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We consider a system of particles interacting via a screened Newtonian potential and study phase transitions
between homogeneous and inhomogeneous states in the microcanonical and canonical ensembles. For small
screenings, the interaction is long range. Like for other systems with long-range interactions, we obtain a great
diversity of microcanonical and canonical phase transitions depending on the dimension of space and on the
importance of the screening length. We also consider a system of particles in Newtonian interaction (without
screening) in the presence of a “neutralizing background.” By a proper interpretation of the parameters, our
study describes (i) self-gravitating systems in a cosmological setting, and (ii) chemotaxis of bacterial popula-

tions in the original Keller-Segel model.
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I. INTRODUCTION

Many biological species like bacteria, amoebae, endothe-
lial cells, or even ants interact through the phenomenon of
chemotaxis [1]. These organisms secrete a chemical sub-
stance (like a pheromone) that has an attractive (or some-
times repulsive) action on the organisms themselves. This
phenomenon is responsible for the self-organization and
morphogenesis of many biological species. It has also been
proposed as a leading mechanism for the formation of blood
vessels during embriogenesis [2]. On a theoretical point of
view, chemotaxis can be described by the Keller-Segel (KS)
[3] model or its generalizations [4]. The Keller-Segel model
consists in a drift-diffusion equation for the evolution of the
density of bacteria p(r,7) coupled to a reaction-diffusion
equation for the evolution of the secreted chemical c(r,?). In
certain approximations, the reaction-diffusion equation is re-
placed by a Poisson equation. In that case, the KS [3] model
becomes isomorphic to the Smoluchowski-Poisson (SP) sys-
tem [5] describing self-gravitating Brownian particles (see,
e.g., [6] for a description of this analogy). The KS model and
SP system have been studied thoroughly in applied math-
ematics (see references in [7]) and in theoretical physics (see
references in [5]).

However, the original KS model [3] also allows for the
possibility that the chemical suffers a degradation process
which has the effect of reducing the range of the interaction.
In that case, the Poisson equation is replaced by a screened
Poisson equation [8]. In the gravitational analogy, this
amounts to replacing the gravitational potential by a
screened gravitational potential, i.e., an attractive Yukawa
potential. In that case, there exists interesting phase transi-
tions between spatially homogeneous and spatially inhomo-
geneous equilibrium distributions. This is a physical motiva-
tion to consider the thermodynamics of N-body systems
interacting via an attractive Yukawa potential [9]. This will
be called the screened Newtonian model. We shall also con-
sider a related model where the interaction is not screened
but the Poisson equation is modified so as to allow for the
existence of spatially homogeneous distributions at equilib-
rium. This will be called the modified Newtonian model. In
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that model, the source of the potential is the deviation be-
tween the actual density p(r,z) and the average density p.
This is similar to the effect of a “neutralizing background” in
plasma physics [10]. This model can be derived from the
Keller-Segel model in the limit of vanishing degradation of
the chemical [11]. It also appears in cosmology, due to the
expansion of the universe, when we work in the comoving
frame [12]. It is therefore interesting to consider this form of
interaction at a general level and study the corresponding
phase transitions. We shall also compare them with the ones
obtained within the ordinary Newtonian model involving the
usual Poisson equation [13-31] (see a review in [32]).

The paper is organized as follows. In Sec. II, we discuss
several kinetic models taken from astrophysics, plasma phys-
ics, and biology for which our study applies. We consider
either isolated systems described by the microcanonical en-
semble (fixed energy E) or dissipative systems described by
the canonical ensemble (fixed temperature 7). We character-
ize their equilibrium states in the mean-field approximation:
in the microcanonical ensemble (MCE), they maximize the
entropy at fixed mass and energy, and in the canonical en-
semble (CE), they minimize the free energy at fixed mass. In
Sec. III, we specifically consider the case of a Newtonian
interaction with a neutralizing background. We study phase
transitions between homogeneous and inhomogeneous states
depending on the dimension of space. In d=1, the system
presents canonical and microcanonical second-order phase
transitions. In d=2, the system presents an isothermal col-
lapse in CE (zeroth-order phase transition) and a first-order
phase transition in MCE. In d=3, the system presents an
isothermal collapse in CE and a gravothermal catastrophe in
MCE (zeroth-order phase transitions). In Sec. IV, we perform
a similar study for the attractive Yukawa potential with
screening length k;'. In d=1, there exists a canonical tricriti-
cal point (k) .R=\27=4.44 and a microcanonical tricritical
point (k),,R=11.8, where R is the system size. If k,
< (ko),, the system presents canonical and microcanonical
second-order phase transitions. In that case, the ensembles
are equivalent. If (ky),. <ko<(kg),,, the system presents a ca-
nonical first-order phase transition and a microcanonical
second-order phase transition. In that case, there exists a re-
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gion of negative specific heats in MCE and the ensembles
are inequivalent. If ky> (k),,, the system presents canonical
and microcanonical first-order phase transitions. In d=2 and
d=3, the phase transitions are similar to those reported for
the modified Newtonian model. In Sec. V, we study the dy-
namical stability of the homogeneous phase and analytically
determine the critical point (Ej,Tf) that marks the onset of
instability of the homogeneous branch and the starting point
of the bifurcated inhomogeneous branch. Direct numerical
simulations associated with these phase transitions will be
reported in a forthcoming paper.

Finally, it may be noted that the phase transitions reported
in this paper share analogies (but also differences) with
phase transitions observed in the Hamiltonian mean-field
(HMF) model [33-38], the spherical mass shell model [39],
the Blume-Emery-Griffiths model [40], the infinite-range at-
tactive interaction (IRAI) model [41], the self-gravitating
Fermi gas model [28], the self-gravitating ring model [42]
and the one-dimensional static cosmology model [43] (see
review in [44]).

II. KINETIC MODELS AND STATISTICAL EQUILIBRIUM
STATES

A. Isolated systems

We consider an isolated system of N particles in interac-
tion described by the Hamiltonian equations

dr; O0H dv; oH
=T m——=—-", (1)

m
dt v, dt ar;

where

H=2 %mvf +m? X u(ry,r;) + m>, V(r). (2)

i<j

We assume that the particles interact through a binary poten-
tial u(r,r’) that is symmetric with respect to the interchange
of r and r’, and that they also evolve in a fixed external
potential V(r). Since the system is isolated, with strict con-
servation of energy and mass, the proper statistical ensemble
is the microcanonical ensemble [9]. In this paper, we shall
use a mean-field approach [45]. In the microcanonical en-
semble, the statistical equilibrium state is obtained by maxi-
mizing the Boltzmann entropy at fixed mass and energy. We
thus have to solve the maximization problem

mjf}x{S[f]|E[f]=E,M[f]=M}, 3)
with
S=—kBJ iln idrdv, (4)
m m
M:der, (5)
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2 1
E=ff%drdv+EJp(r,t)u(r,r’)p(r’,t)drdr’+fder,

(6)

where p(r,t)=[f(r,v,t)dv is the spatial density. Introducing
the mean-field potential

d(r) = J u(r,r")p(r')dr’ + V(r), (7)

the energy can also be written as

E= % f foldrdv + % f p(® + V)dr. (8)

We shall be interested in global and local entropy
maxima. Let us first determine the critical points of entropy
at fixed mass and energy which cancel the first order varia-
tions. Introducing Lagrange multipliers, they satisfy

1
58~ —OF — adM = 0. 9)

The variations are straightforward to evaluate and we obtain
the mean field Maxwell-Boltzmann distribution

f=A e—ﬁm[(vz/2)+©]’ (10)

where B=1/kgT and ®(r) is given by Eq. (7). Integrating
over the velocity, the find that the density is given by the
mean-field Boltzmann distribution

p= A/e—mﬂD/kBT. (1 1)
These two expressions can be combined to give
2
m 2
r,v) = r)e "2kt 12
firv) (2kaT> p(r) (12)

This critical point is a (local) entropy maximum at fixed
mass and energy if and only if (see, e.g., [47])

S 2
[ @ drdy —
2mf 2ksT

J Spéddr < 0, (13)

for all perturbations Jf that conserve mass and energy at first
order. In Appendix A, we provide an equivalent but simpler
condition of stability in the microcanonical ensemble [see
inequality (A13)].

The time evolution of the distribution function f(r,v,) is
governed by a kinetic equation of the form

ﬁ—f+v.f9—f_vq>.if=(if) , (14)
or av o \dt) .y

where

(I)(r,t):fu(r,r’)p(r’,t)dr’+V(r) (15)

is the time-dependent mean-field potential. The left-hand
side is an advective operator (Vlasov) in phase space. The
right-hand side is a “collision” operator like the Boltzmann
operator in the kinetic theory of gases or like the Landau (or
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Lenard-Balescu) operator in plasma physics or stellar dy-
namics. The collision operator in Eq. (14) takes into account
the development of correlations between particles. It can
have a more or less complicated form but it satisfies general
properties associated with the first and second principles of
thermodynamics: (i) it conserves mass and energy and (ii) it
satisfies an H theorem for the Boltzmann entropy (4), i.e.,

$§=0 with an equality if and only if f is the Maxwell-
Boltzmann distribution (10). Furthermore, the Maxwell-
Boltzmann distribution is dynamically stable if and only if it
is a (local) entropy maximum at fixed mass and energy.
These general properties can be checked directly for the
Boltzmann equation, for the Landau equation, for the
Lenard-Balescu equation, and for the BGK operator. There-
fore, the kinetic equation (14) is consistent with the maximi-
zation problem (3) describing the statistical equilibrium state
of the system in MCE. If we neglect the collisions for suffi-
ciently short times, Eq. (14) reduces to the Vlasov equation
which can experience a complicated process of collisionless
violent relaxation towards a quasi stationary state (QSS)
[48].

Remark. The maximization problem (3) also provides a
sufficient condition of dynamical stability for isothermal dis-
tributions with respect to the Vlasov equation [49].

B. Dissipative systems in phase space

We consider a dissipative system of N Brownian particles
in interaction described by the Langevin equations

dr; OJH

dt v
dv; 1 oH —
— =———— &, +\2DR(1), 17
& mor, &vi+ \2DR(1) (17)

where H is the Hamiltonian defined by Eq. (2), —év; is a
friction force, and R,(¢) is a white noise satisfying (R;(¢))
=0 and (R{‘(t)R}’(t)): 8,;0,,0(t—1"). The diffusion coefficient
D and the friction coefficient & are related to each other
according to the Einstein relation {=DfBm, where S
=1/(kgT) is the inverse temperature. Since this system is
dissipative, the proper statistical ensemble is the canonical
ensemble [9]. In the canonical ensemble, the statistical equi-
librium state is obtained by minimizing the Boltzmann free
energy F[f]=E[f]-TS[f] at fixed mass. We thus have to
solve the minimization problem

min{FL/ ML= M) (18)

with

2

v 1
F=Jf5drdv+£fp(r,t)u(r,r’)p(r’,t)drdr’ +fder

+kBTf iln idrdv. (19)
m m

We shall be interested by global and local minima of free
energy. Let us first determine the critical points of free en-
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ergy at fixed mass which cancel the first-order variations.
Introducing a Lagrange multiplier, they satisfy

SF + aTSM =0. (20)

The variations are straightforward to evaluate and we obtain
the mean-field Maxwell-Boltzmann distribution (10) and the
mean-field Boltzmann distribution (11) as in the microca-
nonical ensemble. This critical point is a (local) minimum of
free energy if and only if

1 kgT [ (6f)%
FF=~ | Spdbdr+ -2~ idmrv>o (21)
2)* 2f

m

for all perturbations Jf that conserve mass. In Appendix A,
we provide an equivalent but simpler condition of stability in
the canonical ensemble [see inequality (A28)].

