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The response of a trapping overdamped monostable system to a harmonic perturbation is analyzed, in the
context of stochastic resonance phenomenon. We consider the dynamics of a Brownian particle moving in a
piecewise linear potential with a white Gaussian noise source. Based on linear-response theory and Laplace
transform technique, analytical expressions of signal-to-noise ratio �SNR� and signal power amplification
�SPA� are obtained. We find that the SNR is a nonmonotonic function of the noise intensity, while the SPA is
monotonic. Theoretical results are compared with numerical simulations.
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I. INTRODUCTION

The dynamics of nonlinear periodically driven stochastic
systems has attracted great attention during the last decades.
The interest in these systems is much stimulated by the phe-
nomenon known as stochastic resonance �SR�, where noise
plays a constructive role �1–3�. This effect consists of an
enhancement of sensitivity of a nonlinear system to external
periodical forcing due to random fluctuations. Nowadays the
SR has been found and studied in different physical, chemi-
cal, and biological systems �4–15�. The enhancement of sen-
sitivity is usually understood as nonmonotonic dependence
of the signal-to-noise ratio �SNR�, or the signal power am-
plification �SPA� at the output of nonlinear system, as a func-
tion of the input noise intensity. Accordingly, the phenom-
enon of SR displays itself when SNR or SPA reaches a
maximum at some value of noise intensity and then de-
creases with further growth of fluctuations.

The effect of SR has been observed in various monostable
systems: in a model system with multiplicative noise �16�, in
an array of monostable oscillators �17�, in an underdamped
single-well Duffing oscillator �18�, in a harmonic oscillator
with a weak nonlinearity at higher harmonics �19�, in an
overdamped nonlinear model system �20�, and in a single
metastable state to study the thermal instability in a super-
conducting stripline resonator �21�. Recently, considerable
attention has been focused on Brownian motion in modu-
lated optical trap �22–25� and in bistable confining potentials
�26�. Specifically, in Ref. �22� the Brownian dynamics of an
optically trapped water droplet was investigated across the
transition from overdamped to underdamped regime, in Ref.
�23� the suppression of noise in a noisy optical trap was
theoretically and experimentally investigated, and in Refs.
�24,25� the effects of a modulating laser field on the motion
of an overdamped trapped Brownian particle were observed
and theoretically described. However, most of the previous
work is experimental one and there is a lack of theoretical

investigation on the dynamics of trapped particle, subject to
noise and modulated by an external driving field in a
monostable system with a nonlinear potential profile.

Motivated by these studies we analyze the response of a
trapping overdamped monostable stochastic system to a pe-
riodic signal, in the context of stochastic resonance phenom-
enon. Specifically we consider a Brownian particle moving
in a piecewise linear potential in the presence of a white
Gaussian noise source. Our starting point is the following
Langevin equation

dx

dt
= −

���x,t�
�x

+ ��t� , �1�

with

��x,t� = ��x� − xs�t� , �2�

where s�t�=A cos��0t+�� is the input driving field, ��t� is a
white Gaussian noise source with the usual statistical prop-
erties: ���t��=0, ���t���t+���=2q����, and 2q is the noise
intensity. Here, ��x� is the potential field describing the sys-
tem and x�t� is the position of the trapped Brownian particle.

The canonical example of SR was observed and studied in
the overdamped system �1� for bistable potential profiles
��x� with single potential barrier separating the metastable
states �1–3,27�. This result can be generalized for multistable
potentials with arbitrary number of barriers. The value of
additive noise intensity for which SNR reaches the maxi-
mum, by using an approximated expression for SNR �see Eq.
�5.9� of Ref. �27��, may be expected at 2q��U, with �U as
the height of the potential barrier. In other words, the pres-
ence of potential barrier�s� has been considered as necessary
condition for arising of SR in overdamped systems with ad-
ditive noise, except threshold systems, where the SR phe-
nomenon is known to be present. It is well known also that in
bistable �multistable� systems the nonmonotonic dependence
of SNR on noise intensity is accompanied by nonmonotonic
behavior of SPA.

