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Surface pattern formation and scaling described by conserved lattice gases
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We extend our 2+ 1-dimensional discrete growth model [Odor ef al., Phys. Rev. E 79, 021125 (2009)] with
conserved, local exchange dynamics of octahedra, describing surface diffusion. A roughening process was
realized by uphill diffusion and curvature dependence. By mapping the slopes onto particles, two-dimensional
nonequilibrium binary lattice model emerges, in which the (smoothing or roughening) surface diffusion can be
described by attracting or repelling motion of oriented dimers. The binary representation allows simulations on
very large size and time scales. We provide numerical evidence for Mullins-Herring or molecular-beam epitaxy
class scaling of the surface width. The competition of inverse Mullins-Herring diffusion with a smoothing
deposition, which corresponds to a Kardar-Parisi-Zhang (KPZ) process, generates different patterns: dots or
ripples. We analyze numerically the scaling and wavelength growth behavior in these models. In particular, we
confirm by large size simulations that the KPZ type of scaling is stable against the addition of this surface
diffusion, hence this is the asymptotic behavior of the Kuramoto-Sivashinsky equation as conjectured by field
theory in two dimensions, but has been debated numerically. If very strong, normal surface diffusion is added
to a KPZ process, we observe smooth surfaces with logarithmic growth, which can describe the mean-field
behavior of the strong-coupling KPZ class. We show that ripple coarsening occurs if parallel surface currents
are present, otherwise logarithmic behavior emerges.
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I. INTRODUCTION

In nanotechnologies, large areas of nanopatterns are
needed, which can be fabricated today only by expensive
techniques, e.g., electron-beam lithography or direct writing
with electron and ion beams. Besides the conventional “top-
down” technologies, which use masks, photoresists, etc. to
create structures on the surfaces, nowadays “bottom-up” ap-
proaches are getting close to achieve the same results more
efficiently. In that case, the self-assembly of patterns of large
areas is facilitated in a cost effective way [1]. This has led
reopening of the research for fundamental theoretical under-
standing of the ion-beam-induced surface patterning and
scaling [2], which was flourishing at the end of the previous
century [3,4]. Although the basic universality classes and
important models have been explored, many notoriously dif-
ficult fundamental questions have been unanswered. Pertur-
bative renormalization-group methods and analytical tools
have limited applicability and precise numerical simulations,
approaching asymptotic scaling regimes, were feasible in
one dimension mainly.

One of the most fundamental problems of kinetic rough-
ening can be characterized by the Kardar-Parisi-Zhang
(KPZ) equation [5]. The KPZ has been found to describe
other important physical phenomena such as randomly
stirred fluid [6], dissipative transport [7,8], directed polymers
[9], and the magnetic-flux lines in superconductors [10].
Therefore, we started our studies by setting up the simplest
possible microscopic model exhibiting this behavior [11,12].

The KPZ is a nonlinear stochastic differential equation,
describing the dynamics of growth processes in the thermo-
dynamic limit specified by the height function A(x,?),
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ah(x,t) =v + oV2h(x,1) + M[ VR, + p(x,0). (1)

Here, v and N, are the amplitudes of the mean and local
growth velocities, respectively, o is a smoothing surface-
tension coefficient, and z roughens the surface by a zero-
average, Gaussian noise field exhibiting the variance

((x,07(x',1')) =2D & (x = x")(t = 1"). (2)

We denote the spatial dimensions of the surface by d and the
noise amplitude by D. The pure KPZ equation is exactly
solvable in 1+1d [9], but in higher dimensions only approxi-
mate solutions are available (see [4]). In d> 1 spatial dimen-
sions due to the competition between the roughening and
smoothing, models characterized by Eq. (1) exhibit a rough-
ening phase transition between a weak-coupling regime (\,
<\3), governed by the \,=0 Edwards-Wilkinson (EW) fixed
point [13], and a strong-coupling phase. The strong-coupling
fixed point is inaccessible by perturbative renormalization
method. Therefore, the KPZ phase space has been the subject
of controversies and the value of the upper critical dimension
is an active field of studies for a long time.

Mapping of surface growth onto reaction-diffusion system
allows effective numerical simulations and better under-
standing of basic universality classes [14—16]. The principal
aim of this paper is to show that some of most fundamental
growth processes can be well described by the simplest, re-
stricted solid on solid (RSOS) model with Ah= +1. This
strong condition enables a mapping onto binary lattice gases
and facilitates to create fast algorithms. We will discuss mod-
els, which follow universal scaling laws and exhibit pattern
formation. Although the understanding of coarsening phe-
nomena [ 17] of surface patterns has been developing rapidly
by continuum approaches [18] and the agreement with the
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FIG. 1. (Color online) Mapping of the 2+ 1-dimensional surface
diffusion onto a 2d particle model (bullets). Surface attachment
(with probability p) and detachment (with probability ¢) correspond
to Kawasaki exchanges of particles or to anisotropic migration of
dimers in the bisectrix direction of the x and y axes. The crossing
points of dashed lines show the base sublattice to be updated. Thick
solid line on the surface shows the y cross section, reminding us to
the one-dimensional rooftop model. When the shown desorption or
absorption steps are executed simultaneously, they realize a surface
diffusion step of size s=3 along the y axis. This corresponds to a
pair of dimer movement, a repulsion in case of this smoothing
reaction.

ion-beam-induced nanopattern experiments is improving
[19], the identification of the various coarsening scenarios is
still a theoretical challenge [20]. Our approach is based on
the KPZ models we presented very recently [11,12], hence
for the sake of completeness, we review them now.