In the mean-field approximation, the evolution of the dis-
tribution function f(r,v,7) is governed by a kinetic equation
of the form

‘9_f+v.a_f_vq>.(9—f=i<06—f+§fv), (22)
at v ar v\ v

coupled to the mean-field potential (15). This is called the
mean-field Kramers equation. The mean-field Kramers equa-
tion conserves mass and satisfies an H theorem for the Bolt-

zmann free energy (19), i.e., F<O0 with an equality if and
only if f is the Maxwell-Boltzmann distribution (10). Fur-
thermore, the Maxwell-Boltzmann distribution is dynami-
cally stable if and only if it is a (local) minimum of free
energy at fixed mass. Therefore, the kinetic equation (22) is
consistent with the minimization problem (18) describing the
statistical equilibrium state of the system in CE.

Remark. The critical points in MCE and CE are the same
because the variational problems (3) and (18) are equivalent
at the level of the first-order variations (9) and (20). How-
ever, they are not equivalent at the level of the second-order
variations (13) and (21) because of the different class of
perturbations to consider. Therefore, we can have ensembles
inequivalence [22,32,50,51]. In fact, the condition of canoni-
cal stability (18) provides a sufficient condition of microca-
nonical stability (3). Indeed, if inequality (21) is satisfied for
all perturbations that conserve mass, then it is a fortiori sat-
isfied for perturbations that conserve mass and energy so that
inequality (13) is satisfied. Therefore, canonical stability im-
plies microcanonical stability,

(18) = (3). (23)

However, the converse is wrong in case of ensembles in-
equivalence.

C. Dissipative systems in physical space

In the strong friction limit é—+%, we can formally ne-
glect the inertial term dv;/dr in Eq. (17) and we obtain the
overdamped Langevin equations
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dri 1 ﬂH [~
— =———+\2DR(?). 24
&L= ar, Y (1) (24)
The statistical equilibrium state of this system (described by
the canonical ensemble [9]) is obtained by solving the mini-
mization problem

min{F[p]|M[p] =M}, (25)
with

1
=5fp(r,t)u(r,r’)p(r’,t)drdr’+fder

+ kT f Lo Lar (26)

m m
Writing the variational principle as
OF + aTéM =0, (27)

we obtain the mean-field Boltzmann distribution (11). This
critical point is a (local) minimum of free energy at fixed
mass if and only if

1 kgT ( (8p)®
52F=5f5p5®dr+%f%dr>o (28)

for all perturbations Jdp that conserves mass.
In the mean-field approximation, the evolution of the den-
sity profile p(r,f) is governed by a kinetic equation of the

form
ap 1<kBT )}
—=V.|-|—V Vo 2
po L VPP ) (29)

coupled to the mean-field equation (15). This is called the
mean-field Smoluchowski equation. The mean-field Smolu-
chowski equation (29) conserves mass and satisfies an H

theorem for the Boltzmann free energy (26), i.e., F<0 with
an equality if and only if p is the Boltzmann distribution
(11). Furthermore, the Boltzmann distribution is dynamically
stable if and only if it is a (local) minimum of free energy at
fixed mass. Therefore, the kinetic equation (29) is consistent
with the minimization problem (25) describing the statistical
equilibrium state of the system in CE.

Remark 1. The Smoluchowski equation (29) can also be
deduced from the Kramers equation (22) in the strong fric-
tion limit [52]. For &, D — +c0 and B=¢/Dm finite, the time-
dependent distribution function f(r,v,7) is Maxwellian

darn
flev,0) = (f—:) p(r,0e P L 0(1/9),  (30)
and the time-dependent density p(r,7) is solution of the
Smoluchowski equation (29). Using Eq. (30), we can express
the free energy (19) as a functional of the density and we
obtain the free energy (26) up to some unimportant con-
stants.

Remark 2. Tt is shown in Appendix A that the maximiza-
tion problems (18) and (25) are equivalent in the sense that
f(r,v) is solution of (18) if and only if p(r) is solution of
(25). Thus, we have
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(18) < (25). (31)

As a consequence, the Maxwell-Boltzmann distribution
f(r,v) is dynamically stable with respect to the mean field
Kramers equation (22) if and only if the corresponding Bolt-
zmann distribution p(r) is dynamically stable with respect to
the mean-field Smoluchowski equation (29). On the other
hand, according to implication (23), the Maxwell-Boltzmann
distribution f(r,v) is dynamically stable with respect to the
kinetic equation (14) if it is stable with respect to the mean-
field Kramers equation (22), but the reciprocal is wrong in
case of ensembles inequivalence.

Remark 3. The minimization problem (25) also provides a
necessary and sufficient condition of dynamical stability for
isothermal distributions with respect to the barotropic Euler
equation [49].

D. Keller-Segel model of chemotaxis

The Keller-Segel model [3] describing the chemotaxis of
biological populations can be written as

0

&_f;=V'(DVP—XPVC), (32)
1 o

Eé:Ac—k2c+)\p, (33)

where p is the concentration of the biological species (e.g.,
bacteria) and c is the concentration of the secreted chemical.
The bacteria diffuse with a diffusion coefficient D and un-
dergo a chemotactic drift with strength y along the gradient
of chemical. The chemical is produced by the bacteria at a
rate D'\, is degraded at a rate D'k* and diffuses with a
diffusion coefficient D'. We adopt Neumann boundary con-
ditions [3]

Ve-n=0, Vp-n=0, (34)

where n is a unit vector normal to the boundary of the do-
main. With these boundary conditions, the conservation of
mass is automatically satisfied. The drift-diffusion equation
(32) is similar to the mean-field Smoluchowski equation (29)
where the concentration of chemical —c(r,7) plays the role of
the potential ®(r,7). Therefore, there exists many analogies
between chemotaxis and Brownian particles in interaction
[6]. In particular, the effective statistical ensemble associated
with the Keller-Segel model is the canonical ensemble. The
steady states of the Keller-Segel model are of the form

p=AeXPre, (35)

which is similar to the Boltzmann distribution (11) with an
effective temperature T,=D/x. The Lyapunov functional
associated with the KS model is [4]

1
F= X f [(VC)2 + kzcz]dl' - f pcdr + Teﬁ'f p In pdr.

(36)

It is similar to a free energy F=E-T,;S in thermodynamics,
where E is the energy and S is the Boltzmann entropy. The
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KS model conserves mass and satisfies an H theorem for the

free energy (36), i.e., F<0 with an equality if and only if p
is the Boltzmann distribution (35). Furthermore, the Boltz-
mann distribution is dynamically stable if and only if it is a
(local) minimum of free energy at fixed mass. In that context,
the minimization problem

min{Fp,c]|M[p] = M} (37)
pc
determines a steady state of the KS model that is dynami-
cally stable. This is similar to a condition of thermodynami-
cal stability in the canonical ensemble.
Let us consider some simplified forms of the Keller-Segel
model that have been introduced in the literature.
(i) In the limit of large diffusivity of the chemical
D’ —+o at fixed k? and \, the reaction-diffusion equation
(33) takes the form of a screened Poisson equation [8],

Ac—K*c=—\p, (38)

and the free energy becomes

1
F:—Ejpcdr+ Tefffpln pdr. (39)

In that case, the KS model is isomorphic to the Smolu-
chowski equation (29) with an attractive Yukawa potential
(65).

(ii) In the limit of large diffusivity of the chemical D’
—+c0 and a vanishing degradation rate k*=0, the reaction-
diffusion equation (33) takes the form of a modified Poisson
equation [11],

Ac==\p-p), (40)

where p=M/V is the average density, and the free energy
becomes

1
F:—EJ(p—ﬁ)cdr+Te_zf'fplnpdr' (1)

In that case, the KS model is isomorphic to the Smolu-
chowski equation (29) with a modified Poisson equation
(44).

(iii) Some authors have also considered a simple model of
chemotaxis where the reaction-diffusion equation (33) is re-
placed by the Poisson equation [53],

Ac=-\p. (42)

This is valid in the absence of degradation of the chemical
and for sufficiently large densities p> p. This model can be
used in particular to study chemotactic collapse. The corre-
sponding free energy is

1
F=- > f pcdr + Tefff pIn pdr. (43)

In that model, the boundary conditions (34) must be modi-
fied [54] and we must impose that ¢ behaves at infinity like
the gravitational potential in astrophysics. Furthermore, we
must impose that the normal component of the current van-
ishes on the boundary: (DVp—xpVc)-n=0 so as to con-
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serve mass. In that case, the KS model is isomorphic to the
SP system describing self-gravitating Brownian particles in
the overdamped limit [29].

E. Physical justification of the canonical ensemble for systems
with long-range interactions

In statistical mechanics, the canonical distribution is usu-
ally derived by considering a subpart of a large system and
assuming that the rest of the system plays the role of a ther-
mostat [55]. However, this justification implicitly assumes
that energy is additive. Since energy is nonadditive for sys-
tems with long-range interactions, it is sometimes concluded
that the canonical ensemble has no foundation to describe
systems with long-range interactions [56]. In fact, this is not
quite true [9]. We can give two justifications of the canonical
ensemble for systems with long-range interactions:

(i) The canonical ensemble is relevant to describe a sys-
tem of particles in contact with a thermal bath of a different
nature [9]. This is the case if we consider a system of Brown-
ian particles in interaction described by the stochastic equa-
tions (16) and (17). The particles interact through a potential
u(r,r’) that can be long-range, but they also undergo a fric-
tion force and a stochastic force that are due to other types of
interaction (they model in general short-range interactions).
As we have seen, this system is described by the canonical
ensemble. It does not correspond to a subsystem of a larger
system but simply to a system as a whole with long-range
and short-range interactions [59].

(i) Since canonical stability implies microcanonical sta-
bility [50], the condition of canonical stability provides a
sufficient condition of microcanonical stability. In this sense,
the study of the minimization problems (18) and (25), and
the corresponding canonical stability criteria (see Secs. II B
and II C) can be useful even for an isolated Hamiltonian
system (see Sec. IT A) because if we can prove that this sys-
tem is canonically stable, then it is granted to be microca-
nonically stable. This remark also applies to other ensembles
(grand canonical, grand microcanonical, etc.) [31].

II1. MODIFIED NEWTONIAN MODEL

In this section, we discuss phase transitions that appear in
the modified Newtonian model.

A. Physical motivation of the model

We consider a system of particles interacting via a mean
field potential ®(r,¢) that is solution of the modified Poisson
equation

AD=5,G(p-p), (44)

where p=M/V is the average density (conserved quantity).
At statistical equilibrium, the density is given by the Boltz-
mann distribution

p= Ae Pm?®, (45)

We have used the notations of astrophysics (where G is the
constant of gravity and S, the surface of a unit sphere in d

051103-5



P. H. CHAVANIS AND L. DELFINI

dimensions) in order to make the connection with ordinary
self-gravitating systems where Eq. (44) is replaced by the
Poisson equation A®=S,Gp. However, this model can have
application in other contexts as explained below. We assume
that the system is confined in a finite domain (box) and we
impose the Neumann boundary conditions

V®-n=0, Vp-n=0, (46)

where n is a unit vector normal to the boundary of the box
(the explicit expression of the potential in d=1 is given in
Appendix B). This model admits spatially homogeneous so-
lutions (p=p and ®=0) at any temperature. It also admits
spatially inhomogeneous solutions at sufficiently low tem-
peratures. We shall study this model in arbitrary dimensions
of space d with explicit computations for d=1,2,3. This
model has different physical applications.

(i) It describes self-gravitating systems in a cosmological
setting [12]. When we take into account the expansion of the
universe and work in the comoving frame, the usual Poisson
equation A®=47Gp is replaced by an equation of the form
Ap=47Ga(t)*[p(x,1)—p,(t)] where the potential is pro-
duced by the deviation between the actual density p(x,¢) and
the mean density p,(7). This is similar to the effect of a
“neutralizing background” in plasma physics. Furthermore,
the Hamiltonian equations of motion read (d/dt)(ma’x)=
-mV ¢. In cosmology, we must account for the evolution of
the scale factor a(z) but if we consider time scales that are
short with respect to the Hubble time H™'=a/d, we can ig-
nore this time dependence and we obtain a model similar to
Eq. (44). This model has been studied by Valageas [43] in
d=1 with periodic boundary conditions. In that context, the
relevant ensemble is the MCE since the system is isolated.

