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The statistics of self-avoiding random walks �SAWs�, consisting of up to N=1280 steps, on deterministic
fractal structures with infinite ramification, modeled by Sierpinski cubic lattices, in the presence of a finite
temperature is investigated as a model for polymers absorbed on a disordered medium. Thereby, the three-
dimensional Sierpinski sponge is defined by two types of sites with energy 0 and ��0, respectively, yielding
a deterministic fractal energy landscape. The probability distribution function of the end-to-end distance of
SAWs is obtained and its scaling behavior studied. In the limiting case of temperature T→�, the known
behavior of SAWs on regular cubic lattices is recovered, while for T→0 the resulting scaling exponents are
confronted with previous calculations for much shorter linear chains based on the exact enumeration technique.
For finite temperatures, the structural behavior of SAWs in three dimensions is compared to its two-
dimensional counterpart and found to be intermediate between the two limiting cases �T→0 and T→�,
respectively�, where the characteristic exponents, however, display a nontrivial dependence on temperature.
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I. INTRODUCTION

Linear polymers made of similar monomer units in a di-
luted solution display only short-range, repulsive interactions
if the solvent is able to screen all long-range forces between
them. In such a good solvent, the linear chain can be accu-
rately modeled by a self-avoiding random walk �SAW�, for
which many statistical properties are known �1,2�. However,
much less is known in case of linear polymers embedded in
disordered media. In fact, the understanding of how linear
polymers behave in a disordered medium, is not only inter-
esting from a theoretical point of view, but it is also relevant
for understanding transport properties of polymeric chains in
porous media, such as enhanced oil recovery, gel electro-
phoresis, and gel permeation chromatography �2–4�. Typical
examples of models studied so far include SAWs on the in-
cipient percolation cluster �5,6�, a random fractal, for which
the critical exponents are known only numerically. Despite
these achievements, many challenging theoretical issues re-
main to be understood, among which we draw our attention
to the structural behavior of SAWs on deterministic fractals.

However, studying SAWs on substrates displaying self-
similarity, one is soon faced with models whose exact solu-
tion becomes hard to obtain despite possible approaches such
as renormalization group analysis and series expansion. In
this work, we focus on Sierpinski carpets �two-dimensional
�2D�� and Sierpinski sponges �three-dimensional �3D��,
which, being of infinite ramification, are particularly intrigu-
ing fractal structures as no renormalization group techniques
are known for them. Here, “infinite ramification” refers to
the fact that an infinite number of cut operations is necessary
to disconnect any given subset of the structure. However, the
interest in these fractals extends well beyond possible renor-
malization group techniques since SAWs on fractal struc-
tures have critical exponents which exhibit universality �1�.

In this context, it was found that the so-called des Cloizeaux
relation �7� neither holds for Sierpinski carpets nor for Sier-
pinski sponges �8�. In a recent work, one of us has shown
that, for two-dimensional Sierpinski lattices, the characteris-
tic exponents display a particular dependence on temperature
and consequently on the underlying fractal space �9�.

Intrigued by this interesting finding in two dimensions,
we study in this work the three-dimensional counterpart.
Thus, by investigating SAWs on a Sierpinski sponge in the
presence of a finite temperature, we are able to shed some
light on the role that the underlying space plays on the sta-
tistics of linear polymers. The Sierpinski sponge is defined
by allowed sites of energy 0 and by forbidden sites of ��0,
therewith yielding a deterministic fractal energy landscape.

