaks down. However, it still holds for the
spin-flip process, where the transversal components are absent both
initially and finally. In fact, the dynamics of the Ising model is
introduced via such spin-flip processes, and this dynamics admits a
classical interpretation.

TcTh Qh Qc

V(t)

W

H C

Ε1
Ε2

Μ1

Μ2

FIG. 1. The refrigerator model. Two systems H and C operate
between two baths at temperatures Tc�Th and are driven by an
external potential V�t�. W and Qc and Qh are, respectively, the work
put into the overall system and the heats transferred from the cold
bath and to the hot bath.
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hQh − 
cQc = S��f � �i� � tr��f ln �f − �f ln �i� , �9�

where S��f ��i��0 is the relative entropy, which employed
in deriving thermodynamic bounds since �1,26�.

S��f ��i� nullifies if and only if �f=�i; otherwise it is
positive. Equation �9� is the Clausius inequality, with
S��f ��i��0 quantifying the entropy production. This point
will be readdressed and confirmed in Sec. VII.

Equations �7�–�9� and the energy conservation Qh=W
+Qc imply

�
c − 
h�Qc � 
hW , �10�

meaning that in the refrigeration regime we have Qc�0 and
thus W�0. Thus within the step 1 the work source transfers
some energy from C to H, while in the step 2, C recovers
this energy from the cold bath thereby cooling it and closing
the cycle.

Equation �9� leads to the Carnot bound for the efficiency �
�we denote ��Tc /Th�1�

� �
Qc

W
=

�

1 − �
−

S��f � �i�
�
c − 
h�W

�
�

1 − �
� �C. �11�

We note from Eq. �11� that the deviation from the Carnot
bound is controlled by the ratio of the entropy production
S��f ��i� to the work W.

We note in passing that all quantities introduced so far are
meaningful also without the stage 2. Then the problem re-
duces to cooling the initially equilibrium system C with help
of the work source and the system H. Both the work source
and H are clearly necessary to achieve cooling.2 Qc quanti-
fies the amount of cooling, while � accounts for the relative
effort of cooling.

Power

Recall that the power of refrigeration Qc /� is defined as
the ratio of the transferred heat Qc to the cycle duration �.
For our model � is limited mainly by the duration of the
second stage, i.e., � should be larger than the relaxation time
�rel, which depends on the concrete physics of the system-
bath coupling.

Though some aspects of the following discussion are
rather general, it will be useful to have in mind a concrete
relaxation scenario. Consider the collisional relaxation sce-
nario, where the target system interacts with independent
bath particles via successive collisions; see �26,27� and the
Appendix. For our purpose the target system is H or C that
interact with, respectively, the hot and cold bath. Each colli-
sion lasts a time �col, which is much smaller than the char-
acteristic time �btw between two collisions. The interaction
Hamiltonian between the target system and a bath particle is
conserved, so that no work is done in switching the system-
bath interaction on and off; see �26,27� and Appendix, Sec. 1.

The relaxation process is typically �but not always� expo-
nential with the characteristic relaxation time depending on
the collisional interaction; see Appendix Sec. 2. This time
can be much smaller than any characteristic time of H or C.
Since the two baths act on H and C independently, the over-
all relaxation process drives H+C to the initial state �1, 4�.

If the interaction time � of V�t ,�� �see Eq. �6�� is also
much smaller than �btw, one realizes a thermally isolated pro-
cess, because the overlap between the pulse and a collision
can be neglected.3

To achieve a cyclic process within the exponential relax-
ation with the relaxation time �rel, the cycle time � should be
larger than �rel. For each cycle the deviation of the postrelax-
ation state from the exact equilibrium state �1, 4� will be of
order e−�/�rel. Thus if the ratio � /�rel is simply large, but finite,
one can perform roughly 	e�/�rel�1 number of cycles at a
finite power, before deviations from cyclicity would accumu-
late and the refrigerator will need resetting.

Though, as we stressed above, the relaxation process is
normally exponential,4 there are also situations within the
collision relaxation scenario, where the system settles in the
equilibrium state after just one intercollision time �btw; see
Sec. VI A and Appendix, Sec. 2 for details. The above limi-
tations on the number of cycles do not apply to this relax-
ation scenario.

Comparing with the power of the Carnot cycle

The above situation does differ from the power consider-
ation of usual �reversible� thermodynamic cycles, e.g., the
Carnot cycle �2,3,30,31�. There the external fields driving the
working medium through various stages have to be much
slower than the relaxation to the momentary equilibrium.

2Indeed, if C and the work-source form a closed system, no cool-
ing is possible due to the Thomson’s formulation of the second law
�13� �cyclic processes cannot lead to work-extraction�. If H and C
form a closed system, then W=0 and no cooling is possible due to
Eq. �10�.

3Analogous conclusion on the irrelevance of the system-bath in-
teraction during the pulse action is obtained when this interaction is
always on, but its magnitude is small �weak coupling�. Now the
relaxation time is much larger than the internal characteristic time
of H and C. Because the system-bath interaction is always on, there
will be a contribution in the work �Eq. �7�� coming from the
system-bath interaction Hamiltonian �28�. This contribution arises
even when the conditions for the pulsed regime hold �28�. However,
within the weak-coupling assumption this additional contribution is
proportional to the square of the system-bath interaction constant
and can be neglected �28�. We stress that this additional contribu-
tion does not arise within the collisional relaxation scenario because
the pulse and collisions are well-separated in time.