(ii) By a proper reinterpretation of the parameters, the
field equation (44) describes the relation between the con-
centration of the chemical and the density of bacteria in the
Keller-Segel model (32)—(40). In that case, the most physical
dimension is d=2 and the boundary conditions are of form
(46). Furthermore, the relevant ensemble is the CE since the
KS model has a canonical structure. This model has been
studied by applied mathematicians, starting with Jager and
Luckhaus [11], but they have not performed the type of study
that we are developing in this paper. In view of these differ-
ent applications, we shall study this model in the microca-
nonical and canonical ensembles in any dimension of space.

B. Modified Emden equation

In the modified Newtonian model, the statistical equilib-
rium state is given by the Boltzmann distribution (45)
coupled to the modified Poisson equation (44). We look for
spherically symmetric solutions because, for non rotating
systems, entropy maxima (or minima of free energy) are
spherically symmetric. Introducing the central density p,
=p(0), the central potential ®y=Pd(0), the new field
=Bm(®-®d,), and the scaled distance &=(S,GBmp,)""r, the
Boltzmann distribution (45) can be rewritten as

p=poe 1. (47)

Substituting this relation in the modified Poisson equation
(44), we obtain the modified Emden equation
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FIG. 1. The function ¢~ for d=1 and N\=0.5<1 (bottom) or
N=2>1 (top). In d=1, the oscillations are undamped.

1 d d
__1_<§d‘1—¢> =e™/—\, (48)
glag dé
where N=p/p, plays the role of the inverse central density.
Since ®’(0)=0 for a spherically symmetric system, the
boundary conditions at the origin are

#(0) = ¢'(0)=0. (49)

The ordinary Emden equation [60] is recovered for A=0, i.e.,
for very large central densities with respect to the average
density. The function e ¢ is plotted in Figs. 1 and 2 for
different values of N and different dimensions of space d. It
presents an infinity of oscillations. For d=1, the oscillations
are undamped and their period is given by Eq. (E11). For
d=2, the oscillations are damped and the function (&)
tends to the asymptotic value —In \ for &— +0.

We assume that the system is enclosed in a spherical box
of radius R. The normalized box radius a=(S,GBmp,)"*R is
determined by the boundary condition ®’(R)=0 that be-
comes

W' (@) =0. (50)

For a given value of A, we need to integrate the modified
Emden equation (48) and (49) until the point £=a such that

3 T

d=2

0 25 50 75 100

FIG. 2. The function e ¥ for d=2 and N\=0.5<1 (bottom) or
N=2>1 (top). In d=2, the oscillations are damped. The case d
=3 (not represented) is similar.
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FIG. 3. Inverse temperature 7 as a function of the central den-
sity 1/\ for the first three branches in d=1.

' (a)=0. Since the function (&) presents an infinite number
of oscillations, this determines an infinity of solutions
a;(N), ay(N), ... that will correspond to different branches in
the following diagrams. Once «,(\) is determined, the den-
sity profile is given by Eq. (47). The density profile is extre-
mum at the center and at the boundary. On the nth branch,
the density profile shows n “clusters” corresponding to the
oscillations of ¢ 9. Close to the origin, the density in-
creases for N>1 while it decreases for A <1. The homoge-
neous state =0 corresponds to A=1. This solution is degen-
erate because the boundary condition (50) is satisfied for any
.

Remark. When A — 0, corresponding to large values of the
central density, we expect to obtain results similar to those
obtained for the usual Newtonian model since the differential
equation (48) reduces to the ordinary Emden equation. How-
ever, the results are different because the boundary condi-
tions are not the same. In the Newtonian model, the force at
the boundary is nonzero [for a spherically symmetric system,
according to the Gauss theorem, we have ®'(R)=GM/R% ],
while in the modified Newtonian model the force at the
boundary is zero [®'(R)=0]. Therefore, strictly speaking,
the Newtonian and the modified Newtonian models behave
differently even when p,— +. Nevertheless, for large cen-
tral concentrations, the Newtonian solution provides a good
approximation of the modified Newtonian solution in the
core (see Appendix E).

C. Temperature

We must now relate the normalized central density 1/\ to
the temperature 7. Recalling that p=M/V with V= éS R, we
obtain

p dM 1 GMmpB 1
LML GMmEL (51)
po  SaR"po R™" «a
Introducing the normalized inverse temperature
BGMm
v (52)

we find the relation
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FIG. 4. Inverse temperature 7 as a function of the central den-
sity 1/\ for the first three branches in d=2.

1
7= Z)\az. (53)

Recalling that a=a,(\) for the nth branch, this equation
gives the relation between the inverse temperature 7 and the
central density 1/\ for the nth branch. In Figs. 3-5, we plot
the inverse temperature 7 as a function of the central density
1/N\ for the first three branches n=1,2,3 in different dimen-
sions of space d=1,2,3.

Let us discuss the asymptotic behaviors of the tempera-
ture (we only describe the first branch n=1) and compare
with the Newtonian model (see, e.g., [29]).

(i) In d=1: for the ordinary Newtonian model, the series
of equilibria is parametrized by «, which is a measure of the
central density. When a— +%, the distribution tends to a
Dirac peak p=M &(x) and the inverse temperature 27— +%.
When a— 0, the distribution is homogeneous and the inverse
temperature 77— 0. For the modified Newtonian model, the
series of equilibria is parametrized by the central density
1/N. When 1/\— +, the distribution tends to a Dirac peak
p=M 8(x) and 5— +o with the same asymptotic behavior as
in the Newtonian model (see Appendix E). When A=1, the
distribution is homogeneous and 7= nj =17=9.869 604 4
(see Appendix F). When 1/\ — 0, the distribution tends to a

50 T
d=3
40 —
n=3
301 B
=
20 -
n=2
10~ -
n=1
0 ! ! ! !
-10 -5 0 10 15 20

5
In(1/))

FIG. 5. Inverse temperature 7 as a function of the central den-
sity 1/\ for the first three branches in d=3.
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Dirac peak p=%’[5(x—R)+5(x+R)] concentrated at the box
and 7n— +%0.

(ii) In d=2: for the ordinary Newtonian model, the series
of equilibria is parametrized by . When a— +2, the distri-
bution tends to a Dirac peak p=M &(r) and the inverse tem-
perature tends to 7.=4. When a— 0, the distribution is ho-
mogeneous and the inverse temperature 7— 0. For the
modified Newtonian model, the series of equilibria is param-
etrized by 1/N. When 1/\— +o, the distribution tends to a
Dirac peak p=M&8(r) and 7— 7,=4 (since the density is
very much concentrated, the boundary conditions do not
matter and we recover the same results as in the Newtonian
case). When \=1, the distribution is homogeneous and 7
= nj:%j%127.341 000 8 (see Appendix F). When 1/\—0,
the distribution is concentrated at the boundary and 7— +%.

(iii) In d=3: for the ordinary Newtonian model, the series
of equilibria is parametrized by a. When a— +%, the distri-
bution tends to the singular isothermal sphere p,(r)
=1/(2mGBmr?) and the inverse temperature 7— 7,=2. The
curve 7(a) displays damped oscillations around this value.
When a— 0, the distribution is homogeneous and the inverse
temperature 77— 0. For the modified Newtonian model, the
series of equilibria is parametrized by 1/\. When 1/\—
+oo, the distribution is concentrated at the center and we
numerically find that 77— 3.05- -+ (the value is different from
the Newtonian result 7,=2 due to different boundary condi-
tions and the fact that the profile extends up to the box). The
curve 7(\) displays damped oscillations around this value.
When A=1, the distribution is homogeneous and 7= 77:<
=1x7=6.730244 5 (see Appendix F). When 1/\—0, the
distribution is concentrated at the boundary and we numeri-
cally find that 7— +c°.

D. Energy

We must also relate the normalized central density 1/A to
the energy E. The total energy is given by (see Appendix C)

2
1
E=ff%drdv + > J (p—p)Ddr. (54)
Using the Maxwell-Boltzmann distribution (10), the kinetic
energy is simply

d
K= NkyT. (55)

Using the modified Poisson equation (44) and an integration
by parts, the potential energy can be written as

1
W=- f (V®)2dr. (56)
28,G
The total energy E=K+ W is therefore given by
d 2
E = _NkgT - (VO)“dr. (57)
2 28,G

Introducing the dimensionless variables defined previously,
recalling that r=¢R/«, and introducing the normalized en-

ergy
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FIG. 6. Energy A as a function of the central density 1/\ for the
first three branches in d=1.

ERd—2
A=- , 58
Gl (58)
we obtain
d 1 1 (¢ d¢>2
A=——+——75 — -lae. 59
20 27 0<d§ £ lag (59)

Recalling that @=«,(\) and 7= 7,(\) for the nth branch, this
equation gives the relation between the energy A and the
central density 1/\ for the nth branch.

In Figs. 6-8, we plot the normalized energy A as a func-
tion of the central density 1/\ for the first three branches n
=1,2,3 in different dimensions of space d=1,2,3.

Let us consider the asymptotic behaviors of the energy
(we only describe the first branch n=1) and compare with
the Newtonian model (see, e.g., [29]).

(i) In d=1: for the ordinary Newtonian model, the series
of equilibria is parametrized by «, which is a measure of the
central density. When a— +%, the distribution tends to a
Dirac peak p=M &(x) and the energy A —0. When a— 0, the
distribution is homogeneous and the energy A — —. For the
modified Newtonian model, the series of equilibria is param-
etrized by the central density 1/N. When 1/\ — +ce, the dis-
tribution tends to a Dirac peak p=M&(x) and A—A)
=1/6 (see Appendix D). When A=1 the distribution is ho-

T
d=2

0.2

| | | |
'0‘%15 -10 -5 0
In(1/A)

FIG. 7. Energy A as a function of the central density 1/\ for the
first three branches in d=2.
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FIG. 8. Energy A as a function of the central density 1/\ for the
first three branches in d=3.

mogeneous and A:Af:—l/(an)Z—O.OSO 660 6. When
1/)\—>0 the distribution tends to a Dirac peak p

[5 x—R)+8(x+R)] concentrated at the box and A
— A

(11) In d=2: for the ordinary Newtonian model, the series
of equilibria is parametrized by «. When a— +2, the distri-
bution tends to a Dirac peak p=MJ(r) and the energy
A —+%. When a— 0, the distribution is homogeneous and
the energy A ——oc. For the modified Newtonian model,
the series of equilibria is parametrized by 1/N. When
1/N—+o, the distribution tends to a Dirac peak p=M &(r)
and A —+%. When A=1 the distribution is homogeneous
and A=A"=-1/7% =-0.136 221 21. When 1/\—0, the dis-
tribution is concentrated at the boundary and we numerically
find that A —0.1.

(iii) In d=3: for the ordinary Newtonian model, the series
of equilibria is parametrized by a. When a— +%, the distri-
bution tends to the singular isothermal sphere p,(r)
=1/(27GBmr?) with energy A,=1/4. The curve A(a) un-
dergoes damped oscillations around this value. When a—0,
the distribution is homogeneous and the energy A — —. For
the modified Newtonian model, the series of equilibria is
parametrized by 1/N. When 1/\—+%, the distribution is
concentrated at the center and we numerically find that A
——0.38: -+ (the value is different from the Newtonian result
Ay=1/4 due to different boundary conditions and the fact
that the profile extends up to the box). The curve A(N) un-
dergoes damped oscillations around this value. When A=1
the distribution is homogeneous and A:Aj=—3/ (27]3_‘):
—0.222 874 52. When A — 0, the distribution is concentrated
at the boundary and we numerically find that A — 0.05.