SAW configurations are generated via the reptation algo-
rithm �10� modified by a finite acceptance probability
min�1,exp�−�E /T��. Here, �E is the energy difference be-
tween the attempted and the current configuration. In con-
trast to the exact enumeration method, the reptation algo-
rithm, even though not exact, allows us to study quite long
chain lengths, up to N=1280 steps �limited by the size of the
fractal lattice that can be generated�. It should be noted that
there exist other, more involved, accurate algorithms for
studying very long SAW chains, as for instance the method
by Berretti and Sokal �11� or the pruned-enriched Rosenbluth
method by Grassberger �12�. Taking into account the prob-
lem of ergodicity known for regular lattices, where certain
chain conformations are impossible to occur with a reptation
scheme �13�, we assess the validity of our results by applying
the reptation method to the case of regular lattices in both
two and three dimensions, for which the corresponding scal-
ing exponents are well known. From this test, we can con-
clude that reptation yields accurate results, indicating that
possible nonergodic configurations are not important for the
present problem, i.e., that the true asymptotic behavior of
SAWs can be detected with sufficient accuracy for our
present purposes.

The paper is organized as follows: in Sec. II, we summa-
rize the quantities of interest, their scaling functions as well*fritsche@tphys.uni-heidelberg.de
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as the rules of the reptation algorithm. The results are dis-
cussed in Sec. III and the conclusions are drawn in Sec. IV.

II. MODEL

SAW configurations of chain lengths up to N=1280 steps
at various temperatures T are generated on a three-
dimensional lattice of linear size L=3�36=2187, corre-
sponding to a Sierpinski sponge of the sixth generation. For
our purposes, we chose the most common and symmetric
�small lacunarity� Sierpinski cubic lattice, where the central
subunit and its six nearest-neighbor subunits are not present
�14�. An illustrative example is shown in Fig. 1. In order to
generate the energy landscape, the allowed sites are assigned
an energy 0, while the forbidden ones are assigned an energy
��0. We minimize boundary effects by applying periodic
boundary conditions. The initial SAW configuration is taken
as a straight rod along the center hole of the fractal. Before
taking data on the spatial SAW conformations the SAW is
thermalized by a sufficient number of preliminary reptation
steps. Subsequently, all resulting SAW configurations are
taken into account when performing the statistical average of
the end-to-end distance, including those for which no move
of the chain has taken place �10�. The number of reptation
steps performed is of the order of 1010–1011.

We apply the reptation algorithm to generate SAW con-
figurations, which consists of two steps: �a� picking up at
random one of the two ends of the chain, and �b� choosing
one of its nearest-neighbor lattice sites at random as its pos-
sible new location. If the nearest-neighbor site is empty, the
energy difference �E between the attempted and current
chain configurations is calculated and the reptation step is
performed with probability min�1,exp�−�E /T��, meaning
that the whole chain is moved along its track. Otherwise, or
if the nearest-neighbor site is occupied, the chain remains at
its actual position �in the special case where the occupied
nearest-neighbor site corresponds to the other end of the
chain, the site is considered empty since it becomes free once
the chain moves as a whole�. In any case, the process is
repeated from step �a� all over again.

To characterize the spatial extension of SAWs on the
square lattice, we consider the topological end-to-end dis-
tance � after N steps of the walk. The distance � between two
points located at coordinates �x1 ,y1 ,z1� and �x2 ,y2 ,z2� is de-
fined as

� = �x1 − x2� + �y1 − y2� + �z1 − z2� . �1�

The present � metric is equivalent to the more standard Eu-
clidean or r metric, i.e., r=��x1−x2�2+ �y1−y2�2+ �z1−z2�2.
From a computational point of view it has the advantage that
fluctuations are smaller, therewith permitting a more accurate
determination of the characteristic exponents defined below.

The end-to-end distance ��N ,T� for a given temperature
T, averaged over all SAW configurations of N steps, denoted

as �̄�N ,T�, obeys the scaling relation �15�

�̄�N,T� 	 N��T� N 	 1, �2�

which defines the possibly temperature-dependent Flory ex-
ponent ��T�. The probability distribution function for the
end-to-end distance for a given temperature T, P�� �N ,T�,
normalized according to 
P�� �N ,T�d�=1, also obeys a scal-
ing form given by

P���N,T� =

B�T�

�
F� �

�̄�N,T�
,T� , �3�

where the factor 
=4� comes from the angular integration
and F�x ,T� is the temperature-dependent scaling function