4More generally, the relaxation need not be exponential, but it still
can be such that although the difference between the system density
matrix at time t and the corresponding Gibbsian density matrix goes
to zero for t→�, this difference does not turn to zero after any
finite t. One of referees of this paper pointed out to us that �i� the
latter feature holds for a rather general class of relaxation processes
taking place under a constant Hamiltonian; �ii� it is rooted in the
Kubo-Martin-Schwinger �KMS� condition �29� for correlation func-
tion evaluated over an equilibrium state; see �3� for a heuristic
version of this argument; �iii� the collisional relaxation is different
in this respect, because the Hamiltonian is not constant. As we
stress in the Appendix, a general point of the collisional relaxation
is that no work is involved in this time-dependence.
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The latter means that the working medium is described by its
equilibrium Gibbs distribution with time-dependent param-
eters. The condition of momentary equilibrium for the work-
ing medium is necessary for the Carnot cycle to reach the
Carnot efficiency �2,3�.

The precise meaning of the external fields being slow is
important here. If �F is the characteristic time of the fields,
then the deviations from the momentary equilibrium are of
order O�

�rel

�F
� �3,30,31�. This fact is rather general and does

not depend on details of the system and of the studied pro-
cess, e.g., it does not depend whether the process is ther-
mally isolated or adiabatic.5 In particular, it is this deviation
of the state from the momentary equilibrium that brings in
the entropy production �or work dissipation� of order of
O��

�rel

�F
�2� �3,30,31�. Thus performing the reversible Carnot

cycle with �approximately� the Carnot efficiency means
keeping the ratio

�rel

�F
very small.

Now there are two basic differences between the Carnot
cycle and our situation:

�i� In our case we do not require the working medium to
be close to its momentary equilibrium state during the whole
process. It suffices that the medium gets enough time to relax
to its final equilibrium.

�ii� A small, but finite
�rel

�F
for the Carnot cycle situation

means that deviations from the momentary equilibrium are
visible already within one cycle. In contrast, a small, but
finite

�rel

� for our situation means that we can perform an
exponentially large number of cycles before deviations from
the cyclicity will be sizable. Here is a numerical example.
Assume that

�rel

� =
�rel

�F
=1 /20. For the standard Carnot cycle

already within one cycle the deviation from the momentary
equilibrium will amount to 0.05. In our situation the same
amount e−3=0.0498 of deviation from the cyclicity will
come after e17=2.4�107 cycles. This is a large number, es-
pecially taking into account that no realistic machine is sup-
posed to work indefinitely long. Such machines do need re-
setting or repairing. The point is that our machine can
perform many cycles at a finite power before any resetting is
necessary.

III. COMPLEMENTARITY BETWEEN THE
TRANSFERRED HEAT AND EFFICIENCY

We now proceed to optimizing the functioning of the re-
frigerator over the three sets of available parameters: the en-
ergy spacings 
k�k=2

n , 
�k�k=2
n , and the unitary operators U. It

should be evident from �5, 1� that optimizing over these pa-
rameters is equivalent to optimizing over the full time-
dependent Hamiltonian H�t ,�� of H+C. We stress in this
context that no limitations on the magnitude of V�t ,�� are
imposed. This means that the unitary operator can in prin-
ciple be generated in an arbitrary short coupling time �.

We start by maximizing the transferred heat Qc
=tr�HC��−trH �f��, which is the main characteristics of the
refrigerator. Since tr�HC�� depends only on 
�k�k=2

n , we
choose 
k�k=2

n and V�t� so that the final energy tr�HC�f�
attains its minimal value zero. Then we maximize tr�HC��
over 
�k�k=2

n . Note from Eq. �2�

1 � HC = diag��1, . . . ,�1, . . . ,�n, . . . ,�n� ,

�i = � � � = diag�s1r1, . . . ,s1rn, . . . ,snr1, . . . ,snrn� .

It is clear that tr�HC�f�=tr�HCU�iU†� goes to zero when,
e.g., r2= ¯ =rn→0 ��2= ¯ =n→��, while U amounts
to the SWAP operation U� � �U†=� � �. It is checked by a
direct inspection that the maximization of the initial energy
tr�HC�� over 
�k�k=2

n produces the same structure of n−1
times degenerate upper energy levels ���2= ¯ =�n. De-
noting

v � s2 = ¯ = sn = e−
c�, u � r2 = ¯ = rn = e−
h,

�12�

we obtain for Qc

Qc = Tc ln�1

v
 �v − u��n − 1�

�1 + �n − 1�v��1 + �n − 1�u�
, �13�

where according to the above discussion, Qc is maximized
for u→0, and where v is to be found from maximizing
Qc �u→0 in Eq. �13� over v, i.e., v is determined via

1 + �n − 1�v + ln v = 0. �14�

For the efficiency we get for the present situation �H and C
have n−1 times degenerate upper levels, while U amounts to
the SWAP operation�,

� =
Qc

W
=

�

 − �
=

� ln�1

v


ln�1

u
 − � ln�1

v
 . �15�

The maximization of Qc led us to u→0, which then means
that � in Eq. �15� goes to zero.

Thus C can be cooled down to its ground state
�tr�HC�f�→0�, but at a vanishing efficiency, i.e., at expense
of an infinite work. To make this result consistent with the
classic message of the third law �33�, we should slightly
adjust the latter: one cannot reach the zero temperature �of an
initially equilibrium system� in a finite time and with finite
resources �infinite work is not a finite resource�. At any rate,
one should note that the classic formulation of the third law
motivates its operational statement using exclusively equilib-
rium concepts. Modern perspectives on the third law are dis-
cussed in �16,18,20,34,35�.

Note that the efficiency � in Eq. �15� reaches its maximal
Carnot value � / �1−�� for

u = v , �16�

which nullifies the transferred heat Qc; see Eq. �13�.
Now we have to show that Qc tends to zero upon maxi-

mizing � over all free parameters 
k�k=2
n , 
�k�k=2

n , and U.