E. Entropy and free energy

Finally, we relate the central density 1/\ to the entropy S
and to the free energy F. Using Egs. (4), (10), and (11), the
entropy is given by

d p
= ENkB lnT kB -

n Lar. (60)
m m

Substituting Eq. (47) in Eq. (60), and introducing the dimen-
sionless variables defined previously, we get

PHYSICAL REVIEW E 81, 051103 (2010)

FIG. 9. Free energy 1le¢1, as a function of the inverse temperature
n in d=1. Note that the branches A <1 and A>1 coincide.

s d
NG Zlnﬁ lnpo+ ( )f e Ve lde

(61)

up to some unimportant constants. Using «
=(S,GBmp,)"*R to express p, in terms of a and introducing
the normalized temperature (52), we finally obtain

S 2 =2t lfa:p-#fgd-ldg
— == ny-2hna+—5 e ,
Neg 2 7 na?),

(62)

up to some unimportant constants. Using the previous re-
sults, this expression relates the entropy S/Nkj to the central
density 1/N. The free energy is F=E—TS. In the following, it
will be more convenient to work in terms of the Massieu
function J=S—kzBE (by an abuse of language, we shall of-
ten refer to J as the free energy). We have

=4 A (63)

Using the previous results, this expression relates the free
energy J/Nkjp to the central density 1/A.

In Figs. 9-11, we have plotted the free energy J/Nkp as a
function of the inverse temperature 7 (parametrized by the

-1

FIG. 10. Free energy NLkB as a function of the inverse tempera-
ture 7 in d=2.
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FIG. 11. Free energy 1#3 as a function of the inverse tempera-
ture » in d=3.

central density 1/\) in d=1,2,3. In Figs. 12-15, we have
plotted the entropy S/Nkjp as a function of the energy A
(parametrized by the central density 1/\) in d=1,2,3. In
these figures, the solid lines without label refer to the homo-
geneous phase. The solid lines with label n=1 refer to the
first inhomogeneous branch. The dashed lines with label n
=2 refer to the second inhomogeneous branch. These curves
will be helpful in the next section to analyze the phase tran-
sitions in the canonical and microcanonical ensembles re-
spectively.

Remark. Since 8S=kpBSE, the extrema of entropy S(\)
and energy E(N\) coincide. Since the series of equilibria E(\)
exhibits damped oscillations for 1/\—+o in d=3 (see Fig.
8), this implies that the curve S(\) will also exhibit damped
oscillations at the same locations. Correspondingly, S(E) will
present some “spikes” for 1/\ —+% in d=3 (see inset of Fig.
15). Similarly, since 8/=-FEkg5B, the extrema of free energy
J(\) and temperature B(\) coincide. Since the series of equi-
libria B(\) exhibits damped oscillations for 1/\—+ in d
=3 (see Fig. 5), this implies that the curve J(\) will also
exhibit damped oscillations at the same location, and that the
curve J(B) will present some “spikes” for 1/\N—+% in d
=3 (see inset of Fig. 11). In addition, the curve J(B) presents
a minimum for 7==24.7 corresponding to £=0. Similar be-
haviors were previously observed in the model of self-
gravitating fermions [28,32].

FIG. 12. Entropy A%n as a function of energy A in d=1. Note
that the branches A <1 and A>1 coincide.

PHYSICAL REVIEW E 81, 051103 (2010)

d=2

FIG. 13. Entropy Nikﬁ as a function of energy A in d=2.

F. Caloric curves and phase transitions

We shall now determine the caloric curve B(E) corre-
sponding to the modified Newtonian model. First of all, we
note that for the homogeneous phase, the potential energy
W=0 so that the energy reduces to the kinetic energy. There-
fore, the series of equilibria of the homogeneous phase is
simply

d

- Z . (64)

7]:
On the other hand, eliminating N\ between 7,(\) and A,(\)
given by Egs. (53) and (59), we get the series of equilibria
77,(A) for the nth inhomogeneous branch. The series of equi-
libria contain all the critical points of the optimization prob-
lems (3) and (18). The series of equilibria are the same in the
canonical and microcanonical ensembles because the critical
points are the same. They contain fully stable states (global
maxima of S or J), metastable states (local maxima of S or
J), and unstable states (saddle points of S or J). The stable
parts of the series of equilibria form the caloric curves in the
canonical and microcanonical ensembles. We shall distin-
guish the strict caloric curves formed by fully stable states
and the physical caloric curves containing fully stable and

-1.923F

d=2 J

-1.923 -

-1.924

-1.9251-

-1.925-

. | . I . I . | . . I .
-0.1462  -0.1461 -0.1460 -0.1459 -0.1458 -0.1457
A

FIG. 14. Enlargement of Fig. 13. The entropies of the homoge-
neous phase and inhomogeneous phase become equal at A=A,=
—0.146. This corresponds to a first-order phase transition in the
microcanonical ensemble marked by the discontinuity of the slope
S"(E)=1/T.
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FIG. 15. Entropy I\%B as a function of energy A in d=3.

metastable states [61]. Metastable states are important be-
cause they can be long lived in systems with long-range
interaction [62,63]. The caloric curves may differ in CE and
MCE in case of ensembles inequivalence. They are described
below in different dimensions of space.

Remark. In order to determine the stable branch, we shall
compare the entropy (in MCE) or the free energy (in CE) of
the different solutions in competition (with the same values
of energy or temperature). However, this is not sufficient
because a distribution could have a high entropy and be an
unstable saddle point. A more rigorous study should there-
fore investigate the sign of the second-order variations of
entropy or free energy for each critical point. But this is a
difficult task that is left for future works. In order to find the
stable states, we shall use physical considerations, advocate
the Poincaré theorem, and exploit results obtained in related
studies.

1. Dimension d=1

In Fig. 16 we plot the series of equilibria in d=1. Let us
first describe the CE. The control parameter is the inverse
temperature 7 and the stable states are maxima of free en-

150

100

50

b1 005 0 005 01 0I5 02

FIG. 16. Series of equilibria in d=1. The caloric curve displays
a second-order phase transition in CE and MCE taking place at »
= nj and A=Aj (corresponding to N=1). It is marked by the dis-
continuity of dB/JE in MCE or JE/JB in CE. Note that the
branches A <1 and N> 1 coincide. The corresponding density pro-
files are plotted in Fig. 17.
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FIG. 17. Density profiles of the two stable inhomogeneous so-
lIutions A{=0.69<1 and \,=1.54>1 corresponding to =10 in d
=1. We have also represented the unstable homogeneous solution.

ergy J at fixed mass M. The homogeneous phase exists for
any value of #. It is fully stable for << 77 and unstable for
7> 7; (see Sec. V). The ﬁrst branch n=1 of inhomogeneous
states exists only for 7> 77 It has a higher free energy J
than the homogeneous phase (see Fig. 9) and it is fully
stable. Secondary branches of inhomogeneous states appear
for smaller values of the temperature but they have smaller
values of free energy J (see Fig. 9) and they are unstable
(saddle points of free energy). Therefore, the canonical ca-
loric curve displays a second-order phase transition between
homogeneous and inhomogeneous states marked by the dis-
continuity of % at B= ,Bj. For the inhomogeneous states,
there exists two solutions with the same temperature and the
same free energy but with different density profiles corre-
sponding to \; <1 and \,>1 (see Fig. 17). Thus, the inho-
mogeneous branch is degenerate. These two states can be
distinguished by their central density 1/\. In conclusion, (i)
for 77<77 there is only one stable state A=1 (homoge-
neous), and (i) for n> 77 there are two stable states \,
<1 and A\y>1 (1nhomogeneous) with the same free energy
and one unstable state A=1 (homogeneous). Therefore, the
central density 1/\ plays the role of an order parameter (see
Fig. 3). In d=1, there exists a fully stable equilibrium state
for any temperature. This is consistent with the usual New-
tonian model in d=1 [20,29]. This is also consistent with
results of chemotaxis since it has been rigorously proven that
the Keller-Segel model does not blow up in d=1 [8].

Let us now describe the MCE. The control parameter is
the energy A and the stable states are maxima of entropy S at
fixed mass M and energy E. The homogeneous phase exists
for any value of energy A <O0. It is fully stable for A<A
and unstable for A>A (see Sec. V). The ﬁrst branch n= 1
of inhomogeneous states exists only for A <A<A, It
has a higher entropy S than the homogeneous phase (see Fig.
12) and it is fully stable. Secondary branches of inhomoge-
neous states appear for smaller values of the energy but they
have smaller values of entropy S (see Fig. 12) and they are
unstable (saddle points of entropy). Therefore, the microca-
nonical caloric curve displays a second-order phase transi-
tion marked by the discontinuity of (—‘;g at £ :E:f. For the
inhomogeneous states, there exists two solutions with the
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— 7\,%0‘

FIG. 18. Series of equilibria in d=2. The first inhomogeneous
branch n=1 tends to a plateau 7.=4 for large central densities
1/N—+% due to the formation of a Dirac peak at r=0. This is
similar to the plateau appearing in the caloric curve of the classical
self-gravitating gas [29].

same energy and the same entropy but with different density
profiles corresponding to A\; <1 and \,>1. Thus, the inho-
mogeneous branch is degenerate. These two states can be
distinguished by their central density 1/\. In conclusion, (i)
for A<A there is only one stable state A=1 (homoge-
neous), and (i1) for A <A <0, there are two stable states
AN <1 and A, > 1 (1nhomogeneous) with the same entropy
and one unstable state A=1 (homogeneous). (iii) for 0 <A
<A, there are two stable states N; <1 and A,>1 (inho-
mogeneous) with the same entropy. Therefore, the central
density 1/\ plays the role of an order parameter (see Fig. 6).
In d=1, there exists a fully stable equilibrium state for any
accessible energy. This is consistent with the usual Newton-
ian model in d=1 [20,29].

The caloric curve, corresponding to the fully stable states
in the series of equilibria, is denoted by (S) in Fig. 16. The
branch (U) corresponds to unstable states. There exists a
fully stable equilibrium state for any accessible values of
energy in MCE and temperature in CE. The microcanonical
and canonical ensembles are equivalent (like in the Newton-
ian case).

In conclusion, the system displays second-order phase
transition in CE and MCE. This is similar to the HMF model
[33-35].