F�x,T� =
xg1�T�+d̃�T� for x � 1

xg2�T�+d̃�T� exp�− b�T�x
�T�� for x 	 1,
� �4�

defining the possibly temperature-dependent characteristic
exponents g1�T�, g2�T�, and 
�T�. The effective temperature-

dependent fractal dimension d̃�T� of the substrate, which en-
ters Eq. �4�, is given by

d̃�T� =
ln�20 + exp�− �/T��

ln 7
. �5�

It takes into account that, for finite temperature T, the sites
with energy ��0 are accessed with a finite probability
exp�−� /T�, so that, on average, the accessible area A�� ,T�
within some distance � increases as A�� ,T���d̃�T�. Note that,

for T→0 and T→�, the correct fractal dimensions d̃�T=0�
=ln 20 / ln 7 �Sierpinski sponge� and d̃�T=��=ln 21 / ln 7=3
�regular square lattice� are obtained.

III. RESULTS

We first analyze the average end-to-end distance �̄�N ,T�
of the SAWs for various chain lengths N and temperatures T
according to Eq. �2� in order to determine the Flory exponent
��T� as a function of temperature T. In Fig. 2, we show ��T�
vs temperature T, where ��T�=0.59 is found independent of
T. This is consistent with the expected values ��T→0�
�0.588 and ��T→���0.58�0.03 �14�. Thus, we assume a
constant value of ��T� in the following.

FIG. 1. Illustration of a three-dimensional Sierpinski sponge as
obtained after the third iteration. Sites with energy 0 build up the
lattice, while those with ��0 represent the lattice’s holes.
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We discuss the analysis of the distribution function
P�N ,T� with the goal of determining the characteristic expo-
nents g1�T�, g2�T� as well as 
�T� as a function of tempera-
ture T. In Fig. 3, we exemplify this analysis by showing the
distribution function for the longest chain length studied, N
=1280, and three temperatures T=� �corresponding to the
regular cubic lattice�, T=� and T=0 �corresponding to the
Sierpinski sponge�. The value of the characteristic exponent
g1�T� is determined from such plots for various chain lengths

N and temperatures T by fitting the slope of the part
� /N��T��1.

The characteristic exponents g2�T� and 
�T�, governing
the behavior of the distribution function for � /N��T�	1, need
to be determined in a more careful way by separating the
power law from the exponential regime in the distribution
function. Here, we exploit the normalization 
P�� �N ,T�d�
=1 and the fact that the second moment 
�2P�� �N ,T�d�
=N2��T� to determine the constants b�T� and B�T� in Eqs. �3�
and �4�. Then, by plotting the distribution function as

Y�y,T� � �b�T���g2�T�+d̃�T��/
�T��
B�−1�P���N�

�exp�− ��b�T��1/
�T��/N��T��
�T��

versus y��b�T��1/
�T�� /N��T� in a double logarithmic plot,
the exponent g2�T� can be read off from the relation

Y�y ,T��yg2�T�+d̃�T� and adjusted until the above relations Eqs.
�3� and �4� are satisfied. The accuracy of the results obtained
this way can be assessed by plotting

X�x,T� � − ln��b�T���g2�T�+d̃�T��/
�T��
B�T��−1�P���N,T�

���b�T��1/
�T��/N��T��−�g2�T�+d̃�T���

versus x��b�T��1/
�T�� /N��T� in a double logarithmic plot,
from which the exponent 
�T� can be determined, since it is
expected to scale as X�x ,T��x
�T� �for details of this analysis
see �6��. As an example, we show in Fig. 4 the scaling ansatz
for chain length N=1280 and temperature T=�.