5If a slow thermally isolated process is performed on a finite sys-
tem, there are additional limitations in achieving the momentary
equilibrium; see �30,32� for more details. These limitations are
however not essential for the present argument.
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Denoting 
�iH��i=1
n and 
�iC��i=1

n for the eigenvectors of HH
and HC, respectively, we note from Eqs. �7� and �8� that W
and Qc feel U only via the matrix

Cij�kl = ��iHjC�U�kHlC��2. �17�

This matrix is double-stochastic �36�,

�
ij

Cij�kl = �
kl

Cij�kl = 1. �18�

Conversely, for any double-stochastic matrix Cij�kl there is
some unitary matrix U with matrix elements Uij�kl, so that
Cij�kl= �Uij�kl�2 �36�. Thus, when maximizing various func-
tions of W and Qc over the unitary U, we can directly maxi-
mize over the �n2−1�2 independent elements of n2�n2

double-stochastic matrix Cij�kl.
We did not find an analytic way of carrying out the com-

plete maximization of � over all free parameters. Thus we
had to rely on numerical recipes of MATHEMATICA 7, which
for n=1, . . . ,5 confirmed that Qc nullifies whenever �
reaches �along any path� its maximal Carnot value. We be-
lieve this holds for an arbitrary n, though we lack any rigor-
ous proof of this assertion.

IV. MAXIMIZING THE PRODUCT OF THE
TRANSFERRED HEAT AND EFFICIENCY

We saw above that neither Qc nor � are good target quan-
tities for determining an optimal regime of refrigeration. But

� � Qc� , �19�

is such a target quantity, as will be seen shortly. This is the
most natural choice for our setup. This choice was also em-
ployed in �21�. References �17,18,24� report on different ap-
proaches to defining refrigeration regimes.

The numerical maximization of �=�Qc over 
k�k=2
n ,


�k�k=2
n and U has been carried out for n=1, . . . ,5 along the

lines discussed around �Eqs. �17� and �18��. It produced the
same structure: both H and C have n−1 times degenerate
upper levels, see Eq. �12�, and the optimal U again corre-
sponds to SWAP operation6

�i = � � �, �f = � � � . �20�

Recalling the expression �5� for the total Hamiltonian
H�t ,��, we can state this result as follows: there exist a cou-
pling potential V�t ,�� that for a given coupling time � gen-
erates the unitary SWAP operation following to Eq. �6�. This
operation does not explicitly depend on � because V�t ,��
depends on �; see also our discussion in the beginning of
Sec. III. Note that both the initial and final states in Eq. �20�
are diagonal in the energy representation. Evidently, the in-

termediate state ��t� for 0� t�� is not diagonal in this rep-
resentation.

The efficiency � and the transferred heat Qc are given by,
respectively, Eqs. �13� and �15�, where instead of u and v we
should substitute ū and v̄, respectively. The latter two quan-
tities are obtained from maximizing �=�Qc,

��ū, v̄� =

Tc��n − 1��v̄ − ū�ln2 1

v̄

�ln
1

ū
− � ln

1

v̄
�1 + �n − 1�ū��1 + �n − 1�v̄�

,

�21�

where ū and v̄ are found from maximizing ��u ,v� via �u�
=�v�=0. Note that ū and v̄ depend on �=Tc /Th. The effi-
ciency � and the transferred heat Qc are given, respectively,
by Eqs. �15� and �13� with u→ ū and v→ v̄.

Though we have numerically checked these results for n
�5 only, we again trust that they hold for an arbitrary n �one
can, of course, always consider the above structure of energy
spacings and U as a useful ansatz�.

SWAP is one of the basic gates of quantum information
processing �37�; see �14� for an interesting discussion on the
computational power of thermodynamic processes. SWAP is
sometimes realized as a composition of more elementary
unitary operations, but its direct realizations in realistic sys-
tems also attracted attention; see, e.g., �38� for a direct imple-
mentation of SWAP in quantum optics. Note that for imple-
menting the SWAP as in Eq. �20� the external agent need not
have any information on the actual density matrices � and �.

Effective temperatures

Since the state �f of H+C after the action of V�t� is �
� �, and because in the optimal regime the upper level for
both H and C is n−1 times degenerate, one can introduce
nonequilibrium temperatures Th� and Tc� for, respectively, H
and C via �note Eq. �1��

� = e−
h�HH/tr�e−
h�HH�, � = e−
c�HC/tr�e−
c�HC� , �22�

where we recall that � ��� is the state of H �C� after applying
the pulse. Using Eq. �12� we deduce

Th� = Th

ln
1

ū

ln
1

v̄

, Tc� = Tc

ln
1

v̄

ln
1

ū

, �23�

where v̄=e−
c�̄ and ū=e−
h̄; see Eq. �12�. This implies

TcTh = Tc�Th�. �24�

As expected, the refrigeration condition v̄� ū, see Eqs. �13�
and �21�, is equivalent to

Tc� � Tc � Th � Th�, �25�

i.e., after the pulse the cold system gets colder, while the hot
system gets hotter. Note that the existence of temperatures Tc�
and Th� was not imposed, they emerged out of optimization.

6Let us recall how the SWAP is defined via a pure-state base. Let

�k�1�k=1

n be an orthonormal base in the Hilbert where � lives. Let
also 
�k�2�k=1

n be an orthonormal base in the Hilbert space where �
lives. Any unitary operator acting on the composite Hilbert space
can be defined with respect to the orthonormal base �k�1 � �l�2,
where k , l=1, . . . ,n. Let us now define for all pairs k and l:
USWAP�k�1 � �l�2= �l�1 � �k�2.