In one dimension, a discrete RSOS realization of the KPZ
growth is equivalent [21,22] to the asymmetric simple exclu-
sion process (ASEP) of particles [23], while we have shown
that this “rooftop model” can be generalized to higher di-
mensions [11,12]. This mapping is interesting not conceptu-
ally only, linking nonequilibrium surface growth with the
dynamics of driven lattice gases [24,25], but provides an
efficient numerical simulation tool for investigating debated
and unresolved problems.

The surface built up from the octahedra can be repre-
sented by the edges meeting in the up or down middle ver-
texes (see Fig. 1). The up edges, in y=x or y=y directions at
the lattice site 7, j, are represented by o,(i,j)=+1, while the
down ones by o,(i,j)==1 slopes. Therefore, we approxi-
mate surfaces using RSOS model with Ah=*1.

In this paper, we show that one can describe various, more
complex surface process without the need of having larger
Ah height differences. These are built up from the basic oc-
tahedron deposition or removal processes [11]. Let us remind
the reader that a single-site deposition flips four edges, which
means two “+1” « “—1” (Kawasaki) exchanges: one in the
x and one in the y direction. This can be described by the
generalized Kawasaki update

(-1 1>P(1 —1> 3
-1 1/),\1 -1/

with probability p for attachment and probability g for de-
tachment.
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We can also call the +1°s as particles and the —1°s as holes
living on the base square lattice, thus an attachment or de-
tachment update corresponds to a single-step motion of an
oriented dimer in the bisectrix direction of the x and y axes.
We update the neighborhood of the sublattice points, which
are the crossing points of the dashed lines. In [11,12], we
derived how this mapping connects the microscopic model to
the KPZ equation and investigated the surface scaling nu-
merically. Our best estimates obtained by simulations up to
sizes L=2" for the two-dimensional KPZ universality class
is in agreement with the operator product expansion result
[26]

a=0395(5), B=0.245(5), z=158(10), (4)

within error margin [12].

Besides presenting some more interesting results about
the universal scaling behavior of KPZ in this paper, we move
further and extend our mapping for describing more complex
surface reactions. In particular, we investigate models with
surface diffusion processes, which are relevant in material
science. We show the emergence of patterns and follow their
coarsening dynamics.

A. Simulations

Although the bit-coded simulations are run on the under-
lying conserved lattice gas of size L XL, starting from h,
=1, we reconstruct the surface heights from the differences

i J
hij= 2 o) + 2 0y (i,k) (5)
1 k=1

=

at certain sampling times (z), selected with power-law in-
creasing time steps, and calculate its width

172

1 L 1 L 2
WL =| 53 h,%,-(r)—(;Z h,»,,(z)) SO
ij ij

In the absence of any characteristic length, the surface is
expected to follow Family-Vicsek scaling [27] when we start
from a flat initial condition

W(L,0) <P, for ty<t<t,, (7)

o« L% for t>1,. (8)

Here, a is the roughness exponent for > t; when the corre-
lation length has exceeded the linear system size L and S is
the surface growth exponent, which describes the time evo-
lution for earlier (nonmicroscopic ¢> f,,) times. The dynami-
cal exponent z can be expressed by the ratio

z=alpB. 9)

However, in case of pattern formation, multiscaling is
present in the system and the roughness exponent calculated
in different window sizes is not constant and satisfies a dif-
ferent, anomalous scaling law (see [28,29]).

The morphology of pattern formation in experiments is
usually followed by the measurement of some characteristic
size, e.g., the wavelength in periodic structures, which
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evolves nontrivially with time. We can easily define and
measure such quantity in our model. By following the up or
down slopes in the x direction, we have strings of 1’s or —1
of length s; in the kth slice of the lattice gas in the y direc-
tion. We shall characterize patterns by calculating the (y)
average of the longest s; value

L

\ = 1/LD, max(sy). (10)
k=1

This characteristic length, corresponds to the longest x slope
or to the slowest x mode in the Fourier decomposition, will
provide information about scaling of the wavelength in our
analysis.

By the simulations, we apply periodic boundary condi-
tions in both directions and start from the flat space corre-
sponding to a zig-zag configuration of the slopes (see Fig. 1),
therefore, it has a small initial width W?(L,0)=1/4. Before
the scaling analysis, we always subtract this constant, being
the leading-order correction, from the raw data. Averaging
was done usually for 100-200 samples for each parameter
value.

In practice, each lattice site can be characterized by the 16
different local slope configurations, but we update it only
when the condition (3) is satisfied. Furthermore, due to the
surface continuity, not all configurations may occur and we
can describe a lattice site by using only two bits. This per-
mits efficient storage management in the memory of the
computer and large system sizes. The updates can be per-
formed by logical operations either on multiple samples at
once or on multiple (not overlapping) sites at once. Our bit-
coded algorithm proved to be ~40 times faster than the con-
ventional FORTRAN 90 code. A crucial point is to use a good,
high-resolution random number generator because in case of
the p=1 KPZ process, the only source of randomness is the
site selection, which must be done in a completely uniform
way. Otherwise, we realize a KPZ with quenched disorder
which belongs to a different universality class (see [16]). We
used the latest Mersenne-Twister generator [30] in general,
which has very good statistical properties and which is very
fast, especially by the SSE2 instructions. But we tested our
results using other random number generators as well.

An elementary Monte Carlo step (MCS) starts with a ran-
dom site selection. This is followed by testing if the place is
appropriate for update i.e., “rooftop” for detachments or
“valley bottom” for attachment (3). The update is done with
the prescribed p and g probabilities and the time is incre-
mented by 1/L? such that one MCS corresponds to a full
lattice update. Throughout the paper, we use this unit of time.