Applying the analysis discussed above, we determine the
values for g1�T�, g2�T�, as well as 
�T� for various tempera-
tures T and chain lengths N. The numerical results for g1�T�
and g2�T� are shown in Fig. 5 and display a nontrivial be-
havior between the known limiting cases T→0 �correspond-
ing to the Sierpinski sponge� and T→� �corresponding to
the regular cubic lattice�, indicated by dashed lines. Regard-
ing the values g1�T=0�=0.38�0.02 and g2�T=0�
=0.42�0.036, they have to be compared with the critical
exponents obtained by exact enumeration g1

EE�T=0�
=0.16�0.05 and g2

EE�T=0�=0.1�0.05 �14�. It should be
noted that the discrepancy between the respective critical ex-
ponents can be attributed to the different chain lengths con-
sidered in each calculation, as we studied chain lengths up to
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FIG. 2. Plot of the Flory exponent ��T� vs temperature T. The
behavior is consistent with a temperature-independent value of
��T��0.588, shown as the horizontal line. The estimated values are
based on simulations for N=160, 320, 640, and 1280 with the error
bars indicating the estimated error
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FIG. 3. Plot of the distribution function �P�� �N ,T� vs � /N��T�,
exemplified for N=1280 and three values of temperature T: �a� T
=� �regular square three-dimensional lattice�, �b� T=�, and �c� T
=0 �Sierpinski sponge�. The functional form obtained for � /N��T�

�1 is determined by the characteristic exponent g1�T� and shown
as the dashed line, whereas the functional form for � /N��T�	1 is
determined by the exponents g2�T� and 
�T� and displayed as the
dotted line.
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FIG. 4. Plot of the scaling function Y�y ,T� vs y, which is ex-

pected to scale as Y�y ,T��yg2�T�+d̃�T� for a properly chosen value of

�T�. The fit is shown as the dashed line. The inset shows a detailed
plot to estimate the accuracy of the obtained value of g2�T�, where
X�x ,T� is expected to scale as X�x ,T��x
�T�.
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N=1280 in contrast to the much shorter exact enumeration
chain lengths. The present data are however consistent with
a recent work, where the critical exponent g1�T=0�
=0.33�0.05 has been determined both by the reptation
method alone as well as by the mixing of reptation with pivot
moves �8�. Corresponding to the previously studied two-
dimensional Sierpinski carpet, in three dimensions g1�T� de-
creases significantly earlier than g2�T� as temperature T is
increased. This indicates that the probability of compact
SAW configurations �which is mainly determined by g1�T��
is much more influenced by a finite temperature T than the
probability of SAW configurations of medium size �which is
mainly determined by g2�T��.

In Fig. 6, we display the numerically obtained values for

�T�. Note that the apparent decrease in 
�T� with T might be
explained by the apparent decrease in ��T� with T �cf. Fig. 2�
according to the Fisher relation. From our simulations, we
conclude that 
�T� is approximately independent of T, which
means that the probability of elongated SAW configurations
is not �or hardly� influenced by a finite temperature T.

IV. DISCUSSION

We study the statistics of SAWs on deterministic fractal
structures with infinite ramification modeled by three-

dimensional Sierpinski cubic lattices in the presence of a
finite temperature, therewith creating a deterministic fractal
energy landscape. By extensive reptation simulations, we
measure the average spatial extension of the SAWs in this
energy landscape for various chain lengths N and tempera-
tures T, and determine the characteristic exponents ��T�,
g1�T�, g2�T�, and 
�T� as functions of temperature T. In the
limiting case of temperature T→�, the known behavior of
SAWs on regular cubic lattices is recovered. For T=0, the
obtained value for g1�T=0�=0.38�0.02 is in agreement
with a previous work applying both the reptation method
alone and a mixing of reptation with pivot moves. To our
knowledge this is the first report of g2�T=0�=0.42�0.036
for chain lengths up to N=1280. For finite temperatures, the
structural behavior is found to be intermediate between the
two limiting cases: Since g1�T� decreases significantly earlier
as temperature T is increased, the probability of compact
SAW configurations �which is mainly determined by g1�T��
is much more influenced by a finite temperature T than the
probability of SAW configurations of medium size �which is
mainly determined by g2�T��.
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