OPTIMAL REFRIGERATOR PHYSICAL REVIEW E 81, 051129 �2010�

051129-5



In terms of these temperatures the efficiency �Eq. �15�� is
conveniently written as

� =
Tc

Th� − Tc

=
Tc�

Th − Tc�
. �26�

We eventually focus on two important limits: quasiequi-
librium �→1, and the regime ln n�1.

V. QUASIEQUILIBRIUM REGIME �\1: A LOWER
BOUND FOR THE EFFICIENCY

In this regime the temperatures Th and Tc are nearly equal
to each other: ��Tc /Th→1.

First we note that sharply at �=1, � reads

��a���=1 = Tc��n − 1��1 + �n − 1�a�−2a ln2 a , �27�

where

ū = v̄ = a

and where a is given by �a��a� ��=1=0,

��n − 1�a − 1�ln a = 2��n − 1�a + 1� . �28�

We now work out the optimal ū and v̄ for �→1. It can be
seen from Eq. �21� that the proper expansion parameter for
�→1 is x��1−�. We write

ū = a + �
k=1

akx
k, v̄ = a + �

k=1
�ak + bk−1�xk. �29�

We substitute Eq. �29� into �u�=0 and �v�=0 and expand
them over x. Both expansions start from terms of order
O�x0�. Now ak and bk are determined by equating to zero the
O�xk� terms in �u�=0 and �v�=0. Thus the O�x0� terms
together with Eq. �28� define b0,

b0 = a ln
1

a
, �30�

which should be non-negative due to v�u. The O�x1� terms
together with Eqs. �28� and �30� define a1 and b1,

a1 = −
a

2
ln

1

a
, b1 = −

a�24 + ln2 a�
48

ln
1

a
, �31�

and so on. Equations �29�–�31� imply for the efficiency at
�→1 �x=�1−��

� =
1

x
− 1 +

ln2 a

48
−

�48 + ln2 a�ln2 a

1536
x + O�x2� . �32�

Note that the expansion �Eq. �32�� does not apply for
n→�, since a behaves in this limit as � 1

n−1 − 4
�n−1�ln�n−1� ; see

Eq. �28�. Thus, in the limit �→1, Qc scales as ��1−�,

Qc =
aTc�ln a�2�n − 1��1 − �

�1 + �n − 1�a�2 , �33�

while the consumed work is smaller and scales as 1−�.
Equation �32� suggests that the maximization of � im-

poses a lower bound on the efficiency,

� � �CA �
1

�1 − �
− 1. �34�

This is numerically checked to be the case for all 0���1
and all n; see also Fig. 2.

The expression of �CA was already obtained within finite-
time thermodynamics—but as an upper bound on the
efficiency—and argued to be an analog of the Curzon-
Ahlborn efficiency for refrigerators �21,22�. Section VIII ex-
plains that also within the present microscopic approach �CA
can be an upper bound for � provided that � is maximized
under certain constraints.

Recalling Eq. �15�, our discussion after Eqs. �23�–�25�
and Eq. �26�, we can interpret the lower bound for the effi-
ciency as a lower bound on the intermediate temperature Tc�
of C,

1 − �1 − �

�
�

Tc�

Tc
� 1, �35�

i.e., the lowest temperature Tc� cannot be too low under op-
timal �. Compare this with the fact that under vanishing
efficiency �that is for very large amount of the consumed
work�, Tc� can be arbitrary low; see our discussion after Eq.
�15�. Thus a well-defined lowest �per cycle� temperature
emerged once we restricted the resource of cooling �the con-
sumed work�.

VI. MANY-LEVEL REGIME: REACHING THE CARNOT
LIMIT AT A FINITE POWER

Now we turn to studying the regime

ln�n − 1� � 1. �36�

First of all, let us introduce two new variables

� � ū�n − 1�ln�n − 1�, � �
ln�n − 1�
v̄�n − 1�

, �37�

denote

p � ln�n − 1� , �38�

and rewrite � in Eq. �21� as

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Θ

Ζ

FIG. 2. �Color online� Solid line: efficiency � of the optimized
refrigerator versus the temperature ratio �=Tc /Th for n=3; see Eq.
�15�. In the scale of this figure ��n=2� and ��n=3� are almost
indistinguishable. Dashed line: the lower bound 1

�1−�
−1.
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��1 − ��
�Tcp

=
�1 −

��

p2��1 +
1

p
ln� �

p
�2

�1 +
�

p
��1 +

�

p
��1 +

1

�1 − ��p
ln� p�+1

��� � .

�39�

The expression in right-hand side �RHS� of Eq. �39� is now
to be optimized over � and �. We note that if these param-
eters stay finite in the limit p� ln�n−1��1, the value of � is
read off directly: ��1−��

�Tcp
=1. The finiteness of � and � in the

limit p� ln�n−1��1 is confirmed by expanding the RHS of
Eq. �39� over the small parameter 1

p , collecting terms �O� 1
p �,

differentiating them over � and �, and equating the resulting
expressions to zero. This produces

� =
1

1 − �
+ O�1

p
�, � =

2 − �

1 − �
+ O�1

p
� . �40�

Substituting these into Eqs. �15� and �21� we get

� =
�

1 − �
−

2�

�1 − ��2

ln�p�
p

+ O� 1

p2 , �41�

Qc

Tc
= p −

3 − �

1 − �
− ln�1 − �

2 − �
p + O�1

p
 . �42�

Note from Eqs. �36� and �38� that the dominant factor in the
efficiency � is the Carnot value �

1−� , while the subleading
term is naturally negative; see Eq. �41�. Likewise, the domi-
nant factor in

Qc

Tc
is p� ln�n−1�, while the subleading term is

O�1�. We also see that the limit ln�n−1��1 does not com-
mute with the equilibrium limit �→1, since the corrections
in Eqs. �41� and �42� diverge for �→1.