2. Dimension d=2

In Fig. 18 we plot the series of equilibria in d=2. Let us
first describe the CE. The control parameter is the inverse
temperature 7. The homogeneous phase exists for any #. It is
stable for < n:f and unstable for 7> nj (see Sec. V). The
first branch n=1 of inhomogeneous states exists for n> 7.
=4 and it connects the homogeneous branch at 77 For 7
< 77 it has a lower free energy J than the homogeneous
phase (see Fig. 10) and it is unstable (it has negative specific
heats which is not allowed in the canonical ensemble). For
n> 17:, it has a higher free energy J than the homogeneous
phase (see Fig. 10). However, it is expected to be unstable or,
possibly, metastable (to settle this issue we have to study the
sign of the second-order variations of free energy as ex-
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FIG. 19. Caloric curve in the canonical ensemble in d=2. The
homogeneous branch is fully stable for n< mn.=4, metastable for
<< 7; and unstable for 7> 77 The 1nhomogeneous branch is
always unstable (or, possibly, metastable for n>7, ). For suffi-
ciently low temperatures, the system can experience an isothermal
collapse.

plained above). Secondary inhomogeneous branches appear
for smaller values of the temperature but they have smaller
values of the free energy (see Fig. 10) and they are unstable.
The homogeneous branch is expected to be fully stable for
n<7,=4 and metastable for 7.,=4<ny< 77: (see Fig. 19).
These conclusions are motivated by two arguments. (i) In the
Newtonian model in d=2, we know that there exists a fully
stable equilibrium state for »<<7.=4 and no equilibrium
state for 7> 7.=4. In that case, the system undergoes an
isothermal collapse [19,29]. For > n.=4, there is no global
maximum of free energy J because we can make it diverge
by creating a Dirac peak containing all the particles. In the
modified Newtonian model, the same argument applies since
it is independent of boundary conditions. Since we know that
the homogeneous branch is stable for n< 77 we conclude
that it must be metastable in the range 7,.= 4< n< 77 Con-
sidering only fully stable states, there is therefore a “Zeroth-
order phase transition at 7.=4 marked by the discontinuity
of the free energy. (ii) In the chemotactic literature, it has
been rigorously established that the Keller-Segel model in
d=2 does not blow up for »< 7.=4 while it can blow up for
17> 7.=4 [8]. This is consistent with our stability results.
Let us now describe the MCE. The control parameter is
the energy A. The homogeneous phase exists for all values
of A<0. It is stable for A < A and unstable for A > A (see
Sec. V). The first branch n=1 of inhomogeneous states exists
for A> A, (see Fig. 20) and it connects the homogeneous
branch at Aj. We see that the inhomogeneous branch B(E)
can be multivalued. Considering the value of the entropy in
the different phases (see Figs. 13 and 14), the caloric curve is
expected to display a microcanonical first-order phase tran-
sition at A=A,=-0.146 marked by the discontinuity of the
temperature (see Fig. 20). The energy of transition has been
determined by comparing the entropy of the homogeneous
and inhomogeneous phases and looking at which point the
curves S(E) intersect (see Fig. 14). Equivalently, it can be
obtained by performing a vertical Maxwell construction [32].
The homogeneous phase is fully stable for A <A, meta-
stable for A,<A<Af, and unstable for A>Af. The lower
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FIG. 20. Caloric curve in the microcanonical ensemble in d=2.
Note that the lower branch has negative specific heats. A first-order
phase transition is expected to take place in the microcanonical
ensemble at A=A,. However, this phase transition may not take
place in practice because metastable states can have very long life-
times for systems with long-range interaction. A, and possibly Aj
represent microcanonical spinodal points marking the end of the
metastable phase.

part of the first inhomogeneous branch is fully stable for A
> A, and metastable for A, <A <A,. The upper part of the
first inhomogeneous branch is unstable for A, <A< Aj. For
A>Aj, it is unstable or, possibly, metastable. Secondary in-
homogeneous branches appear for smaller values of the en-
ergy but they have smaller values of the entropy (see Fig. 13)
and they are unstable. The stable states of the inhomoge-
neous branch have 1/\>1 indicating that the density is con-
centrated at the center. The possibly metastable states for
A>A;k have 1/N<1 indicating that the density is concen-
trated near the box. In conclusion, there exists a fully stable
equilibrium state for any value of energy. This is similar to
the Newtonian model in d=2 [24,29]. However, in the modi-
fied Newtonian model, we expect a first-order phase transi-
tion at A, that is not present in the Newtonian model.

The strict caloric curve, corresponding to the fully stable
states (global maxima) in the series of equilibria, is denoted
(S) in Figs. 19 and 20. The unstable states (saddle points) are
denoted (U) and the metastable states (local maxima) are
denoted (M). There exists a fully stable equilibrium state for
any accessible value of energy in MCE and for sufficiently
high values of the temperature in CE (< 7,=4). Here, the
microcanonical and canonical ensembles are inequivalent
(unlike in the Newtonian case). In particular, the lower part
of the first inhomogeneous branch is stable in MCE while it
is unstable in CE. This branch has negative specific heats
C <0 (see Fig. 20) which is not possible in the canonical
ensemble.

In conclusion, the system displays a zeroth order phase
transition in CE (associated with an isothermal collapse) and
a first-order phase transition in MCE. Note also that the en-
ergy E(pB) and its first derivative E'(B) are continuous at the
critical point B but its second derivative E"(B) is discon-
tinuous. Prov1ded that the inhomogeneous branch for #»
> nj is metastable, this would correspond to a third-order
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FIG. 21. Series of equilibria in d=3. The inhomogeneous branch
forms a spiral for large central densities 1/A—+% due to the
damped oscillations of the inverse temperature 7(\) and energy
A(N). This is similar to the spiral appearing in the series of equilib-
ria of the classical self-gravitating gas as we approach the singular
isothermal sphere [29].

canonical phase transition between a homogeneous meta-
stable state and an inhomogeneous metastable state.

3. Dimension d=3

In Fig. 21 we plot the series of equilibria in d=3. Let us
first describe the CE. The control parameter is 7. The homo—
geneous phase ex1sts for all #. It is stable for n< 7] and
unstable for 7> 77 (see Sec. V). The first branch n=1 of
inhomogeneous states exists for 7> 2.64 and it connects the
homogeneous branch at 7= nj. For large central densities
1/ )\ it forms a spiral toward a singular solution. For 7
< 7; it has a lower free energy J than the homogeneous
phase (see Fig. 11) and it is unstable. For 7> 7] it has a
higher free energy J than the homogeneous phase (see Fig.
11). However, it is expected to be unstable or, possibly, meta-
stable. Secondary inhomogeneous branches appear for
smaller values of the temperature but they have a lower value
of free energy J and they are unstable. The homogeneous
branch is metastable for 7< nj. These conclusions are mo-
tivated by two arguments. (i) In the Newtonian model in d
=3, we know that there is no fully stable equilibrium state in
CE. The system can undergo an isothermal collapse [27,29].
There is no global maximum of free energy J because we can
make it diverge by creating a Dirac peak containing all the
particles [21,27,29]. In the modified Newtonian model, the
same argument applies since it is independent on boundary
conditions. Since we know that the homogeneous branch is
stable for < 77?, then it can only be metastable. (ii) In the
chemotactic literature, it has been rigorously established that
the Keller-Segel model in d=3 can blow up for any 7 [8].
This is consistent with our stability results.

Let us now describe the MCE. The control parameter is
the energy A. The homogeneous phase exists for all A <<0. It
is stable for A<A and unstable for A>A (see Sec. V).
The first branch n=1 of inhomogeneous states exists for A
>-0.405 and it connects the homogeneous branch at A
—A For large central densities 1/, it forms a spiral to-
wards a singular solution. For A < A , it has a lower entropy
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S than the homogeneous phase (see Fig. 15) and it is un-
stable. For A > A;k, it has a higher entropy than the homoge-
neous phase (see Fig. 15). However, it is expected to be
unstable or, possibly, metastable. Secondary inhomogeneous
branches appear for smaller values of the energy but they
have a lower value of entropy S and they are unstable. The
homogeneous branch is metastable for A<Af. These con-
clusions are motivated by two arguments. (i) In the Newton-
ian model in d=3, we know that there is no fully stable
equilibrium state in MCE. The system undergoes a gra-
vothermal catastrophe [13,14]. There is no global maximum
of entropy S at fixed mass and energy because we can make
it diverge by creating a binary star surrounded by a hot halo
[22,29,32]. In the modified Newtonian model, the same ar-
gument applies. Since we know that the homogeneous
branch is stable for A<Aj, then it can only be metastable.

There is no strict caloric curve since there are no fully
stable states (global maxima). But there is a physical caloric
curve made of metastable states (local maxima) denoted (M)
in Fig. 21. The unstable states (saddle points) are denoted
(U). Here, the microcanonical and canonical ensembles, re-
garding the metastable states, are equivalent unlike in the
Newtonian case. This is because the homogeneous branch
and the inhomogeneous branch connect each other at a single
point at A\=1 by making a cusp (see inset in Fig. 21) while
the Newtonian series of equilibria is smooth and presents two
distinct turning points of temperature and energy (denoted
CE and MCE in Fig. 8 of [32]) separated by a region of
negative specific heats.

In conclusion, if we take metastable states into account,
the system displays a zeroth order phase transition in CE and
MCE corresponding to a discontinuity of entropy or free
energy. They are associated with an isothermal collapse or a
gravothermal catastrophe, respectively.

Remark. There is no natural external parameter in the
modified Newtonian model. However, the dimension of
space d could play the role of an effective external param-
eter. The preceding results predict the existence of a critical
dimension d,. between 1 and 2 at which the microcanonical
phase transition passes from second order (d=1) to first or-
der (d=2). However, this transition turns out to occur in a
very small range of parameters since we find that the critical
dimension d. is between 1 and d=1.00001 and the con-
cerned range of energies and temperatures is extremely nar-
row. We have not investigated this transition in detail since
the dimension of space is not a physical (tunable) parameter.
Furthermore, in the next model, we have an external param-
eter u played by screening length that is more physically
relevant.

IV. SCREENED NEWTONIAN MODEL

In this section, we discuss phase transitions that appear in
the screened Newtonian model corresponding to an attractive
Yukawa potential.

A. Physical motivation of the model

We consider a system of particles interacting via the po-
tential ®d(r,7) that is solution of the screened Poisson equa-
tion

PHYSICAL REVIEW E 81, 051103 (2010)

AD - D = S,Gp, (65)

where k is the inverse of the screening length. At statistical
equilibrium, the density is given by the Boltzmann distribu-
tion

p=Ae P (66)

We assume that the system is confined in a finite domain
(box) and we impose the Neumann boundary conditions

V®-n=0, Vp-n=0, (67)

where n is a unit vector normal to the boundary of the box
(the explicit expression of the potential in d=1 is given in
Appendix B). This model admits spatially homogeneous so-
lutions (p=py and =P, with —k;P,=S,Gp,) at any tem-
perature. It also admits spatially inhomogeneous solutions at
sufficiently low temperatures. We shall study this model in
arbitrary dimensions of space d with explicit computations
for d=1,2,3. This model has different physical applications.

(i) Tt describes a system of particles interacting via a
screened attractive (Newtonian) potential. In fact, the field
equation (65) was first introduced by Einstein [64] (and pre-
viously by Seeliger in 1895) in order to obtain an infinite
homogeneous static universe. In Einstein’s belief, the shield-
ing factor ké was the Newtonian analog of the cosmological
constant k2=87GA. For other authors such as Lemaitre [65]
and Eddington [66], the Newtonian analog of the cosmologi-
cal constant is a repulsive force leading to a Poisson equation
of the form A®=47Gp—k>=47G(p—2A), allowing also an
infinite homogeneous static universe. We refer to Spiegel
[67] and Kiessling [68] for further details on these interesting
historical issues.

(ii) By a proper reinterpretation of the parameters, the
field equation (65) describes the relation between the con-
centration of the chemical and the density of bacteria in the
Keller-Segel model (32)—(38) where the degradation of the
chemical reduces the range of the interaction. In that case,
the boundary conditions are of form (67). Furthermore, the
relevant ensemble is the CE since the KS model has a ca-
nonical structure. This model has been studied by Childress
and Percus [69] in d=1 using an approach different from the
one we are going to develop. For the sake of generality, we
shall study this model in the microcanonical and canonical
ensembles in any dimension of space.

B. Screened Emden equation

In the screened Newtonian model, the equilibrium density
profile is given by the Boltzmann distribution (66) coupled to
the screened Poisson equation (65). As in Sec. III B, we look
for spherically symmetric solutions. Introducing the central
density p,=p(0), the central potential ®,=®(0), the new
field y¢Y=Bm(®->d;), and the scaled distance ¢
=(S,GBmp,)"*r, the Boltzmann distribution can be rewritten
as

p=poe 9. (68)

Substituting this relation in the screened Poisson equation
(65), we obtain the screened Emden equation
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FIG. 22. Inverse temperature 7 as a function of « for the first
two branches in d=1. We have taken pu=1< ..