B. Generalizations of the octahedron model

An obvious first step is to combine the deposition and the
removal processes creating a conserved dynamics. A simul-
taneous octahedron detachment and deposition in the neigh-
borhood can realize an elementary diffusion step. Surface
diffusion is a much-studied basic process [28]. Several ato-
mistic models have been constructed and investigated with
the aim of realizing Mullins-Herring (MH) diffusion [31,32]
and scaling (for a recent review, see [33]).
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The Langevin equation of MH is a linear one, with a V*
lowest-order gradient term

Fh(x,1) = v, Vh(x,1) + 9(x,1), (11)

emerging as the result of a curvature-driven surface current
j(x,t)« V[V?h(x,1)], which obeys the conservation law

dh(x,1) + Vj(x,1) = n(x,1). (12)

Here, the noise 7(x,f) is a nonconserved, Gaussian white
one, which can be the result of fluctuations in the ion-beam
intensity directed against the surface. This equation is ex-
actly solvable and exhibits a scaling invariance of the rough-
ness characterized by the exponents

a=@-4)2, B=A4-d)/8, z=4 (13)

below the upper critical dimension d.=4.

Microscopic models realizing this behavior are mainly
unrestricted solid on solid (SOS) type, which can provide
steep slopes and strong curvatures necessary for the a=1
roughness exponent in one and two dimensions. However, it
turned out that the asymptotic universality class of the vari-
ous limited mobility growth models is a surprisingly subtle
issue. Many of the earlier findings proved to be incorrect due
to pathologically slow crossover and extremely long tran-
sient effects [34]. Anomalous scaling, by which the local and
global behaviors are different, has been found to be relevant
in such “superrough” models, where large local slopes are
present [29,35-39]. In fact, according to our knowledge,
only the “larger curvature (or Kim-Das Sarma) model”
[40,41] and the “n=2 model” of [42] exhibit MH universal-
ity class scaling asymptotically.

The scaling in other “atomistic” models crosses over to
behavior dictated by more relevant terms in the sense of
renormalization group. This can be the EW class if V?(h)
[43] is present or the molecular-beam epitaxy (MBE) class in
case of the fourth-order nonlinearity V[V (h)?] [44-47][77].
The nonlinear MBE equation

9 = vV R+ A,V V()] + 7, (14)

with nonconserved, Gaussian noise 7 is just the conserved
version of KPZ (CKPZ) and exhibits the following scaling
exponents:

a=@-d)3, B=@A-d)/@B+d), z=(8+d)3.

(15)

As we can see, all exponents are smaller than those of the
linear MH (13) class values and differ from those of the
two-dimensional KPZ class (4) significantly.

Here we present RSOS models with Ah= =1 height re-
striction within the framework of our previous approach [11],
which in the limit of weak external noise exhibit MH or
MBE scaling. Due to the simple construction, these can be
mapped onto lattice gases of diffusing dimers, allowing an
easier way to study the effects of MH and MBE subprocesses
of more complex system. Earlier less restrictive RSOS mod-
els were used to describe these classes especially in one di-
mension (for a review, see [33]).
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A further step in generalizing our surface models will be
the combination of different subprocesses resulting in non-
equilibrium system. For example, by adding a competing
MH diffusion to the KPZ updates, one can model the noisy
Kuramoto-Sivashinsky (KS) equation [48,49]

dh=v+V*h = v,V + N\ (Vh)> + 7. (16)

Here, the surface-tension coefficient o is negative (in con-
trast with the KPZ), whereas v, is a positive surface diffu-
sion coefficient. However, in our simulations, we realize a
gauge-transformed situation: normal KPZ (with positive o)
competing with an inverse MH (iMH) with negative v, [78].
In KS, even the deterministic variant (7=0) exhibits spa-
tiotemporal chaos and is useful to describe pattern formation,
such as chemical turbulence and flame-front propagation
[48]. There are other physical systems, including ion sputter-
ing, where the noisy version of the KS equation is used [50].
In one dimension, field theory has proved that KS belongs to
the 1+ 1-dimensional KPZ universality class [50]. However,
in higher dimensions, perturbative field theory cannot access
the strong-coupling fixed point. Numerical studies [51-53]
have provided controversial results in 2+1 dimensions,
hence it remained a controversial and challenging problem to
clarify the asymptotic scaling behavior of KS [54-57].

It was pointed out [58,59] that grooved phases and growth
instabilities may emerge as the consequence of broken de-
tailed balance condition

P{ihwi_y=P{i' Hwyr ;s (17)

where P({i’}) denotes the probability of the state {i} and
w,_,; is the transition rate between states {i} and {i'}. This
means that complex structures and patterns can emerge in
nonequilibrium system. In one dimension, a model of mas-
sive particles exhibiting momentum has been shown to ex-
hibit KS scaling behavior [60]. Later, another one-
dimensional RSOS growth model was constructed [61], in
which deposition and diffusion of single adatoms were com-
peting. It was suggested that large-scale behavior could be
described by the noisy KS equation.

II. REALIZING THE MBE SURFACE DIFFUSION

As we have mentioned in Sec. I, we generate surface dif-
fusion as the simultaneous adsorption-desorption of octahe-
dra. Therefore, in our model, after an appropriate removal
site (a rooftop) selection has been done, we search for a
valley bottom place in the neighborhood for deposition. The
target site is chosen in the *=x or *y direction, with the
probabilities p.,, p_, or p,,, p_,, respectively (see Fig. 1).
Throughout of our studies, we normalized the attempt prob-
abilities. The maximal jump distance was fixed to be /,,=4
lattice units following computer experiments. According to
the construction, the nearest-neighbor jump, corresponding
to intralayer diffusion, requires /,,=2, while larger jump sizes
allow intralayer transport. To create MBE or MH behavior,
we must allow interlayer transport. Considering jumps with
l,,=3 does not make difference in the scaling, larger jumps
describe faster diffusion on the expense of more CPU time.
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Having no a priori knowledge of the distance dependence of
jump sizes and expecting insensitivity of universal scaling on
the rates of short-ranged interactions, we used a constant
probability for each direction (for more discussion see Sec.
IIA).