Thus in this regime p� ln�n−1��1 the efficiency con-
verges to the Carnot value; see Fig. 3.

Recalling Eq. �12� we see from Eqs. �37� and �40� that in
the regime �Eq. �36�� the total occupation of the higher levels
of H is small, so that H is predominantly in its ground state

before applying the work-consuming external pulse. In con-
trast, C is more probably in one of its excited states. These
facts are expected, because C has to give up some energy,
while H has to accept it.

We note that this regime resembles in several aspects the
macroscopic regime N�1 of a N-particle system. Recall that
for N�1 �weakly coupled� particles the number of energy
levels scales as eN, while energy scales as N. Now for the
above situation �Eq. �42�� the transferred heat Qc is �in the
leading order� a product of the colder temperature Tc and the
“number of particles” ln�n−1�.

The effective temperatures Th� and Tc� �see Eqs. �23�–�25��
in this limit are close to their initial values

Th�

Th
= 1 +

1

p
ln� �1 − ��2p2

2 − �
 + O� 1

p2 , �43�

Tc�

Tc
= 1 −

1

p
ln� �1 − ��2p2

2 − �
 + O� 1

p2 , �44�

where we employed Eqs. �37� and �40�. Though during the
refrigeration process the systems C and H are able to process
large amounts of work and heat ��ln�n−1��, their tempera-
tures are not perturbed strongly.

A. Finiteness of power

It is important to note that the asymptotic attainability Eq.
�41� of the Carnot bound for � is related to a finite transferred
heat Qc=Tc ln�n−1�, but it also can be related to a finite
power

Qc

� , where in our model the cycle time � basically
coincides with the relaxation time; recall our discussion in
Sec. II. This appears to be unexpected because within the
standard thermodynamic analysis the Carnot efficiency is
reached by the Carnot cycle at a vanishing power �2�; see
Sec. II for a precise meaning of this statement. In any refrig-
erator model known to us—see, e.g., �19�—approaching the
Carnot limit means nullifying the power. See also in this
context our discussion around Eq. �16�; various reasons pre-
venting the approach to the Carnot efficiency for thermal
machines �even for small machines working at zero power�
are analyzed in �30�. Now we supplement our discussion in
Sec. II with more specific arguments.

We already stressed in Sec. II that within the second stage
of the refrigerator functioning, where both H and C relax to
equilibrium under influence of the corresponding thermal
baths, the relaxation mechanism can be associated with the
collisional system-bath interaction; see the Appendix for a
detailed discussion of this mechanism. Here there are three
characteristic times: the single collision duration time �col is
much smaller than the intercollision time �btw, while the re-
laxation of the system to its equilibrium state is governed by
the time �rel. The assumed condition �col��btw allows imple-
menting the thermally isolated work-consuming pulse, be-
cause if the pulse time is also much smaller than �btw, the
pulse does not overlap with collisions.

In Appendix, Sec. 2 we study the relaxation time of the
system with n−1 fold degenerate upper energy levels and
nondegenerate lowest energy level. We also account for the

0.00 0.02 0.04 0.06 0.08
0.090

0.095

0.100

0.105

0.110

ln p

p

Ζ

FIG. 3. �Color online� Convergence of the efficiency � �normal
line� to the Carnot value 	C=1 /9 �dashed line� as a function of ln p

p ,
where p=ln�n−1�; see Eqs. �36�–�39�.
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limit ln�n−1��1, where the Carnot efficiency is reached;
see Eq. �41�. It is shown that for such a system the relaxation
time �rel can—depending on the details of the thermal bath
and its interaction with the system—range from few �btw’s to
a very long times �n�btw. The former relaxation time means
a finite power, while the latter time implies vanishing power
�

lnn
n for ln n�1.
These two extreme cases are easy to describe without ad-

dressing the formalism of Appendix, Secs. 1 and 2.
�1� For simplicity let us focus on the relaxation of the

system H that after the work-extracting pulse �Eq. �20�� is
left in the state �, and is now subjected to a stream of the
bath particles �the situation with C is very similar�. Recall
that each bath particle before colliding with H is in the Gibb-
sian equilibrium state at the temperature Th. Now assume
that each bath particle also has n−1-fold degenerate upper
level, and one lowest energy level. Also, the nonzero energy
spacing for the bath particles is equal to that of H. Then the
relaxation of H is achieved just after one collision provided
that the system-bath interaction �during this collision�
amounts to a SWAP operation. Note that the characteristic
time of this relaxation is �btw, and that this is a nonexponen-
tial scenario of relaxation because the system exactly settles
into its equilibrium Gibbsian state after the first collision.

No work is done during collisional relaxation; see the
Appendix. Indeed, under above assumptions on the energy
levels of the bath particles, the SWAP operation commutes
with the free Hamiltonian H1 � 1+1 � HH �where H1 is the
Hamiltonian of the given bath particle�, which implies that
the final energy of H plus the bath particle is equal to its
initial value. Since each separate collision is a thermally iso-
lated process, this means that no work is done; see Eq. �7�.

�2� If each collision is very weak and almost does not
exchange heat with the system H, the relaxation time be-
comes very long. Intermediate cases are discussed in Appen-
dix, Sec. 2. These intermediate cases are relevant, since the
power of refrigeration is finite even for long relaxation times
�ln n. Indeed, we recall from Eq. �42� that Qc=Tc ln�n−1�
+O�1�.