1 d
Fé(f"—ld—?)—x%p:e-*’f—x, (69)

where k=ko/(S,GBmpy)"?> and AN=-k;®,/S,Gp,. The
boundary conditions at the origin are

#(0) =¢'(0) =0. (70)

The normalized box radius is a=(S,GBmpy)"*R and the
boundary condition ®’(R)=0 becomes

' (a)=0. (71)

Introducing the normalized screening length
M= kOR > (72)

the parameter « can be rewritten as k= u/ «. For given u, we
solve the problem as follows. (i) We fix a. (ii) k=u/a is
then given. (iii) We determine \ by an iterative method such
that ¢/ (a)=0. (iv) We obtain different solutions \,(«) deter-
mining different branches n=1, n=2, etc. This procedure de-
termines for each value of «, and for each branch, the nor-
malized density profile e¥. The homogeneous solution
corresponds to =0 and N=1. This solution is degenerate
because the boundary condition (71) is satisfied for any value
of a.

175

150

=125

100

d=1
H> M 1

7 ! ‘ !
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o

FIG. 23. Inverse temperature 7z as a function of « for the first
two branches in d=1. We have taken u=10> ..
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FIG. 24. Inverse temperature 7 as a function of « for the first
two branches in d=2. For a— +%, the inverse temperature of the
first branch tends to 7.=4. We have taken u=1.

C. Temperature

We must now relate the parameter « to the temperature 7.
Introducing the dimensionless variables defined previously
and recalling that r=R&/ «, the mass can be written as

R\ ([
M=p05d<—> f e VEdE, (73)
a 0

Using a=(S,GBmp,)"’R and introducing the dimensionless
inverse temperature (52), we obtain

1 o
n=—r3 f e VErlqe. (74)
@ 0

This equation gives the relation between the inverse tem-
perature 7 and « for the nth branch. In Figs. 22-25, we plot
the inverse temperature # as a function of « for the first two
branches n=1,2 in different dimensions of space d=1,2,3.
The discussion is similar to the one given in Sec. III C. We
have also represented the branch corresponding to the homo-
geneous solution. Its equation is given by 7=a?/d. The
branch n=1 of inhomogeneous solutions connects the branch
of homogeneous solutions at af=d nj (see Appendix F).

25 -

n=2

d=3

n=1

L I L L
0.01 1 100 10000

o

FIG. 25. Inverse temperature 7 as a function of « for the first
two branches in d=3. For a— +, the inverse temperature of the
first branch undergoes damped oscillations around the value
=3.25. We have taken u=1.
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FIG. 26. Energy A as a function of « for the first two branches
in d=1. We have taken pu=1< ..

D. Energy

We must also relate « to the energy E. The total energy is
given by

v’ 1
= fzdrdv+5 pddr. (75)

Using the Maxwell-Boltzmann distribution (10), the kinetic
energy is simply

d
K= NkyT. (76)

Using the screened Poisson equation (65) and integrating by
parts, the potential energy can be written as

2 252
- 35,0 f [(VD)? + k2D dr. (77)

The total energy E=K+ W is therefore given by

E= %lNkBT f [(VD)? + ki ]dr. (78)

25,G

Introducing the dimensionless variables defined previously,
recalling that r=¢R/a and u=koR, and introducing the nor-
malized energy (58), we obtain

d 1 1 (*“(dy\>
A=——+—— (—) ld
’ ‘Hfo d¢ £

2y 27«
2 P df (l//+,3mq)0)2§d_ld§ (79)

Using the expressions of « and \ following Eq. (69), we find
that

A
ﬁmq)():— -

)
KZ

(80)

so that, finally,
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FIG. 27. Energy A as a function of « for the first two branches
in d=1. We have taken u,,>u=10> ..

_d 11 dy\*
A== 27; 2772a“f< )édldg

This equation gives the relation between the energy A and «
for the nth branch. In Figs. 26-30, we plot the energy A as a
function of « for the first two branches n=1 and n=2 in
different dimensions of space d=1,2,3. The discussion is
similar to the one given in Sec. IIl D. We have also repre-
sented the branch corresponding to the homogeneous solu-
tion. Using Eq. (88) and n=a?/d, its equation is given by
A==d?/(2a?)+d/ (2u?).

E. Entropy and free energy

Finally, we relate « to the entropy S and to the free energy
F. The entropy is given by

d
S = <Nkg lnT—ka L0 Lar. (82)
2 m

m

We can proceed exactly as in Sec. III E and obtain

0.03

0.025

0.0002

0.02
0.00015
<0.015
0.0001

0.01
5e-05

0.005

. | . | . | . |
0 50 100 150 200 250
o

FIG. 28. Energy A as a function of « for the first two branches
in d=1. We have taken u=15>pu,,.
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|
1 100

FIG. 29. Energy A as a function of a for the first two branches
in d=2. We have taken u=1.

S
Nkg

d-2 1 (¢
- In 7—21n a+—ﬂj Y VEdE
2 na 0
(83)
up to unimportant constants. However, we can also obtain a

simpler expression. Substituting p=poe #"(®-®0) in Eq. (82),
we obtain

d
S = <Nkg lnT—kaﬁln @dr+k3,8fp((l)—(l)0)dr.
2 m m

(84)
This can be rewritten as
S d 2BE
N—kB=—Eln,8—lnpo+T—,8mq)0 (85)

up to unimportant constants. Finally, using Egs. (80), (52),
and (58) and the relations xk=u/a and a=(S,GBmp,)"*R,
we obtain

|00 Y T R PPN

0.1 I 00000016000
o

FIG. 30. Energy A as a function of « for the first two branches
in d=3. For a—+%, the energy of the first branch undergoes
damped oscillations around the value A;=1.13. We have taken u
=1.
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FIG. 31. Free energy NLkB as a function of the inverse tempera-
ture 7 for d=1. We have taken u=1<pu,.

S d-2 N
—=- Iny-2Ina-2An+—, (86)
Nk 2 L

which does not involve new integrals. Using the previous
results, this expression relates the entropy S/Nkp to «. The
free energy is F=E-TS. In the following, it will be more
convenient to work in terms of the Massieu function J=S§
—kgBE (by an abuse of language, we shall often refer to J as
the free energy). We have

S
L _ > LA (87)

Using the previous results, this expression relates the free
energy J/Nkp to a.

In Figs. 31-34, we have plotted the free energy J/Nkp as
a function of the inverse temperature 7 (parametrized by «)
in d=1,2,3. In Figs. 35-38, we have plotted the entropy
S/Nkjg as a function of the energy A (parametrized by «) in
d=1,2,3.

=22

-23 d=1

T

| | | | |
80 100 120 140 160 180 200
n

FIG. 32. Free energy NLkE as a function of the inverse tempera-
ture 7 for d=1. We have taken w=10> . The free energies of the
homogeneous phase and inhomogeneous phase become equal at 7
=7,(n). This corresponds to a first order phase transition in the
canonical ensemble marked by the discontinuity of the slope

J'(B)=-E.
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FIG. 33. Free energy NL,(H as a function of the inverse tempera-
ture 7 for d=2. We have taken u=1.

F. Caloric curve

We shall now determine the caloric curve B(E) corre-
sponding to the screened Newtonian model. First of all, we
note that, for the homogeneous phase, we have p=p, and
=P, with —ké(I)ozSdeO (or equivalently =0, A=1 and
a’=dn). Therefore, the relationship between the energy and
the temperature can be written as

d d

A=—-—+—.
2n 2w

(88)
This shows that p—+% for A— A, ,=d/(2u?). On the
other hand, eliminating @ between 7,(«) and A, («) given by
Eqgs. (74) and (81), we get the series of equilibria for the nth
inhomogeneous branch. The series of equilibria (critical
points) and the caloric curves (stable states) in CE and MCE
are described below for different dimensions of space.

1. Dimension d=1

In Figs. 39 and 40, we plot the series of equilibria in d
=1 for different values of the screening parameter .

Let us first describe the CE. The control parameter is the
inverse temperature 7 and the stable states are maxima of
free energy J at fixed mass M. The homogeneous phase ex-
ists for any value of . It is stable for << 1;: and unstable for

| . | . | . | . |
0 5 10 15 20 25

FIG. 34. Free energy Aﬁ as a function of the inverse tempera-
ture 7 for d=3. We have taken u=1.
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FIG. 35. Entropy 1%5 as a function of the energy A for d=1. We
have taken u=1<p,.

n> nj (see Sec. V). Comparing Figs. 39 and 40, we see that
the screened Newtonian model is characterized by a pitch-
fork bifurcation at = 77?. The pitchfork bifurcation is super-
critical if pu<pu,.= V27 =4.4428829 and subcritical if M
> u.. This interesting transition was first evidenced by Chil-
dress and Percus [69] using a different approach. In our ther-
modynamical approach, this implies the existence of a ca-
nonical tricritical point at u.=v27. For u<pu, the phase
transition is second order and for p>> . the phase transition
is first order.

Let us first consider u<pu, (see Fig. 39). The discussion
is similar to that given for the modified Newtonian model.
The first branch n=1 of inhomogeneous states exists only for
n> nj. It has a higher free energy J than the homogeneous
phase (see Fig. 31) and it is fully stable. Secondary branches
appear for smaller values of the temperature but they have
smaller values of free energy J (see Fig. 31) and they are
unstable (saddle points of free energy). Therefore, the ca-
nonical caloric curve displays a second order phase transition
between homogeneous and inhomogeneous states marked by
the discontinuity of 3% at ﬁ:Bf. We note that for the inho-
mogeneous states, there exists two solutions with the same
temperature and the same free energy but with different den-

| | | | | |
6 -0.06  -0.04  -0.02 0 0.02 0.04 0.06
A

FIG. 36. Entropy 1%3 as a function of the energy A for d=1. We
have taken w,,>u=10> u,. There is a (small) convex dip associ-
ated with the region of negative specific heats in the microcanonical
ensemble.
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FIG. 37. Entropy Nik,; as a function of the energy A for d=2. We
have taken pu=1.

sity profiles corresponding to «; <, and @, > «,, where a,
is the value of « at the point of contact with in the homoge-
neous branch. Thus, the inhomogeneous branch is degener-
ate. These two states can be distinguished by their central
density a. Since p/py=dmn/a?, the solution a;<a, corre-
sponds to pp<p and the solution a,> a, corresponds to p,
> p. The density profiles are similar to those represented in
Fig. 17 for the modified Newtonian model. In conclusion, (i)
for p< 77?, there is only one stable state (homogeneous) and
(ii) for ©> nj, there are two stable states o<, and «,
> @, (inhomogeneous) with the same free energy and one
unstable state (homogeneous). Therefore, the central density
a plays the role of an order parameter (see Fig. 22).

Let us now consider u> u, (see Fig. 40). The first branch
n=1 of inhomogeneous states exists only for 7> 7,(u) (see
Fig. 41). The caloric curve displays a canonical first order
phase transition at 7,(x) marked by the discontinuity of the
energy E (see Fig. 41). The temperature of transition 7,(u)
can be obtained by plotting the free energy of the two phases
as a function of the temperature and determining at which
temperature they become equal (see Fig. 32). Equivalently, it
can be obtained by performing a horizontal Maxwell con-
struction [32]. The homogeneous phase is fully stable for 7
< 7,, metastable for 7, <7< 77: and unstable for 7> nj. The
right branch of the inhomogeneous phase is fully stable for
7> 7, and metastable for 7, < 7<<7,. The left branch is un-

-1

FIG. 38. Entropy Nik,, as a function of the energy A for d=3. We
have taken p=1.
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FIG. 39. Series of equilibria in d=1 for u=1< .. The caloric
curve displays a second-order phase transition in CE and MCE
taking place at 7= 7/: and AzAj. It is marked by the discontinuity
of JE/dB in CE or dB/JE in MCE. Note that the branches a< a,.
and a> a, coincide. For u<pu,, the CE and MCE ensembles are
equivalent.

stable. Note that this branch has negative specific heats
which is not permitted in the canonical ensemble. Secondary
branches appear for smaller values of the temperature but
they have smaller values of free energy J and they are un-
stable. We also note that the branch of inhomogeneous states
is degenerate since the curves a<<a, and @> «, coincide. In
conclusion, (i) for < 7,, there is only one stable state (ho-
mogeneous), (ii) for 7, <7< 77:‘, there are three stable states
(one homogeneous and two inhomogeneous) and two un-
stable states (inhomogeneous) and (iii) for 7> 7]:.: there are
two stable states (inhomogeneous) and one unstable state
(homogeneous). The pairs of inhomogeneous states have the
same free energy. Therefore, the central density a plays the
role of an order parameter (see Fig. 23).