To control this kind of surface diffusion, we impose addi-
tional constraints for the accepting a move. We have tried
two kinds of rules based on the local neighborhood configu-
rations. The first one is very simple and requires that the
height of a particle at the final state is higher than that of its
initial site

hin = hini =0, (18)

which makes a surface rougher (inverse or roughening diffu-
sion). The second one is based on the local curvature at the
update sites as will be discussed in Sec. II B.

A. Larger height octahedron diffusion model

By this simple condition, we expect to generate rough
surfaces of large curvatures, since an octahedron jumping to
a higher position has usually smaller number of neighbors in
the lateral direction (in this model, we do not allow particles
to evaporate from the bottom of a V-shaped valley). In the
language of lattice gases, regions of large curvature and
maximal slope correspond to large regions of dense particles
and holes. An attractive interaction of the dimer moves en-
hances such segregation. Contrary, we can realize a smooth-
ing or normal diffusion when we accept jumps with the con-
dition Ay, —h;,; =0.

By increasing the local heights, the formation of pyramid-
like structures, unstable growth, occurs similarly as in the
n=2 SOS model [42], but in our case the slopes are limited
to 45°. However, by appropriate length rescaling any sharp,
continuous surface can be approximated. In the forthcoming,
we will investigate both the inverse and the normal diffusion
cases and call it the larger height octahedron diffusion
(LHOD) model.

Starting from a zig-zag initial condition, corresponding to
the flat surface, the hopping with the condition (18), one can
make the surface rougher, however, after the slopes of size [,
are developed, the evolution stops because the octahedra are
not allowed to pass longer 45° gradient sections (see Fig. 2).
To overcome this, we have been trying to allow arbitrarily
long jump sizes (nonlocal model), with different, heuristic
jump distance-dependent probability functions. We did not
find an appropriate one that could produce the expected MH
scaling behavior, instead we realized Lévy flightlike models
with anomalous diffusion [62] exhibiting nonuniversal scal-
ing. In the light of recent field theoretical interest [63], these
can also be the target of further investigations.

However, nonlocal models are rather complex and con-
nection to reality is not always straightforward. Therefore,
we followed another strategy by adding a small amount of
extra randomness of EW type to our short-range, binary
RSOS model. This means the addition of random adsorption
or removal events with small probability p=g<<1 among the
LHOD updates. Such events can break up the barriers by
splitting up the long monotonous slopes built by the LHOD
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Initial state Frozen state

FIG. 2. (Color online) One-dimensional view of a diffusion hop
of octahedra by three lattice units to the right. The slopes mapped
onto the lattice gas shown below the surface. This roughening sur-
face diffusion move corresponds to two simultaneous, attracting
Kawasaki exchanges of the gas (dimers in two dimensions). Start-
ing from the flat (zig-zag) initial state of the pure octahedron model,
the (18) process freezes following slopes of maximal length are
developed, which cannot be overjumped.

dynamics. If they are done very rarely, i.e., with less than
100 times smaller probability than the diffusion attempts,
they can influence the very late asymptotic scaling behavior
only, causing an ultimate crossover to the EW class (see, for
example, [64]).

In reality, and in the models we are about to study, such
randomizing effects are always present, thus we are satisfied,
if we can confirm numerically the MBE scaling for interme-
diate times. It was not our principal aim to provide a model,
which exhibits pure MBE type of scaling in the thermody-
namic limit. Therefore, we have performed computer experi-
ments on these models as discussed below.

We found that the addition of the small (EW) noise (p
=g <<1) sustains the surface currents and in case of spatially
anisotropic diffusion (p,,=1, p_,=p,=p_,=0), the scaling
becomes Mullins-Herring type [see Fig. 3(a)], characterized
by the exponents a=1, S=1/4, and z=4 in two dimensions.
The collapse of curves is very good in the vertical direction,

(a) (b)
10

W/L

10° 10" 10°° 1 02107 10° 10° 10 10°° 140‘2 10" 10°
t/L t/L

FIG. 3. (Color online) Data collapse of the anisotropic LHOD
model assuming MH class exponents for p,,=1 (diffusion to the
right) with small EW noise (a) p=¢=0.01 and (b) p=¢=0.005 for
sizes L=32,64,128 (top to bottom at the left side). For the growth
exponent fitting (dashed line) results in 8=0.26(1).
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FIG. 4. (Color online) Data collapse of the isotropic LHOD
model assuming MBE (left, /,,=4) and MH (right, /,,=3) class ex-
ponents in the presence of small EW noise p=¢=0.005 in sizes L
=32,64,128 (top to bottom at the left side). For the growth expo-
nent power-law fitting (dashed line) results in 8=0.26(1). Inserts
show the effective B exponents for L=64.

corresponding to a=1, and the horizontal scaling improves
as we decrease the noise [see Fig. 3(b)]. In opposite, by
increasing the amplitude of the EW noise, we can find better
collapse with smaller dynamical exponent, describing the
crossover to the EW behavior, which has z=2. The time
dependence shows deviations from the pure scaling law, es-
pecially for early times, still before the saturation the growth
of W(r) can be fitted with the exponent 8=0.26(1) [79]. This
suggests that in the p=¢—0 limit, the true MH scaling
emerges. Simulating larger sizes is very hard because due to
the large dynamical exponent z, the saturation is shifted to
very late times (for L= 128, this happens for #>2 X 108 MCS
only).