Recently, in Ref. �28� it was shown that some special kind
of SR can appear in overdamped monostable systems �1�,
where no barrier is present in potential profile ��x�. This
kind of SR can coexist with the conventional SR if the sys-
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tem is multistable. The authors find a nonmonotonic depen-
dence on the noise intensity only for SPA. In very recent
investigations on stochastic resonance in overdamped
monostable systems with different piecewise linear potential
profiles �29,30� it was shown analytically that the SPA and
SNR can have monotonic or nonmonotonic behavior, as a
function of the noise intensity, strongly depending on the
potential profiles.

In the present paper we show that the nonmonotonic de-
pendence of SNR, similarly to that observed for bistable sys-
tems, can be found also in monostable overdamped systems
with a trapping nonlinear potential profile. This result im-
plies the presence of SR-like phenomenon in monostable
overdamped systems driven by a periodic field and a white
noise source. The paper is organized as follows. In the next
section the theoretical approach, based on linear-response
theory �LRT� and Laplace transform technique with the ana-
lytical expressions of SNR and SPA, is presented. In the third
section the comparison between the analytical results and
numerical simulations obtained by integration of Eq. �1�, to-
gether with the probability distributions �PDs� of the particle
position is shown. In the final section we draw the conclu-
sions.

II. THEORETICAL APPROACH

Consider the following piecewise linear monostable po-
tential

��x� = �k1	x	 , 	x	 	 L

k2�	x	 − L� + k1L , 	x	 
 L .

 �3�

This potential profile is monostable and is characterized by
two parameters specifying the slope of potential profile
wells: k1 describes the slope near the minimum for 	x		L
and k2 for 	x	
L. Both values k1 and k2 are always positive,
providing the monostability �single minimum� of the poten-
tial ��x�, while k1 can be greater than k2 and vice versa. For
k1�k2 we have a trapping monostable potential �TMP�,
while for k1�k2 we get a confining monostable potential.

Due to the presence of the periodical driving force in Eq.
�1�, the potential profile of Eq. �3� takes different configura-
tions in time. In Fig. 1 we show these configurations at three
different times, t=0,T /4,T /2, with T= �2
� /�0, for the fol-
lowing parameter values of the potential profile: k1=20, k2
=1 , L=0.1, corresponding to a trapping potential.

To obtain the power spectrum density �PSD� of the output
signal x�t�, the LRT is used assuming that the magnitude A of
the driving signal s�t� is small enough, namely, A
�min�k1 ,k2�. In accordance with LRT �2�, the PSD of the
output process x�t� is

Sx��� = Sx
�0���� +

a2

4
���� − �0� + ��� + �0�� . �4�

The function Sx
�0���� provides the noise platform and the

other term is the power spectral density due to the output
signal with amplitude a. Therefore, the SNR is defined as
follows �2�:

R =
a2

2Sx
�0���0�

. �5�

The function Sx
�0���� is the PSD of the unperturbed system

�1� for s�t�=0 and is defined as the Fourier transform of the
appropriate unperturbed autocorrelation function,

Sx
�0���� =

1






0

�

Kx
�0����cos����d� , �6�

where

Kx
�0���� = �x�t�x�t + ��� . �7�

In the above expression we have taken into account that
Kx

�0���� is an even function. According to the LRT, the am-
plitude of output signal is

a = A	��i�0�	 , �8�

where ��i�� is the susceptibility of the system. Therefore,
the SPA of the input signal s�t� is

� =
a2

A2 = 	��i�0�	2. �9�

The susceptibility is the Fourier transform of the linear-
response function h���,

��i�� = 

−�

�

h���e−i��d� , �10�

while the linear-response function can be expressed in terms
of correlation function of the unperturbed system in accor-
dance with the fluctuation-dissipation theorem,