The canonical phase diagram is represented in Fig. 42
where we have plotted nj, 7, and 7, as a function of u. The
three temperatures coincide at the tricritical point w=pu.. At
that point, the phase transition goes from second order (u
<) to first order (u> ).

The strict caloric curve (see Figs. 39 and 41), correspond-
ing to the fully stable states, is denoted (S). The physical
caloric curve should take into account the metastable states
(M) because they are long lived. The states (U) are unstable.

200
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FIG. 40. Series of equilibria in d=1 for u=10> pu,.
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60 | . | . | . |

FIG. 41. Canonical caloric curve in d=1 for u=10> pu.. It dis-
plays a canonical first-order phase transition marked by the discon-
tinuity of the energy at n=7,(u). The region of negative specific
heats is unstable in the canonical ensemble and replaced by a phase
transition (Maxwell plateau). The temperatures 77;k and 7, represent
canonical spinodal points marking the end of the metastable phase.

We see that there exists a fully stable equilibrium state for
any temperature and any screening length. This is consistent
with the usual Newtonian model in d=1 [20,29]. This is also
consistent with the results of chemotaxis since it has been
established rigorously that there is no blow up in d=1 [8].

Let us finally describe the MCE. The control parameter is
the energy A and the stable states are maxima of entropy S at
fixed mass M and energy E. The homogeneous phase exists
for any A <A,,,=d/(2u?). It is stable for A<A” and un-
stable for A>A;k (see Sec. V). Comparing Figs. 43 and 44,
we see that there exists a microcanonical tricritical point at
w,=11.8 and A=237X10"* (corresponding to %
=149.1096). For u< u,, the phase transition is second order
and for w> u,, the phase transition is first order.

Let us first consider u<<pu,, (see Figs. 39 and 43). The
first branch n=1 of inhomogeneous states exists for Af
< A<A,<72x= 1/[2u tanh(u)] (see Appendix D). It has a
higher entropy S than the homogeneous phase and it is stable
(see Figs. 35 and 36). Secondary branches appear for smaller
values of the energy but they have smaller values of entropy
and are unstable. The microcanonical caloric curve displays

100

80

Inhomogeneous phase

60

40

20

|
5
u

FIG. 42. Canonical phase diagram in d=1 exhibiting a tricritical
point at u,=\27=4.44 and =29.6. We have representt?d nj, Myer
and 7, as a function of u. The region between 7, and 77: contains
stable and metastable states.
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FIG. 43. Microcanonical caloric curve in d=1 for u,,>u=10
> u.. It displays a microcanonical second order phase transition
marked by the discontinuity of gg atE =Ef. For w> ., there exists
a region of negative specific heats that is stable in the microcanoni-
cal ensemble.

a second order phase transition marked by the discontinuity
of fﬁg at £ =Ej. For u<pu,, the specific heat is always posi-
tive. In that case, the microcanonical and canonical en-
sembles are equivalent. For x> u,, a region of negative spe-
cific heats appears. This leads to a convex dip in the entropic
curve S(E) (see Fig. 36). In that case, the microcanonical and
canonical ensembles are inequivalent: the states with nega-
tive specific heats are stable in MCE while they are unstable
in CE (compare Figs. 41 and 43). Therefore, these energies
cannot be achieved in a canonical description.

Let us now consider u> u,, (see Fig. 44). The first branch
n=1 of inhomogeneous states exists only for A >A
> A, (w). The caloric curve displays a microcanonical first
order phase transition at A,(u) marked by the discontinuity
of the temperature 7 and the existence of metastable states.
The energy of transition A,(u) can be obtained by plotting
the entropy of the two phases as a function of the energy and
determining at which energy they become equal (the figure is
not represented because the interval where this crossing takes
place is very narrow). Equivalently, it can be obtained by

250
240
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220

210
200

190+ b

5.0002 00003 0.0004
A

FIG. 44. Microcanonical caloric curve in d=1 for u=15> p,,. It
displays a microcanonical first order phase transition marked by the
discontinuity of 7" at E=E,. The energies Ej and E, are spinodal
points marking the end of the metastable branches. Note that this
first order phase transition occurs in an extremely small range of
energies.
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FIG. 45. Microcanonical phase diagram in d=1 exhibiting a
tricritical point at u,=11.8 and A=2.3710"* We have repre-
sented A A, and A, as a function of w. The region between A,
and A contalns stable and metastable states. We again emphaqze
the small range of energies where this first order phase transition
takes place.

performing a vertical Maxwell construction [32]. The discus-
sion is similar to that given in the canonical ensemble except
that the axis are reversed. In conclusion: (i) for A <A, there
is only one stable state (homogeneous); (ii) for A, <A
<Aj, there are three stable states (one homogeneous and
two inhomogeneous) and two unstable states (inhomoge-
neous), and (iii) for A>A:_<, there are two stable states (in-
homogeneous) and one unstable state (homogeneous). The
pairs of inhomogeneous states have the same entropy. There-
fore, the central density « plays the role of an order param-
eter (see Fig. 28).

The microcanonical phase diagram is represented in Figs.
45 and 46 where we have plotted Aj, A,, and A, as a func-
tion of u. The three energies coincide at the microcanonical
tricritical point u=pu,, At that point, the phase transition
goes from second order (u<pu,,) to first order (u> w,,). We
have also represented the region of negative specific heats
which appears at the canonical tricritical point pu= .. For

0.04
Inhomogeneous phase
0.03- *
0.02 -
<
0.01
0 —~Homogeneous
phase | A . ! ‘ |
5 10 15 20
u

FIG. 46. Microcanonical phase diagram in d=1. We have rep-
resented A A’, Ay and A, as a function of u. These energies
coincide for Me=\2m=4.44 and A=0.0084. These energies de-
limitate respectively the region of negative specific heats and the
region of strict ensembles inequivalence (see main text): the ener-
gies in these regions cannot be reached in the canonical ensemble.
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d=2 i

FIG. 47. Caloric curve in d=2 for u=1.

Me< <ty it is delimited by A” and A" and for 1> w,,, it
is delimited by A, and A’. This region of negative specific
heats also defines the physical region of ensembles inequiva-
lence, i.e., the states that are stable in MCE but unstable in
CE (metastable states are considered here as stable states).
Finally, we have represented the strict region of ensembles
inequivalence, i.e., the states that are stable in MCE but un-
stable or metastable in CE. It is delimited by A; and A, and,
of course, contains the negative specific heats region.

The strict caloric curve (see Figs. 39, 43, and 44), corre-
sponding to the fully stable states, is denoted (S). The states
(U) are unstable. The states (M) are metastable but they are
long lived. We see that there exists a fully stable equilibrium
state for any accessible energy and any screening length.
This is consistent with the usual Newtonian model in d=1
[20,29].

In conclusion, for u<<pu,, the system displays canonical
and microcanonical second-order phase transitions. For u,.
<u<mu, (canonical tricritical point), the system displays
canonical first-order phase transitions and microcanonical
second-order phase transitions. For u> u,, (microcanonical
tricritical point), the system displays canonical and microca-
nonical first-order phase transitions. Note that the canonical
and microcanonical tricritical points do not coincide as also
observed in other models [28,38,40,42].

2. Dimensions d=2 and d=3

In Figs. 47 and 48, we plot the series of equilibria in d
=2 and d=3. We have considered different values of u but
only the case u=1 is shown. We have observed that the
shape of the diagrams does not significantly depend on the
value of the screening parameter w. Therefore, the descrip-
tion of these diagrams is similar to the one given in Secs.
I F2 and IIT F 3 for the modified Newtonian model.

V. STABILITY OF THE HOMOGENEOUS PHASE

In this section, we study the stability of the homogeneous
phase in the case where the potential satisfies the modified
Poisson equation (44) or the screened Poisson equation (65).
We first consider the spectral stability of the homogeneous
phase with respect to the Smoluchowski equation or, equiva-
lently, with respect to the Keller-Segel model. This will al-
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FIG. 48. Caloric curve in d=3 for u=1.

low us to determine the growth rate (unstable case) or the
damping rate (stable case) of the perturbation. Then, we in-
vestigate the dynamical and thermodynamical stability of a
larger class of systems by determining whether the homoge-
neous phase is a maximum of entropy at fixed mass and
energy in MCE or a minimum of free energy at fixed mass in
CE.

A. Spectral stability

We consider the mean field Smoluchowski equation

9 _y.| L kT
&t—V [&(m Vp+pV<I)>], (89)

coupled to the modified Poisson equation (44) or to the
screened Poisson equation (65). The boundary conditions are
given by Eq. (46). Up to a change of notation, these equa-
tions also describe the Keller-Segel model (32)—(38) or
(32)—(40). In the modified Newtonian model, the homoge-
neous steady state satisfies

p=p, ®=0. (90)
In the screened Newtonian model, it satisfies

—kg® =S,Gp, (91)

where p and @ are uniform. In both models, the linearized
equations can be written as

asp kT
2P _ BN S+ pASD, (92)
ot m
ASD - k56D = S,G dp, (93)

where ky=0 in the modified Newtonian model and k,# 0 in
the screened Newtonian model.

In an infinite domain, the spectral stability of the homo-
geneous solutions of the modified Smoluchowski-Poisson
system and Keller-Segel model (and their generalizations)
has been studied by Chavanis [70] and Chavanis and Sire
[71] who stressed the analogy with the Jeans instability in
astrophysics [72]. Interestingly, there is no “(Jeans) swindle”
in the stability analysis of the chemotactic problem since an
homogeneous distribution is a steady state of the Keller-
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Segel model as explained previously. Here, we describe how
the results are modified in a bounded domain with the
boundary conditions (46). This problem was considered by
Keller and Segel [3] in d=2. We shall perform the stability
analysis in d dimensions. Let us call ¢;(r) the eigenfunctions
of the Laplacian and —k”> the corresponding eigenvalues.
They are solution of

Ay =-k2y, (94)
with
Vi -n=0 95)

on the boundary. It is easy to check that the eigenvalues are
necessarily negative (hence the notation —k?). Indeed, multi-
plying Eq. (94) by i, integrating on the whole domain, and
using an integration by parts, we get [(Viy)2dr=k*[{idr,
which proves the result. In a bounded domain, their values
are “quantized” (see below). The lowest nonzero value of k
will play a particular role as it determines the critical tem-
perature below which the homogeneous phase becomes un-
stable. The expression of the eigenfunctions and eigenvalues
depends on the domain shape and on the dimension of space.
In the following, we shall work in a spherical box in d
=1,2,3 dimensions.
(1) In d=1, we have

b, = cos(k,x), (96)
with
T
k,=n—, 97
= ©7)

where n is an integer. The smallest nonzero eigenvalue is
k 1= 7/ R.
(ii) In d=2, we have

Ui =J(kyr)cos(nb), (98)

with
Yni
kni="p - (99)

where n is an integer and y,; is the ith zero of J)(x). The
smallest nonzero eigenvalue is kg;=7v,/R where 7yy=j;
=3.83171-- is the first zero of Jy(x)==J,(x). The axisym-
metric mode (n=0) is

i = Jolkoir). (100)

(iii) In d=3, we have

1
Yimi = T;Jl+l/2(klir) Y16, 6), (101)

\

with
Yii

ki=p (102)

where [, m are integers with /=|m| and 7, is the ith zero of
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xS 1410 (%) _ 1
Jpx) 2
The smallest nonzero eigenvalue is kg;=7y;/R where 7y,

=x,=4.493 41- - is the first root of tan(x)=x. The spherically
symmetric mode (I,m=0) is

=0. (103)

sin(kg,r) (104)

00i =
The solutions of the linearized equations (92) and (93)
can be expanded on the eigenmodes, writing

Sp(r,1) = 2 AeEy(r), (105)
k

8D(r,1) = 2, Bre 'y (r), (106)
k

where the sum runs on the (quantized) eigenvalues. Substi-
tuting Egs. (105) and (106) in Egs. (92) and (93), we obtain
the algebraic equations

kT
<ak + Lk2>Ak +pk®B, =0, (107)
m

S,GA + (K> + k3)B; = 0. (108)

There will be nontrivial solutions only if the determinant of
this system of equations is zero. This yields the dispersion
relation

S,Gp kT
0'k=< 7P _L)k{ (109)

K+ky m

relating oy, to the wave number k. The amplitudes A; and B,
are determined by the initial condition. We see that oy is real
so that the perturbation either grows or decays exponentially
rapidly. The homogeneous phase will be spectrally stable if
0, <0 for all k and it will be spectrally unstable if there
exists one or several modes for which o;,>0. We note that
the dispersion relation (109) is the same as in an infinite
domain [71,72]. However, in a finite domain, the allowed
wavenumbers k are quantized while they are continuous in
an infinite domain.