B. More realistic spectra still allowing to reach
the Carnot bound

One can ask whether the convergence �Eq. �41�� to the
Carnot bound is a unique feature of the spectra �Eq. �12�� in
the limit ln�n−1��1, or whether there are other situations
that still allow �→�C. The answer is positive as we now
intend to show. For the energy spectra �Eq. �3�� we postulate
�k=1, . . . ,n−1�

k+1 =  + �k − 1��, �k+1 = � + �k − 1�� , �45�

where ��0 is a parameter. Next, we assume that the follow-
ing six conditions hold

�n − 1�
� � 1, 
c� � 1, 
h� � 1 �46�

p̄ � ln�Tc/�� � 1, �47�

u � e−
h � �/p̄, v � e−
c� � p̄� . �48�

Under conditions �46�–�48�—and assuming the SWAP opera-
tion for the pulse—we show below that the results analogous
to Eqs. �41� and �42� hold,

� =
�

1 − �
+ O�1

p̄
,

Qc

Tc
= p̄�1 + O� ln

p̄
p̄� . �49�

where the role of a large parameter p=ln�n−1� in Eqs. �41�
and �42� is now played by p̄.7 Note that Eqs. �46� and �47�
still imply that ln�n−1��1.

The spectra �Eq. �45�� under conditions �46�–�48� corre-
spond to a quasicontinuous part separated from the ground
state by a gap. This type of spectrum avoids the strong de-
generacy of Eq. �12� and is met in conventional supercon-
ductors below the transition temperature �39�.

To derive Eq. �49� via Eqs. �45�–�48� we note the follow-
ing formulas for the partition sums Zh� tr�e−
hHH� and Zc
� tr�e−
cHC� in Eq. �1�, the heat Qc and work W:

Zh = 1 +
Thu

�
, Zc = 1 +

Tcv
�

,

Qc = Tc ln�1

v
� 1

Zh
−

1

Zc
 +

Tc
2v

Zc�
−

Th
2u

Zh�
,

W = Th�ln
1

u
− � ln

1

v
� 1

Zh
−

1

Zc
 .

VII. ENTROPY PRODUCTION

Entropy production is an important characteristics of ther-
mal machines, because it quantifies the irreversibility of their
functioning �1,2�. For our refrigerator model, no entropy is
produced during the first stage, which is thermally isolated
from the baths. However, a finite amount of entropy is pro-
duced during the second, relaxational stage. The overall en-
tropy production reads

Si = S��fin � �in�

and controls the deviation of efficiency from its maximal
Carnot value; see Eq. �11�. In the optimal conditions �20� and
�12�, we get

Si = S�� � �� + S�� � �� �50�

=
ln�v̄/ū��v̄ − ū��n − 1�

�1 + �n − 1�v̄��1 + �n − 1�ū�
, �51�

where S�� ��� and S�� ��� are the entropies produced in, re-
spectively, cold and hot bath. Indeed, consider the system C
that after the external field action is left in the state with
density matrix � �see Eq. �20��, and now under influence of
the thermal bath should return to its initial state ��e−
cHC.
Now

7In the definition �47� of p̄ one can as well employ Th instead of
Tc. This will not lead to serious changes, because we always assume
that �=Tc /Th is fixed.
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TcS�� � �� = tr�HC�� − TcS��� + Tc ln tr e−
cHC, �52�

is the difference between the nonequilibrium free energy
tr�HC��−TcS��� of C in the state � �and in contact to a ther-
mal bath at temperature Tc� and the equilibrium free energy
−Tc ln tr e−
cHC. Simultaneously, TcS�� ��� in Eq. �52� is the
maximal work that can be extracted from the system C �in
state �� in contact with the Tc bath �8�. During relaxation this
potential work is let to relax into the Tc bath increasing its
entropy by S�� ���. Likewise, S�� ��� is the entropy produc-
tion during the relaxation of the system H in contact with the
Th bath.

Now in the regime ln�n−1��1, Si amounts to ln�v̄ / ū�
� ln�ln�n−1��, see Eq. �51�, while the consumed work W
and the transferred heat Qc scale as ln�n−1�. In other words,
the entropy production Si is much smaller than both W and
Qc. This explains why for a large ln�n−1� the Carnot effi-
ciency is reached; see Eqs. �11� and �41�.

In the equilibrium limit �→1, Si reads

Si =
a�ln a�2�n − 1��1 − ��

�1 + �n − 1�a�2 , �53�

where a is given by Eq. �28�, and where in deriving Eq. �53�
we employed Eq. �51� and asymptotic expansions presented
after Eq. �28�. Note that now Si is smaller than Qc��1−�
but has the same scale 1−� as the consumed work W; see our
discussion after Eq. �32�. Thus Si cannot be neglected, and
this explains why the Carnot efficiency is not reached in the
equilibrium limit �→1; see Eq. �11�.

VIII. CLASSICAL LIMIT

We saw above that the optimization of the target quantity
�=Qc� produced an inhomogeneous type of spectrum, where
a batch of �quasi�degenerate energy levels is separated from
the ground state by a gap. It is meaningful to carry out the
optimization of � imposing a certain homogeneity in the
spectra of H and C. The simplest situation of this type is the
equidistant spectra

n = �n − 1�, �n = �n − 1�� , �54�

for H and C; recall Eq. �3�. For n→� and →0, �→0
these spectra correspond to the classical limit.

Thus, now we maximize �=Qc� imposing conditions Eq.
�54�. We found numerically that the optimal U again corre-
sponds to SWAP operation; see Eq. �20�. For �=��ū , v̄� we
get

� =

Tc� ln2 1

v̄

ln
1

ū
− � ln

1

v̄

� v̄ − ū

�1 − v̄��1 − ū�
−

n�v̄n − ūn�
�1 − v̄n��1 − ūn�

 ,

where v̄=e−
c̄ and ū=e−
h�̄ are found from maximizing �.
The efficiency � is still given by Eq. �15�.