In case of isotropic diffusion, the scaling is MBE class
type in general [see Fig. 4(a) for [,,=4], characterized by the
exponents a=2/3, $=0.2, and z=10/3 in two dimensions.
Therefore, the algorithm with the LHOD update (18) breaks
the detailed balance condition (17) and introduces a nonlin-
earity. However, this nonlinearity is small and by decreasing
l,,, it becomes even smaller [see Fig. 4(b)]. One can find
a rather good collapse with the MH exponents in case of
1,,=3. We estimated the growth exponent by calculating the
local slopes

In W(t,L — ) —1In W(t',L — o)

Besf1) = In(r) - In(") - 19

As one can read-off from the inserts of Fig. 4, for /,,=4, this
effective exponent extrapolates to the MBE value [B
=0.20(2)], while for /,,=3 to B=0.26(1), agreeing with the
MH exponent in the — o limit. This means that the LHOD
rule introduces more possibilities for breaking the detailed
balance condition (17) when more degrees of freedom (more
directions or larger jumps sizes) are allowed. This provides
an explanation for the difference between the scaling behav-
ior of the isotropic and anisotropic diffusions. To avoid such
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FIG. 5. (Color online) Local slope o,(i,j) (circles) and curva-
ture c,(i,j) (squares) variables at an update site. Filled circles cor-
respond to upward, empty ones to downward slopes of the surface.
This plaquette configuration models a valley bottom site, with the
total curvature H=4.

nonlinearity completely, we introduced a more complex up-
date rule based on the local curvature conditions keeping the
spatial symmetries.

B. Larger curvature octahedron diffusion model

In this section, we describe a transition probability in ad-
dition to the octahedron surface hopping model, which satis-
fies the detailed balance condition (17), thus enables one to
realize linear, equilibrium MH diffusion steps. The local cur-
vature of the surface is calculated at the four edges of
squares of the projected octahedra. As Fig. 5 shows, one can
describe the curvatures c,(i,j) [x € (x,y)] by the products
(or differences) of the local slopes

(i) = o\ (i, ) o i + 1,)). (20)

At each update, we calculate the sum of the change of local
curvatures at the origin (i,) and the target (i’,;') sites

AH=A D X ci)+A X X (i), (1)

x=x.y (i.j) X=5Y (i’ "

where () denotes the plaquette neighborhood sites as shown
on Fig. 5. This gives maximal value H=4 for a local tops and
bottoms and the minimal value H=-4 for a locally flat (zig-
zag) configuration. Using this value, we accept the update
with an Arrhenius type of probability

Wi = 1/2[1 —-a tanh(— AHZ)], (22)

where a is a constant. This form is very similar to what was
used in case of the one-dimensional n=2 model [42] and
enhances (suppresses) roughening moves if a>0(a<0), re-
spectively. In [42], symmetry arguments were applied for the
lowest-order series expansion of w;_,;» of the model to prove
a connection with the MH equation. Now, similar derivation
can be done by extending the model for dimer variables in
two dimensions. In the forthcoming, we shall call this the
larger curvature octahedron diffusion (LCOD) model.

We have simulated the LCOD with the parameters a
=0.1 and [,,=3, corresponding to inverse or roughening sur-
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FIG. 6. (Color online) Scaling behavior of the isotropic LCOD
model for L=32,64,128 (top to bottom at the left side). The data
collapse has been achieved with the MH class exponents. For the
growth exponent fitting (dashed line) results in 8=0.25(1). Insert
on the right shows the same by local slopes. Insert on the left shows
the evolution of \.

face diffusion and p=¢=0.05. The scaling behavior has been
found to agree very well with that of MH universality class
values even in case of isotropic diffusion (see Fig. 6). The
effective B,4(t) converges to $=0.25(1) before the satura-
tion. The wavelength grows logarithmically in time (see in-
sert of Fig. 6) and after a steady-state value is reached, it
scales logarithmically with the system size too.

For anisotropic diffusion (p+,=1, p+,=0), we have ob-
tained similarly good MH class surface scaling, with loga-
rithmic time and size dependences of N\ again. For a=0,
without any EW noise, one can find logarithmic growth in
the LCOD model in time

W(t,L — ) o In(r) (23)
and logarithmic surface roughness dependence of
W(t — oo,L) < In(L). (24)

Data collapse fitting for the dynamical exponent on the other
hand results in space-time anisotropy with z=4. This means
that for the a=0 noiseless case, we could realize the univer-
sality class behavior of MH with conserved (purely diffu-
sive) noise, characterized by the exponents a=B=0, z=4
(see [16]).

III. PATTERN GENERATION BY COMPETING
INVERSE MH AND KPZ PROCESSES

As we have shown in the previous section, in the zero
noise limit, our RSOS surface diffusion processes generate
growth with MBE or MH scaling behavior. In this section,
we investigate them in the presence of competing KPZ up-
dates. In our simulations, we initiate hopping with probabili-
ties piy P—x» P4y» and p_, alternately with the deposition
(with probability p) and removal (with probability ¢g) pro-
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100

FIG. 7. (Color online) Snapshot of surface heights of the ripple
patterns generated by the parameters p.,=1, p+,=0 (anisotropic,
inverse MH) and p=g=1 adsorption or desorption at t=10* MCS in
the LHOD model of linear size L=512.

cesses. We follow the surface roughness and pattern forma-
tion with the corresponding wavelength growth.