FIG. 1. �Color online� Trapping piecewise linear monostable
potential ��x , t� �see Eqs. �2� and �3�� for the following set of
parameter values: k1=20, k2=1, and L=0.1. Amplitude and fre-
quency of the periodical forcing are A=0.3 and �=0.1, respec-
tively. The potential is shown at three different times: t=0 �black
solid line�, t=T /4 �red long dashed line�, and t=T /2 �green medium
dashed-dotted line�, with T=2
 /�0. The typical parameter of the
potential profile is H=k1 L=2.
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h��� = −
����

q

dKx
�0����
d�

, �11�

where ���� is the Heaviside function.
The probability density function �PDF� of the unperturbed

process W�0��x , t� satisfies the Fokker-Planck equation �FPE�
�31�,

�W�0��x,t�
�t

=
�

�x
�d��x�

dx
W�0��x,t� + q

�W�0��x,t�
�x

� , �12�

with boundary conditions W�0���� , t�=0. Since we consider
��x�→� with x→ ��, the stationary PDF,

Wst
�0��x� = N exp�−

��x�
q

� , �13�

will be established in the system with time. Here, N is the
normalization factor. Therefore, to find the autocorrelation
function,

Kx
�0���� = 


−�

�

x0Wst
�0��x0�dx0


−�

�

xW�0��x,�	x0�dx , �14�

it is necessary to obtain the transition probability density
W�0��x , t 	x0�, which is the solution of FPE �12� with the ini-
tial conditions W�0��x ,0�=��x−x0�.

For real physical systems the integration in Eq. �10� has to
be performed from zero, because linear-response function,
according to Eq. �11�, exists only if �
0. Therefore the sus-
ceptibility ��i�� in Eq. �10� can be considered as the Laplace
transform of the linear-response function,

��p� = ĥ�p� = 

0

�

h���e−p�d� , �15�

where p= i� is the Laplace variable. On the other hand, we
can obtain the Laplace transform of the linear-response func-
tion by integrating expression �11�. Finally, we get

��i�� =
1

q
�Kx

�0��0� − i�K̂x
�0��i��� , �16�

where Kx
�0��0� is the correlation function at �=0,

Kx
�0��0� = �x2� + mst

2 , �17�

which is expressed in terms of variance and mean value of
the stationary distribution �13�. The PSD �6� also can be

written as the real part of the Laplace transform K̂x
�0��p�,

Sx
�0���� =

1



Re�K̂x

�0��i��� . �18�

In the present paper the Laplace transform of the autocor-
relation function is obtained for the monostable potential of
Eq. �3�. The Laplace transform method for the solution of the
FPE is described in Refs. �32–35�. In particular, in Ref. �33�
the exact Laplace transform of the transition probability den-
sity is obtained for piecewise linear potential profile consist-
ing of an arbitrary number of linear parts. Using this ap-

proach we obtain the following exact expression for the
Laplace transform of the unperturbed autocorrelation func-
tion:

K̂x
�0��p� =

�x2�
p

+

�
i=0

9

Ai

B
, �19�

where �x2� and the coefficients Ai and B have the following
expressions:

�x2� =
q

2p��2

2 + 2h� + h2�2 − �h2 + 2h + 2���3

1 − ��
, �20�

A0 =
4q����1 − 4��

�1 − ���
,

A1 = −
8q��1 − ����1 − ���1

2 + �2
2��1

�1 − ���
,

A2 =
2q�2���2 − �� − 4�� + ���2 − ���1�

�1 − ���
,

A3 = −
4q�1��2 − ���2

2 + ���2 + �2 − ���2��
�2�1 − ����1 + �2�

,

A4 = −
4q�1�1

2�2 − 3���1 − ��
�2�1 − ����1 + �2�

,

A5 =
2q���2 − ��� + 2��2 − ���2 + 2��1 − ���

�2�1 − ����1 + �2�
,

A6 =
q�1�2 − ������1 + �2� − 6 + 2� − 2�2�

��2�1 − ����1 + �2�
,

A7 =
2q��1 + ��2 − �� − 2�2���2

��2�1 − ����1 + �2�
,

A8 =
2q��3 + 4� − 2�2� − ��2 + 3���

��2�1 − ����1 + �2�
,

A9 =
4q�

�2�3�1 + �2�
, �21�

B = p2�1 + �2�2��2 − ���2 − ��1 − � + ��2�� . �22�

In Eqs. �20�–�22� h=k1L /q, �=k1
2 /2pq, �1=�1+4pq /k1

2,
�2=�1+4pq /k2

2, �=k2 /k1, and

� = 1 − eh, � = 1 − eh�1,

�1 = �1 − � −
1

�1 − �
, �2 = �1 − � − �1 − � . �23�
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III. RESULTS: THEORETICAL ANALYSIS
AND NUMERICAL SIMULATIONS

With the above analytical result �Eq. �19�� for the auto-
correlation function, we can obtain the PSD �Eq. �18�� and
the SNR �Eq. �5��. In Fig. 2 the signal-to-noise ratio R is
plotted versus the dimensionless input noise intensity q /H
for two different sets of potential parameter values k1, k2, and
L. We indicate as potential profile 1 that obtained setting in
Eq. �3� k1=20, k2=1, L=0.1, and potential profile 2 that
obtained setting k1=25, k2=3, L=0.2. We get curve 1 �green
solid line� for potential profile 1 and curve 2 �red solid line�
for potential profile 2. H=k1L is a parameter of the potential
of Eq. �3�, useful to define the trap �see Fig. 1�. The ampli-
tude and frequency of the periodical driving force are A
=0.3 and �0=0.1, respectively. As one can see from Fig. 2,
for large q the SNR is a decreasing function of q, similarly to
the other cases of monostable potentials considered earlier
�see Ref. �29��. However, for intermediate values of noise
intensity, namely, 0.1H�q�0.5H, a nonmonotonic behavior
of the SNR appears. It looks similar to the effect of SR
observed in bistable systems with barrier �see, for example,
Refs. �1,2��.

In the same Fig. 2 the results of numerical simulations
�full circles� are shown. In particular, the numerical SNRs
have been obtained from Eq. �1�, by calculating the time
series for the position of the Brownian particle, and succes-
sively by using the fast Fourier transform technique �36�.
The maximum simulation time is equal to tmax=628. The
agreement between theoretical and numerical results is quite
good. The properties of this SNR behavior depend on the
parameter values of the investigated monostable potential of
Eq. �3�. The nonmonotonic behavior of SNR is observed
when k1
6.25k2, as it results from numerical evaluation of
Eqs. �5�, �18�, and �19�. The maximum of SNR is reached at
noise intensity q��0.35H for curve 1 and q��0.45H for

curve 2. This maximum is more pronounced for the potential
profile shown in Fig. 1 and characterized by very low pen-
dency for 	x	
L. In particular, for curve 1 in Fig. 2 we can
note an enhancement in the SNR of about one order of mag-
nitude, with noise intensity increasing from q=0.1H to q�

=0.35H.
In Fig. 3 we report the output signal power and the output

noise power as functions of dimensionless input noise inten-
sity q /H for potential profiles 1 and 2, as computed from
numerical integration of Eq. �1�. From inspection of these
figures we see that in the low dimensionless noise intensity
regime �q	q��, the rate of increase of the output signal
power exceeds the corresponding rate of the output noise
power, while the opposite happens in the high dimensionless
noise intensity regime �q
q��. It is this change of rate in
correspondence of q� in both potential profiles that gives rise
to the peak in the SNR behavior of Fig. 2.