In the limit n�1 we get from maximizing �,

ū → 1, v̄ → 1 and
n�v̄n − ūn�

�1 − v̄n��1 − ūn�
→ 0, �55�

implying that � and � depend on one parameter �� 1−ū
1−v̄ ,

� =
Tc��� − 1�
��� − ��

, � =
�

� − �
.

The optimal value of this parameter is �=1+�1−�. This
leads to

� =
Tc�

�1 + �1 − ��2
, � = �CA =

1
�1 − �

− 1. �56�

Thus for a large number of equidistant energy levels the
maximization of � leads to homogeneity �̄→0, �̄→0�,
which is an indication of the classical limit. The efficiency �
in this constrained optimal situation is equal to �CA.

The above results refer to optimizing � in the limit n
�1. However, we confirmed numerically that the above val-
ues �Eq. �56�� for � and �—obtained in the limit n�1—are
upper bounds for � and � at a finite n.

Our conclusion is that the efficiency �CA—which is a
lower bound for the efficiency during the unconstrained op-
timization of �—appears to be an upper bound for refrigera-
tors that operate under equidistant �classical� spectra. The
upper bound is reached in the limit n�1.

These facts clarify to some extent why �CA was obtained
as an upper bound for the efficiency within the finite-time
thermodynamics �FTT� �21,22�. Apparently, the quasiequilib-
rium assumptions of FTT implied constraints which are
equivalent to imposing the homogeneous spectra in our ap-
proach.

IX. SUMMARY

We have studied a model of a refrigerator aiming to un-
derstand its optimal performance at a finite cooling power;
see Fig. 1. The structure of the model is such that it can be
optimized over almost all its parameters; additional con-
straints can and have been considered, though. We have con-
firmed the complementarity between optimizing the heat Qc
transferred from the cold bath Tc and efficiency �: maximiz-
ing one nullifies the other. Similar effect for different models
of quantum refrigerators is reported in �17–19�.

To get a balance between Qc and � we have thus chosen to
optimize their product �Qc. This leads to a lower bound
�CA= 1

�1−�
−1 ���

Tc

Th
� for the efficiency in addition to the up-

per Carnot bound �C= 1
1−� −1. The fact of ���CA implies that

there is the lowest finite temperature reachable within one
cycle of refrigeration; see Eq. �35�.

The lower bound �CA is reached in the equilibrium limit
Tc→Th. Constraining both systems to have homogeneous
�classical� spectra, �CA is reached as an upper bound. This is
just like within FTT, when maximizing the product of the
cooling-power and efficiency �21�, or the ratio of the effi-
ciency and the cycle time �22�. In this sense �CA seems to be
universal. It may play the same role as the Curzon-Ahlborn
efficiency for heat engines 	CA, which, again, is an upper
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bound within FTT �7�, but appears as a lower bound for the
engine models studied in �8�. For other opinions on the
Curzon-Ahlborn efficiency for refrigerators see �23,24�.

The Carnot upper bound is asymptotically reached in the
many-level limit of the model. We saw that this asymptotic
convergence is related to a finite heat transferred per cycle,
and we argued that it can also be related to a finite power if
the relaxation scenario of the model refrigerator is chosen
properly: provided that the cycle time is larger than the re-
laxation time, one can perform exponentially large number
of refrigeration cycles before inevitable deviations from
cyclicity—that in any case are there due to a finite cycle
time—will accumulate. Such an effect has never been seen
so far for refrigerator models.

For the optimal refrigerator the transferred heat Qc be-
haves as Qc�Tc �in particular, for Tc→0�; see Eqs. �13�,
�21�, and �41�. This is in agreement with the optimal low-
temperature behavior of Qc from the viewpoint of the third
law �16,20�.
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APPENDIX: COLLISIONAL RELAXATION

1. General consideration

The purpose of this discussion is to outline the general
structure of a collisional relaxation process. Our presentation
follows to �26,27�. The thermal bath is modeled as a collec-
tion of N�1 independent equilibrium systems �particles�
with initial density matrices �i=

1
Zi

exp�−
Hi� and Hamilto-
nians Hi, where i=1, . . . ,N, and where 1 /
=T is the bath
temperature. This formalizes the intuitive notion of the bath
as a collection of many weakly interacting particles.

The target system H starts in �an arbitrary� initial state �H
and has Hamiltonian HH. The collisional relaxation is real-
ized when the particles of the bath sequentially interact �col-
lide� with H. Multiple collisions �between the target system
and simultaneously two or more bath particles� are ne-
glected.

Consider the first collision. The initial state of H and the
first bath particle is �1+H=� � �1. The interaction between
them is realized via a unitary operator V, so that the final
state after the first collision is �1+H� =V�1+HV†. This unitary
operator is generated by the full Hamiltonian H1+H,

H1+H = H1 + HH + H1,H, �A1�

where H1,H is the interaction Hamiltonian. Define separate
final states,

�� = tr1 �1+H� , �1� = trH �1+H� , �A2�

where tr1 and trH are the partial over the first particle and H,
respectively. Recall the definition �Eq. �9�� of the relative
entropy. The unitarity of V implies

S��1+H� � �� � �1� = tr��1+H ln �1+H�

− tr��1+H� ln��� � �1�� . �A3�

Employing �1= 1
Z1

exp�−
H1� and S��1+H� ��� � �1��0 in
Eq. �A3� we get

T�SH + �U1 � 0, �A4�

where �SH=tr�−�� ln ��+� ln �� and �U1=tr�H1��1�−�1��
are, respectively, the change of the entropy of R and the
average energy of the first particle.