A. Spatially anisotropic surface diffusion

From the point of pattern formation, the LHOD and
LCOD models behave differently. We always start the simu-
lations from a flat surface and watch if stable patterns can
arise. In case of an anisotropic inverse LHOD model of dif-
fusion probability p.,=1, p.,=0, a competing EW process
always generates ripple patterns as shown on Fig. 7, which is
stable for all p=g=1. This formation is metastable against
KPZ (height anisotropy), but for very large times (in the
steady state), the ripples become uneven, blurred, and cut
into smaller pieces. The wavelength, defined as Eq. (10)
grows only a little (in a power-law manner) and saturates
quickly.

However, if we create such anisotropy in which a steady,
direct current (dc) flows, for example, when only p,,=1 and
all the others are zero, we can find a different behavior. In
this case, for weak EW or KPZ, the ripples are not com-
pletely straight and exhibit a coarsening as

A o t0'24(1). (25)

The ripples are straighter in the KPZ case than for up-down
isotropic deposition or removal. Furthermore, a good data
collapse can be obtained with the MH class exponents for
sizes L=32,64,128 as shown on Fig. 8. However, this scal-
ing can be destroyed by increasing the strength of the non-
conserved reaction and the power-law crosses over to loga-
rithmic growth of \. In case of strong KPZ deposition (p
=1, ¢=0), the asymptotic scaling of the LHOD becomes
completely KPZ type, the wavelength saturates very quickly
(see Fig. 9), and the ripple structure smears. In principle, we
should expect anisotropic KPZ behavior here, but it is well
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FIG. 8. (Color online) Wavelength growth in the LHOD model
for anisotropic diffusion with steady dc current p,,=1, p=q
=0.005 for sizes L=32,64,128 (top to bottom at the beginning).
(Dashed line) Power-law fit with the exponent 8=0.24(1). Left in-
sert shows the corresponding pattern. Right insert corresponds the
isotropic  diffusion case ps,=ps.,=1, where A(f) grows
logarithmically. '

known that in two dimensions, such spatial anisotropy is
irrelevant, hence the isotropic KPZ class behavior [65] is not
surprising. Note that our anisotropic KS model is different
from what is called and considered to be the “anisotropic
KS” in the literature [66] because in our case, the surface
diffusion (corresponding to the V# term) is anisotropic. Such
models are very hard for analytic treatment and spatial an-
isotropy is introduced in the V2 terms usually.

0

10 \

w/L**

107

10* 10 10° 10°
t

107 107 101'26 10° 10°
t/L™

FIG. 9. (Color online) Data collapse for deposition (p=1, ¢
=0) and anisotropic, inverse diffusion p.,=1 in the LHOD model
with KPZ class exponents for L=64,128,256,512,1024 (top to
bottom curves at the right side). (Right insert) A(r) for L=1024.
(Left insert) Blurred ripple structure.
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x

FIG. 10. (Color online) Snapshot of surface heights of the dot
patterns generated by the LHOD model with parameters p..=p.,
=1 (isotropic, inverse MH) and p=¢=0.1 at r=10* MCS.

The anisotropic LCOD is less effective for ripple forma-
tion than the LHOD. In this case, the patterns are smoother
and the N\ scales logarithmically in time and by the size. The
only exception is when we allow a steady dc current again.
In this case, similar power laws as shown on Fig. 9 emerge
for weak EW or KPZ.

When dc current is not allowed (p+,=1, p-,=0), only
spatial anisotropy in the LCOD and we add a KPZ
(p=1, ¢=0) update, we can see the emergence of KPZ scal-
ing. In this case, the wavelength depends logarithmically
both on time and the size L. It is important to realize that for
short, one decade length, time windows the wavelength
growth can also be well fitted with a power law

A2, L — o) o (017D (26)

which resembles to experimental results, but since the
steady-state values exhibit a clear logarithmic dependence on
the sizes

ANt — o,L) cIn(L), (27)

we do not think that this “power-law” fit would correspond
to a real asymptotic behavior in the thermodynamic limit.

B. Spatially isotropic surface diffusion

When the isotropic, inverse surface diffusion competes
with the (smoothing) EW process, one can observe dot for-
mation both in the LHOD and LCOD models. Figure 10
shows a snapshot of the growing dots for LHOD in the pres-
ence of weak EW process. Here, one can see rectangular-
shaped patterns corresponding to the lattice symmetry. In
case of LCOD, the contrast of the patterns is smoother,
roughly circular. However, this pattern coarsening is much
slower than in case of ripples.
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FIG. 11. (Color online) Data collapse of the L=128,...,1024
LHOD model (p+,=p+,=1) with a competing deposition (p=1)
process. One can see a very slow crossover toward KPZ scaling.
Right insert shows the growth of N for L=512. Left insert is a
snapshot of the steady state, corresponding to the smeared KPZ
height distribution.

We shall discuss the LHOD results first which, according
to our previous numerical analysis, corresponds to the non-
linear equation (KPZ+MBE)

dh = aV?h+ Ny(Vh)? + v,V + N, V[ V(1) + 7.
(28)

In case of EW type of deposition or removal, the nonlinear
term vanishes (A,=0) and in fact we model the CKPZ be-
havior. The characteristic size (\) of the dots grows logarith-
mically (see insert of Fig. 8) in time and A, *In(L). The
pattern formation is more pronounced in the LHOD case
than in the LCOD model. We associate it to the up or down
anisotropy present in the LHOD.

The same kind of patterns can be also observed in case of
strong KPZ anisotropy p=1, ¢g=0 for short times, but later
the dots are smeared. For the LHOD+KPZ case, a very slow
crossover to KPZ scaling (see Fig. 11) occurs. Although the
data collapse with KPZ exponents is rather poor for smaller
sizes (it would be better with larger z and « exponents cor-
responding to the MBE class), for L=512, it agrees with
KPZ. The wavelength saturates very quickly (see insert of
Fig. 11) in agreement with KPZ, where no coarsening is
expected.