In spite of the similar behavior shown by SNR in TMP
and bistable systems, the mechanism of the SR observed in
the TMP should be different from that occurring in bistable
systems, where the key parameter of the SR effect is the
height of potential barrier. In the considered monostable sys-
tem there is no barrier; and the force, originating from the
potential, always tends to push the Brownian particle toward
the equilibrium point x=0, corresponding to the minimum of
the potential profile of Eq. �3�. The SR in TMP appears be-
cause of the special shape of the potential, which defines the

FIG. 2. �Color online� SNR �Eq. �5�� of the system output of Eq.
�1� versus dimensionless noise intensity q /H, for the particle posi-
tion x�t� moving along the trapping monostable potential of Fig. 1.
The amplitude and the frequency of the driving periodic field are
A=0.3 and �0=0.1, respectively. Curve 1 �green solid line� corre-
sponds to k1=20, k2=1, L=0.1 �potential profile 1� and curve 2 �red
solid line� corresponds to k1=25, k2=3, L=0.2 �potential profile 2�.
The solid lines are the theoretical results obtained from Eq. �5�,
while the dots are the results of simulations obtained by numerical
integration of Eq. �1�.

FIG. 3. Output signal power and output noise power as func-
tions of dimensionless input noise intensity q /H for two potential
profiles, as computed from numerical integration of Eq. �1�. �a�
Potential profile 1 �k1=20, k2=1, L=0.1�; �b� potential profile 2
�k1=25, k2=3, L=0.2�. The values of other parameters are the same
as in Fig. 2.
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strength of the force. Namely, the return force in the area
located far from the equilibrium point should be much
weaker than that close to the equilibrium point. For the po-
tential of Eq. �3�, the strength of the force changes in the
points x= �L. For k1
6.25k2, this change is large enough
and a maximum of SNR as a function of noise intensity is
observed.

Such a shape of potential profile is responsible for system
properties similar to those found in the dynamics of excitable
systems, where the SR was also observed �1,37–39�. The
excitable systems also have only one stable state. Under a
small perturbation these systems relax quickly to the stable
state. Conversely, a large �over threshold� perturbation
switches the system to an excited state, which is unstable and
decays to the stable state after a relatively long time. For the
potential profile of Eq. �3�, when k1�k2 the system of Eq.
�1� returns to the stable state relatively quickly if the pertur-
bation is smaller than H. When the perturbation exceeds the
value H, the system remains in the region 	x	
L for a rela-
tively long period of time, because the return force now is
weak. However, the similarities between our system and ex-
citable systems are only qualitative. In fact, the equations
describing excitable and threshold systems are different from
Eq. �1�.

Using the Laplace transform of the autocorrelation func-
tion �see Eq. �19��, we can obtain the SPA for the investi-
gated monostable system. The plot of SPA as a function of
the dimensionless input noise intensity is shown in Fig. 4.
The parameters of the system for curves 1 and 2 in this figure
are the same as in Fig. 2. For the potential profile 2 �k1=25,
k2=3, L=0.2�, theoretical and numerical results show a very
good agreement �see red curve and black circles in Fig. 4�.
For the potential profile 1 �k1=20, k2=1, L=0.1; see Fig. 1�,
we obtain a little overestimation of the numerical values of
SPA in comparison with the analytical results �see green
curve and blue circles in Fig. 4�. This should be ascribed to

the strong variation in the slope of the potential profile
around the point 	x	=L, which causes a strong nonlinearity
producing a large output signal. The results shown in Figs. 2
and 4 indicate that the linear-response theory, which provides
exact results only for the case of harmonic potential, works
very well with the considered nonlinear potential profile �Eq.
�3��.

The reason of different behaviors of the SNR and SPA
versus the noise intensity should be ascribed to the peculiar-
ity of the trapping potential profile. Specifically, the presence
in the potential profile of two regions with different slopes
forces the Brownian particle to remain for a longer time in
those regions characterized by low pendency �	x	
L�. This
physical picture corresponds to that obtained in bistable con-
fining potential for conventional SR, even if the trapping
potential profile is not confining �26�. This gives the non-
monotonic behavior of SNR. On the other hand, the SPA has
a monotonic increasing behavior with increasing noise inten-
sity, just because the trapping potential profile is not confin-
ing. In fact, the SPA has a nonmonotonic behavior in confin-
ing potential profiles as, for example, in the overdamped
nonlinear oscillator �28–30�.