We now require that the interaction V conserves the aver-
age energy,

�U1 = − �UR. �A5�

Using this in Eq. �A4� one has

�UH − T�SH � 0. �A6�

Since we did not use any special feature of the initial state of
H, Eq. �A6� holds for subsequent collisions of H with the
bath particles. Thus UH−TSH decays in time, and it should
attain its minimum. It is well known �26,27� that this mini-
mum is reached for the Gibbs matrix ��e−
HH: collisions
can drive H to equilibrium starting from an arbitrary state
�26,27�.

Condition �A5� expresses the average energy conserva-
tion. It is natural to use a more stringent condition according
to which the sum of energies of H and the bath particle 1 is
conserved in time �27�,

�H1 + HH,H1,H� = 0. �A7�

This condition makes the dynamics autonomous since for
any initial state of H+1 the switching the interaction on and
off does not cost energy and Eq. �A5� holds automatically.

For condition �A7� to be nontrivial, the operator H1+HH
should have a degenerate spectrum. Otherwise due to �H1
+HH ,H1�=0 and Eq. �A7�, HH and H1 will be constants of
motion, which means that no transfer of energy and thus no
relaxation is possible.

Here are two crucial points of the collisional relaxation.
�1� If the target system starts in the equilibrium state, this

state does not change in time under subsequent collisions.
This analog of the zero law of thermodynamics is especially
obvious from condition �A7�, but it also holds simply from
the conservation of the average energy �Eq. �A5��. Indeed, if
�H is the equilibrium state, �H�e−
HH, and also condition
�A5� holds, the relative entropy S��1+H� ��H � �1� is equal to
zero, which can happen only for �1+H� =�H � �1.

�2� No work is done for switching collisions on and off.
This is clearly seen from Eq. �A7�, which states that the free
Hamiltonian is a constant of motion.

2. Relaxation time for a pertinent example

Now we study the relaxation time for an n-level system H
under collisional dynamics. We assume that n−1 levels of H
coincide and have energy �0. The lowest energy level is
not degenerate and has energy zero. Importantly, we assume
that condition �A7� holds meaning that the relaxation pro-
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ceeds autonomously, i.e., without additional energy �work�
costs on switching the interaction on and off. The initial �be-
fore colliding with the first bath particle� density matrix of H
is assumed to be Gibbsian at temperature T0=1 /
0,

� =
e−
0HH

ZH�
0�
= rP0 +

1 − r

n − 1
P, r =

1

1 + �n − 1�e−
0 ,

where P0= �0��0� and P is the projector on the
n−1-dimensional eigenspace of � with eigenvalue .

To satisfy the degeneracy of the interaction Hamiltonian
�see our discussion after Eq. �A7�� we assume that the first
bath particle has �among others energies� energy levels E and
E+. The degeneracies of these levels are nE

�1� and nE+
�1� ,

respectively. The equilibrium density matrix of the bath par-
ticle 1 is written as

�1 = �̃1 + rE
�1�PE

�1� + r+E
�1� P+E

�1� , �A8�

rE�

�1� = e−
E�/Z1, Z1 = �
�

nE�

�1�e−
E�, �A9�

where rE
�1� and rE+

�1� are the Boltzmann weights for the energy
levels E and E+, respectively, the summation in Eq. �A9� is
taken over all energy levels of the bath particle, PE

�1� and P+E
�1�

are the projectors on the corresponding subspaces,

tr PE
�1� = nE

�1�, tr P+E
�1� = nE+

�1� , �A10�

and where �̃1 in Eq. �A8� is the remainder of �1.
It is assumed that the unitary operator V responsible for

the interaction operates within the subspace with the projec-
tor P � PE

�1�+P0 � PE+
�1� �this subspace has energy E+�, i.e.,

�V,P � PE
�1� + P0 � PE+

�1� � = 0. �A11�

Then the postcollision density matrix �� of H reads

�� = tr1 V� � �1V†

= � − �rrE+
�1� − rE

�1� 1 − r

n − 1
�nE+

�1� P0 − tr1 VP0 � PE+
�1� V†� .

Clearly, �� commutes with HH. For simplicity, we choose V

such that the degeneracy of � is not resolved, i.e., in the state
��, the occupations of the higher energy levels of H are
equal. This means we need to keep track of the lowest
energy-level occupation �0����0��r� only

r� − r = − A�r − req�, req �
1

1 + �n − 1�e−
 , �A12�

A �
rE

�1�

req�n − 1�
�nE+

�1� − �0��tr1 VP0 � PE+
�1� V†��0�� ,

�A13�

where req is the equilibrium value of r. A can be maximized
over the unitary V �under condition �A11��

Amax =
rE

�1� min�nE+
�1� ,nE

�1��n − 1��
req�n − 1�

. �A14�

Using Eq. �A9� one can show that A�Amax�1: after first
collision H gets closer to its equilibrium state; see Eq. �A12�.
This equation obviously generalizes to subsequent collisions
�we revert from Eq. �A15� to Eq. �A12� for m=1�,

r�m�� − r�m−1�� = �1 − A�m�r − req� , �A15�

It is seen that Eq. �A15� predicts exponential �with respect to
the number of collisions� relaxation toward the equilibrium
value req of r. The approach to equilibrium is governed by
the factor �1−A�n meaning that when �A��1 the effective
number of collisions after which the equilibrium is estab-
lished equals to −1 / �ln�1−A��.

Now the shortest relaxation corresponds to just one colli-
sion and it is reached for A=1, e.g., rE

�1�=req and nE+
�1� =n

−1 in Eq. �A14�. Then the corresponding unitary operator V
is the SWAP operation. The relaxation time in this case
amounts to one intercollision time.

It should be clear that there is no upper limit on the re-
laxation time. The latter can be arbitrary large, e.g., due to V
converging to 1 in Eq. �A13�. Various intermediate cases can
be studied with help of Eq. �A14�. In particular, it is not
difficult to identify regimes, where the relaxation time scales
as �ln n.
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