Having confirmed that the LCOD model exhibits MH
scaling, now we can investigate the scaling behavior of
the (inverse) KS Eq. (16), described by the combination
of inverse MH and normal KPZ processes. We have
run extensive simulations up to t=3X10%° MCS (for L
=128,256,512,1024) to obtain firm numerical evidence. As
Fig. 12 shows, the finite-size scaling collapse with KPZ ex-
ponents is satisfied and the effective 8 extrapolates to 1/4.
This value agrees well with our high-precision KPZ simula-
tion result [12]. The wavelength grows logarithmically in
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FIG. 12. (Color online) Data collapse of the L=128,...,1024
(top to bottom at the right) LCOD model (p+,=p+,=1) with com-
peting deposition (p=1). One can see clear KPZ scailing. Left insert
shows the logarithmic growth of \ for L=128,256,512 (bottom to
top). (Right insert) B3,/ as the function of time.

time (26) (see insert of Fig. 12) and saturates well before the
steady state. In the steady state, it grows slowly with the
system size as Eq. (27). In a 1-decade-long time window, one
can fit the data with \(¢,L— ) o122 but due to the clear
logarithmic behavior in the steady state (27), one should not
take such power-law fitting very seriously.

For the sake of completeness, we have performed similar
analysis for the anisotropic LCOD model (p+,=1, p-,=0)
with KPZ too for sizes L=1024. We have obtained agree-
ment with the KPZ scaling for the width W and logarithmic
growth for N\ as in case of isotropy.

IV. KPZ IN THE PRESENCE OF NORMAL
SURFACE DIFFUSION

In this part, we show the scaling behavior study of
the KPZ process in the presence of normal (smoothing)
LHOD, introduced in the previous section. First let us
consider the weak isotropic diffusion case p.,=p.,=0.1.
As Fig. 13 shows, the W(¢) curves for sizes L
=64,128,...,2048 exhibit a good collapse when we rescale
them with the 2+ 1-dimensional KPZ exponents (4). This
means that the KPZ scaling is stable against the introduction
of a smoothing, MBE type of surface diffusion.

On the other hand, when we add strong LHOD diffusion,
p+,=p=,=0.9, to the KPZ process (p=1), the surface growth
slows down and we do not find the KPZ scaling anymore
(see the lower part of Fig. 13). Instead, logarithmic surface
growth emerges, as shown in the insert of Fig. 13. A fitting
with the form W2(1)=A+B In(¢) for the asymptotic growth
regime gives A=0.40(1) and B=0.26(1). The amplitude of
this growth is different from the exactly known universal
value of the EW class in two dimensions: Agyw=0.151 981
[67].

The wavelength saturates very quickly to the maximal
value, which for weak diffusion scales logarithmically with
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FIG. 13. (Color online) Data collapse of KPZ deposition
(p=1) and weak, isotropic normal LHOD (higher curves) for L
=64,128,...,2048 (top to bottom). In case of strong diffusion
(lower curves), the KPZ scaling disappears and as the insert shows,
logarithmic growth can be observed.

the system size (27), while in case of the strong diffusion, the
characteristic length remains on the order of lattice unit:
Amax =1, with a very weak size dependence, corresponding
to uncorrelated surface heights (see Fig. 14). It is well known
that in the strong diffusion limit, the relevant fluctuations
below d. can be washed away, hence the logarithmic surface
growth we observe should correspond to the mean-field be-
havior of the strong-coupled KPZ. This provides us a unique
way to study the crossover behavior between the KPZ and
KPZ mean-field behavior.

V. PROBABILITY DISTRIBUTION RESULTS

Here we present the probability distributions P(W?) ob-
tained in the steady state of our model. Such distributions are
universal, hence they complement the previous scaling re-

4
3 L -
< 2} 4
Lol L Lol L
100 L 1000
1 |
0 Il Il
1 100 10000 1000000

t

FIG. 14. (Color online) Wavelength saturates quickly for KPZ
+weak LHOD (higher curve) and KPZ+strong LHOD (lower
curve) diffusion (L=2048). Insert shows A, Vs L.

051114-9



ODOR, LIEDKE, AND HEINIG

n 1 n N
0.8 21 2 5 1.6 2.0 2.4
wo/l<w™>

FIG. 15. (Color online) Comparison of the P(W?) of the higher
dimensional octahedron model results (symbols) to those of [69]
(lines) in d=2,3,4,5 spatial dimensions (bottom to top).

sults. The exact functional form for KPZ is known in one
dimension only, but in two dimensions, very precise numeri-
cal data exist, obtained via other surface models [68]. The
distributions of those KPZ models have been determined in
higher dimensions [69], suggesting the lack of finite upper
critical dimension.

First, we compare our P(W?) results for KPZ to those of
[69] in d=2,3,4,5 dimensions. The W? distribution data
were taken from the saturation regimes and analyzed in sys-
tems of sizes L=1024 (two dimensions, 2d), L=512 (three
dimensions, 3d), L=64 (four dimensions, 4d), and L=32
(five dimensions, 5d). The presented data are coming from
our higher-dimensional KPZ simulations using the extended
octahedron model described in [12]. When we rescaled our
data with (W?) as Fig. 15 shows, we found very good agree-
ment in d=2,3,4,5 dimensions with the earlier KPZ distri-
bution curves. Again, we cannot see a signal for an upper
critical dimension at d.=4, conjectured by theoretical ap-
proaches (see, for example, [70]).