The monostable system considered in Ref. �28� exhibits a
nonmonotonic behavior of SPA as a function of the noise
intensity, called by the authors “intrawell SR.” The
monostable potential used in Ref. �28� corresponds to the
potential profile of the mixed system �see Fig. 3 in Ref. �29�,
and Ref. �30�� and to the confining potentials in Fig. 5 �pink
shaded area�, with k1�k2 in Eq. �3�. In Refs. �29,30�, the
SNR of this mixed system or the so-called confining poten-
tial shows monotonic behavior as a function of the noise

FIG. 4. �Color online� SPA �Eq. �9�� of the system output of Eq.
�1� versus dimensionless noise intensity q /H, for the particle posi-
tion x�t� moving along the trapping monostable potential of Fig. 1.
The amplitude and the frequency of the driving periodic field are
A=0.3 and �0=0.1, respectively. Curve 1 �green solid line� corre-
sponds to k1=20, k2=1, L=0.1 �potential profile 1� and curve 2 �red
solid line� corresponds to k1=25, k2=3, L=0.2 �potential profile 2�.
The solid lines are the theoretical results obtained from Eq. �9�,
while the dots are the results of simulations obtained by numerical
integration of Eq. �1�.

FIG. 5. �Color online� The two shaded areas of the parameter
space �k1 ,k2� indicate the regions where maximum of SPA or SNR
can be observed. The amplitude and the frequency of the driving
periodic field are A=0.3 and �0=0.1, respectively. In the
monostable system of Eq. �3�, the maximum of SPA is observed for
k1	0.305k2 �k2
3.27k1�, corresponding to confining monostable
potentials; while the maximum of SNR is observed for k1


6.25k2 �k2	0.16k1�, corresponding to trapping monostable po-
tentials. In the central white area, which is for 0.16k1	k2

	3.27k1, SNR and SPA have monotonic behavior as a function of
the dimensionless noise intensity q /H.
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intensity. Moreover, in Ref. �30� other two potential profiles
were investigated, namely, the so-called hard-soft nonlinear
potential profile and a hybrid of two hard systems �see Eq.
�52� and Figs. 5–9 in Ref. �30��. Both nonlinear systems
show nonmonotonic behavior of SNR and SPA as a function
of the noise intensity, with minima for SPA �called stochastic
antiresonance� and maxima for SNR, or minimum and maxi-
mum of SPA depending on the values of the system param-
eters.

Analyzing the results obtained in Refs. �28–30� and in the
present paper we conclude that in monostable overdamped
systems the behavior of SNR and SPA can be very different,

strongly depending on the shape of the potential profile. Spe-
cifically the shape of the trapping part of the potential profile
�compare, for example, the potential in Fig. 1 of this paper
with that in Fig. 7 of Ref. �30�� plays a crucial role in the
appearance of the so-called stochastic antiresonance. In the
monostable system investigated here �Eq. �3��, the parameter
space �k1 ,k2� is divided into three nonoverlapping areas �see
Fig. 5�, namely, �i� for k2
3.27k1, maxima of SPA are ob-
served in confining monostable potential profiles �k1�k2�;
�ii� for 0.16k1	k2	3.27k1, monotonic behavior both of
SNR and SPA are observed; and �iii� for k2	0.16k1, maxima

FIG. 6. PD for the position x of the Brownian particle moving
along the trapping monostable potential profile 1 of Fig. 1 �k1=20,
k2=1, L=0.1�. The PD is shown at time t= tmax=628, for three
different values of the noise intensity, namely, q /H=0.15,0.35,1.
The first and third noise intensities correspond to small values of
SNR, while the second value gives the maximum of SNR �see green
solid line and blue circle in Fig. 2�. Amplitude and frequency of the
input periodical signal are A=0.3 and �0=0.1, respectively.

FIG. 7. PD for the position x of the Brownian particle moving
along the trapping monostable potential profile 2 �k1=25, k2=3, L
=0.2�. The PD is shown at time t= tmax=628, for three different
values of the noise intensity, namely, q /H=0.1, 0.45, 1. The first
and third noise intensities correspond to small values of SNR, while
the second value gives the maximum of SNR �see red solid line and
black circle in Fig. 2�. Amplitude and frequency of the input peri-
odical signal are A=0.3 and �0=0.1, respectively.
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of SNR are observed in trapping monostable potential pro-
files �k1�k2�.