Furthermore, we tested our surface-scaling results for
KPZ within the presence of diffusion. In case of competing
KPZ and LHOD or LCOD processes (i.e., for p=1, ¢=0,
p+.=p=,=1), we determined the P(W?) distributions well in
the saturation regime of systems of size L=1024. The steady
state could be reached for > ~10° MCS in case of KPZ
+LHOD and for t>5X10" MCS in case of the KPZ
+LCOD model. We generated 100 independent samples and
cut out the steady-state data of W2(r). We calculated the
scaled steady-state probability distributions as shown on Fig.
16 for different combinations. The comparison to the histo-
gram of the 2+ 1-dimensional KPZ from [69] shows a good
agreement in general, providing further numerical evidence
that the KS model asymptotically exhibits the KPZ univer-
sality class scaling. Our results complement the one-
dimensional simulations results of [61], in which the equiva-
lence of KS and KPZ scalings was confirmed numerically.

VI. CONCLUSIONS AND OUTLOOK

We have returned to some unresolved questions of basic
surface growth phenomena using extensive computer simu-
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FIG. 16. (Color online) Comparison of P(W?) of the KPZ
+LHOD (black boxes), KPZ+inverse LHOD (blue dots), KPZ
+inverse, anisotropic LHOD (pink rhombuses), and KPZ+inverse
LCOD (orange triangles) to that of the KPZ from Ref. [69] (solid
line).

lations of atomistic models. Contrary to earlier studies, we
could perform numerical analysis of models with surface dif-
fusion in 2+1 dimensions due to the effective mapping of
RSOS models onto binary lattice gases.

We have shown that in the zero external noise limit,
RSOS models with short-range interactions can be con-
structed, which exhibit molecular-beam epitaxy or Mullins-
Herring type of surface growth. For inverse (roughening)
diffusion, which increases the local curvature, unstable
growth resulting in pyramidlike structures emerges. The size
of these structures is limited only by L, which is not directly
comparable to real materials. We created these MBE or MH
type of atomistic models in order to study them in a compe-
tition with nonconserved KPZ processes. The simulations
provided numerical evidence that strong, smoothing surface
diffusion can slow down the KPZ to a logarithmic growth,
thus we are able to reach the mean-field behavior of the
strongly coupled KPZ fixed point in two dimensions, which
is expected to show up in high dimensions only.

The mapping of the surface models onto lattice gases im-
plies that the (anisotropic) oriented diffusion of dimers
(KPZ) is stable against the introduction of an attracting force
among them, but a strong repulsion can destroy the fluctua-
tions, resulting in a mean-field behavior. We provided strong
numerical evidence using surface scaling and probability dis-
tribution studies that the KS model exhibits KPZ scaling in
2+1 dimensions as conjectured by field theory. We summa-
rized the models we considered in case of spatially isotropic
surface diffusion and nonconserved noise in Table I.

Further studies of LCOD, with different boundary condi-
tions, can set the target of the research of the surface in-
clination by mapping the surface tilt onto the total particle
concentration of the lattice gas. In particular, the angle de-
pendence of the phase transitions among different growth
phases can be understood by considering the underlying
driven gas. Using our method, one can transform results of
disorder or of anomalous diffusion between the surface and
lattice-gas models.

We presented a characteristic length scale N to follow the
dynamics of patterns, which occur, if normal (smoothing)
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TABLE I. Overview of the surface models with spatial isotropy and nonconserved noise. Columns 2-5
show the sign of couplings of the differential equations considered.

Model acronym T Ay Noo vy Properties

EW + 0 0 0 Smooth surface (logarithmic) growth

KPZ + +/- 0 0 Rough surface (power-law) growth

MH 0 0 0 + Smoothing diffusion, z=4

iMH 0 0 0 - Inverse/roughening diffusion, unstable, z=4
MBE 0 0 +/- + Normal/smoothing diffusion, z=10/3
iMBE 0 0 +/- - Inverse/roughening diffusion, z=10/3, pyramids
KS + +/- 0 - KPZ scaling, dot pattern (logarithmic) growth
iKS + +/— 0 + KPZ scaling, mean-field for strong diffusion

KPZ competes with inverse (roughening) diffusion. We in-
vestigated this race for MH and MBE process, with and
without spatial anisotropies. In case of uniaxial surface dif-
fusion ripple, while for x/y lattice isotropy, dotlike pattern
formation could be achieved. The wavelength growth is slow
and saturates much before the steady state. Usually, we
found logarithmic time and system size dependence of A\,
except when steady dc current flows through the system. In
this case, the interfaces are more rough, the ripples are
bended, and power-law scaling is observable. In this case,
the scaling of N\ agrees with the scaling of the width, i.e.,
characterized by the MH class exponents. This finding agrees
with 3d kinetic Monte Carlo simulations of epitaxial growth
and erosion on (110) crystal surfaces [71] and with analytic
arguments [72]. Furthermore, in case of ion beams with graz-
ing incidence, the dislocation dynamics results in such ather-
mal, kinetic coarsening of the patterns [73].

The wavelength behavior can be understood with the help
of considering the underlying lattice-gas model, since the
ripple or dot structures correspond to a phase separation. The
coalescing surface pattern dynamics can be mapped onto the

generalization of the reaction-diffusion process [16] of ex-
tended objects. It was shown that in ASEP type of models,
where strong phase separation is present, the domain growth
follows slow, logarithmic behavior [74,75] in case of smooth
surfaces. On the other hand, for rough surfaces, power-law
coarsening of \ has been derived using simple scaling argu-
ments [76]. Finally, we mention that our models enable ef-
fective, bit-coded, stochastic cellular automaton type of
simulation of surfaces, hence they could be run extremely
fast on advanced graphic cards.
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