To complete our analysis, we calculated at time t= tmax
=628 the PD for the position x of the Brownian particle
moving along the trapping monostable potential in Fig. 1.
This time tmax is sufficiently long to ensure that the stationary
probability distributions are established. For our numerical
calculations of the PDs we choose as initial condition x=0
for the particle position and random values for the phase �,
uniformly distributed in the interval �0,2
�. Specifically, we
show in Fig. 6 the PD for the potential profile 1, with k1
=20, k2=1, L=0.1, at time t=628, for three different values
of the noise intensity, namely, q /H=0.15,0.35,1. The first
and third noise intensities correspond to small values of
SNR, while the second value gives the maximum of SNR
�see green solid line 1 and blue circle in Fig. 2�. We note that
at low noise intensity the particle is mostly confined around
the minimum �x=0� of the potential profile 1, with few tra-
jectories showing escape of the Brownian particle from the
well toward regions with 	x	
L. By increasing the noise
intensity, more trajectories show escape from the well and, as
a consequence, the probability distributions show fat tails.
By increasing the noise intensity, the probability of finding
the Brownian particle in the trap decreases, while the prob-
ability of finding the particle outside the trap increases. A
particular noise level q̃ exists for which the above-mentioned
probabilities are equal. In fact, by equating these probabili-
ties, calculated using the stationary PDF of Eq. �13�, we
obtain

2N
q̃

k1
�1 − e−H/q̃� = 2N

q̃

k2
e−H/q̃, �24�

H

q̃
= ln�1 +

k1

k2
� . �25�

From this equation and for potential profile 1 we find q̃
�0.33H, which is very close to the value of q� for which the
SNR has a maximum in the trapping monostable potential
profile 1.

In Fig. 7 we report the PD for potential profile 2 �k1=25,
k2=3, L=0.2� at the same time t=628, for three different
values of the noise intensity, namely, q /H=0.1,0.45,1. The
first and third noise intensities correspond to small values of

SNR, while the second value gives the maximum of SNR
�see red solid line and black circle in Fig. 2�. From Eq. �25�
and for this potential profile we obtain q̃�0.45H, which co-
incides with the value of q� for which the SNR has a maxi-
mum in the trapping monostable potential profile 2. The po-
tential profile 2 produces a greater confinement. As a
consequence, the PDs show a Gaussian behavior for very
low noise intensity and, for higher noise intensities, tails less
fat than those shown for potential profile 1.

IV. CONCLUSIONS

We studied the response of a trapping overdamped
monostable system to a periodic driving force, in the pres-
ence of a white Gaussian noise source and for a piecewise
linear potential. Two standard quantifiers of stochastic reso-
nance phenomenon have been analyzed, namely, signal-to-
noise ratio and spectral power amplification. The theoretical
approach used is based on linear-response theory and
Laplace transform technique. Exact analytical expressions,
within the LRT, are obtained for SNR and SPA. Theoretical
results are compared with numerical ones. We find nonmono-
tonic behavior of the signal-to-noise ratio as a function of the
noise intensity, while the signal power amplification shows
monotonic behavior versus the noise intensity. This different
behavior of SNR and SPA, which depends on the peculiarity
of the trapping potential profile, differs from conventional
SR observed in bistable and multistable potential profiles,
where both SNR and SPA show nonmonotonic behavior as a
function of the noise intensity.

Understanding the effects of modulation of trapping po-
tential profiles on the motion of a Brownian particle can be
very important in optical and magneto-optical traps, super-
conducting resonators showing monostability, and quantum
mesoscopic systems. Moreover, the optical trapping tech-
nique gives the possibility to generate a desirable landscape
of the potential energy to study experimentally a micrometer-
sized Brownian particle moving in a modulated trap.
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