According to Eq. (109), the system will be unstable if
there exists k# 0 such that

S,G kgT
S8 2B (110)
k*+ k; m
Therefore, a necessary condition of instability is that
kT _ S,Gp _ ksT,
L 2P T e (111)

m kac+k(2)_ m

where k; is the smallest nonzero wave number. For 7> Tf,
the homogeneous distribution is stable for perturbations with
arbitrary wave numbers. For 7'<< Tf, the homogeneous distri-
bution is unstable for perturbations with wave numbers
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SdGmp

< P ki =K. (112)
B
For ky=0, the critical temperature is
kpgT" S.G
e 2P (113)
m kf
and we recover the Jeans criterion
S,G
k2<“k—';“’zk§. (114)
B

In the general case, the instability criterion can be written as

R<k-ki=k, (115)

We see that for the screened Newtonian potential (k,# 0),
the instability occurs for larger wavelengths as compared to
the Newtonian model (k,=0). Let us introduce the notation

(116)

which corresponds to the critical temperature in an infinite
domain (k;=0). Since the dispersion relation (109) does not
explicitly depend on ky, it is convenient to introduce the no-
tation (116). We have

T,

T =——.
<1+ (klko)?

(117)
For the Newtonian interaction (k,=0) and for an infinite do-
main (k;=0), we have Tf=+<>c so that the system is always
unstable to some wavelengths. For ko # 0 and/or k,# 0, the
instability is suppressed for 7> Tf When T< Tf, the system
is unstable for the modes such that

T. 172
k<ko<7‘—l) =k, (T). (118)
The growth rate can be written
kgT k2 (k,,(T)* - k*
o= LM, (119)

kG + k*

where k,,(T) is given by Eq. (118). It achieves its maximum
value for k=k,(T) where

T\ 12 12
k, (T) = ko (—‘) -1[ . (120)
T
The corresponding value of the growth rate is
kT T 172 |2
o, (T) =2 Ck%[l—(—) . (121)
m T,

The number of clusters that is expected to form in the linear
regime is N(T)=R/[27/k,(T)]. This corresponds to the num-
ber of oscillations of the eigenfunction. For a fixed value of
ko, this number increases as the temperature decreases. The
behavior of the different quantities defined above is repre-
sented in Figs. 49 and 50.

Let us consider some particular cases.
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FIG. 49. Growth (6>0) or decay (0<0) rate as a function of
the wavenumber k. The system is unstable for k<k,(7) and the
maximum growth rate is reached for k=k, (7). The parameters have
been scaled such that ky=1, T,=1, and T=1/2.

(i) For T=T,, we have k,=0, k,=0, ¢,=0, and
kpT. k*
o=————<0. 122
U om R+ (122)

Therefore, the system is stable. More generally, for T=T,,

the system is stable. For T— +%, we have crk_——k2
(i) For T=0, we have k,—+», k,—+%0, o,
— kpT.k%/m and
kgT, K3k
o= } 123
om Bk (123)

The growth rate is maximum for k,, — +%, i.e., for very small
wavelengths A, —0. In that case, we expect a very large

number of clusters in the linear regime.
(iii) For ky=0 (modified Newtonian model), we have

kT

0, =S,Gp - —k2 (124)

The system is unstable for 7< fk where the critical tempera-
ture is given by Eq. (113). Furthermore the unstable wave-

FIG. 50. Evolution of k,, k,, and o, as a function of the tem-
perature. The parameters have been scaled such that ky=1 and 7.
=1.
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FIG. 51. Growth (6> 0) rate as a function of the wave number
k in two limits: (i) the Newtonian limit k,=0 (and 7' # 0) for which
the maximum growth rate corresponds to k,=k,<1 (large scales),
and (ii) the cold limit 7=0 (and ky# 0) for which the maximum
growth rate corresponds to k, — + (small scales).

numbers correspond to k<<k; where the Jeans wavenumber
is given by Eq. (114). For T # 0, the growth rate is maximum
for k*=kf, i.e., for the maximum wavelength Np=2r/ k, In
that case, we have only one cluster. The corresponding value
of the growth rate is 0'*=Sde—kBTkac/m. For T=0, we have
a,=S,Gp so that the growth rate is independent on the scale.
The two limit cases discussed above are illustrated in Fig.
51.

B. Thermodynamical stability

We now analyze the thermodynamical stability of the ho-
mogeneous phase by using variational principles. Basically,
we have to solve the maximization problem (3) in MCE and
the minimization problem (18) in CE. However, for spatially
homogeneous systems, it is shown in Appendix A that they
are both equivalent to the minimization problem (25). There-
fore, the system is stable iff the second order variations of
free energy (28) are positive definite for any perturbations Sp
that conserve mass, i.e., [Spdr=0. We are led therefore to
considering the eigenvalue problem

kT
5P, + 2= 5py = Ndpy., (125)
pm

ASD, - k36D, = S,G py. (126)
If all the eigenvalues A are positive, then the system is stable
since 8*F=33\\al[(8p,)’dr>0 where the perturbation has
been decomposed under the form Jdp=2,a,dp, and &P
=3,a, 6®,. If at least one eigenvalue is negative, the system
is unstable since &°F= %)\ J(8py)?dr <0 for that perturbation.
It is easy to see that the eigenfunctions are

3y (r) = Sd L)

Ip\(r) = A (r), (127)

and that the corresponding eigenvalues are
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S.G  kgT

e R (128)
k“+ky pm

for all quantized k (see Sec. V A). We note that [i¢ydr=
—#fAtﬁkdr=—é_¢Vz,bk-dS=O so that [Spdr=0 as required.
Regrouping all these results, we conclude that the system is
stable if and only if

Nk)=-

SG__ kT
K+ky  pm

<0 (129)

for all (quantized) k. This returns the stability condition ob-
tained in Sec. V A. Therefore, the system is stable iff T
> Tj r< Tj, the homogeneous phase is an unstable saddle
point of free energy at fixed mass. This method determines
the thermodynamical stability (or instability) of the homoge-
neous phase in the canonical and microcanonical ensembles.
This implies the stability (or instability) with respect to the
mean-field Kramers equation (22), with respect to the
Smoluchowski equation (29), with respect to the Keller-
Segel model (32), and with respect to the kinetic equation
(14).

We can now determine the values of the normalized in-
verse temperature nj and normalized energy Af above
which the homogeneous phase becomes unstable. Using Eqs.
(52) and (111), we get

w1 2 2\ p2

= —(k; + ky)R”. 130

7. d(f 0 (130)

We obtain

N =m+u’=98696044+u’ (d=1), (131)
w_ Lo o B
7, = Ui+ #7)=73410008+ - (d=2), (132)
i 1 2 2 _MZ
7, =3 (0 +pY)=67302445+ - (d=3). (133)

The corresponding critical energy is given by Eq. (64) for the
modified Newtonian model and by Eq. (88) for the screened
Newtonian model.

VI. CONCLUSION

In this paper, we have completed the description of phase
transitions in self-gravitating systems and bacterial popula-
tions. We have introduced generalized models in which the
ordinary Poisson equation is modified and allows for the
existence of a spatially homogeneous phase. This avoids the
Jeans swindle [77] and leads to a great variety of microca-
nonical and canonical phase transitions between homoge-
neous and inhomogeneous states. These generalized models
can have application in chemotaxis where the degradation of
the chemical leads to a shielding of the interaction and in
cosmology where the expansion of the universe creates a sort
of “neutralizing background” (in the comoving frame). In
this paper, we have only considered equilibrium states. In
future works, we shall study the dynamics of some simple
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models for which the present study can be a useful guide.

Our study of the modified Newtonian model also allows
us to explore the link between cosmology where one studies
the evolution of the universe as a whole [12] and stellar
dynamics where one studies the structure of individual gal-
axies [78]. The description of phase transitions in these two
disciplines is usually very different [79]. However, our study
allows us to make some basic connections. In cosmology,
one usually starts from an infinite homogeneous distribution
(in an expanding background) and study the appearance of
clusters representing galaxies. Our thermodynamical ap-
proach shows that, indeed, the homogeneous phase is un-
stable for sufficiently low temperatures and energies and
leads to clusters. The formation of these clusters can be stud-
ied by making a linear stability analysis of the Vlasov or
Euler equations [12]. Then, in the nonlinear regime, the sys-
tem is expected to achieve a statistical equilibrium state due
to violent relaxation or collisional relaxation (finite N ef-
fects) [78]. This corresponds to the inhomogeneous phase
[80]. In d=1, there exists an equilibrium state for any value
of energy and temperature. For low energies and tempera-
tures, it is spatially inhomogeneous. In the core of the cluster,
the density is so high that we can disregard the effect of the
neutralizing background. In that case, the statistical equilib-
rium state (representing an individual “galaxy”) is described
by the Camm [81] solution like in one-dimensional stellar
dynamics. In d=3, there is no inhomogeneous equilibrium
state and, for sufficiently small energies and temperatures,
the system undergoes a gravothermal catastrophe or an iso-
thermal collapse. In d=2, the situation is intermediate. There
exists an equilibrium state in the microcanonical ensemble
for all energies while in the canonical ensemble no equilib-
rium state exists at low temperatures. Similar behaviors oc-
cur in chemotaxis and will be investigated in future papers.
Note that for ordinary self-gravitating systems, the proper
statistical ensemble is the microcanonical ensemble while in
chemotaxis (or for the academic model of self-gravitating
Brownian particles) the proper statistical ensemble is the ca-
nonical one. It is therefore interesting to study these two
systems in parallel to describe the analogies and differences
between statistical ensembles.
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APPENDIX A: EQUIVALENT BUT SIMPLER
OPTIMIZATION PROBLEMS

In this Appendix, following and extending the approach
of Padmanabhan [22] and Chavanis [27], we shall reduce the
optimization problems (3) and (18) to simpler forms. In par-
ticular, we shall show that the optimization problems (3) and
(18) for f(r,v) are equivalent to the optimization problems
(A6) and (A25) for p(r).

1. Microcanonical ensemble

To solve the maximization problem (3) we can proceed in
two steps. We first maximize the entropy at fixed energy,
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mass, and density profile p(r). Since the specification of p(r)
determines the mass and the potential energy, this is equiva-
lent to maximizing the entropy at fixed kinetic energy and
density profile. Writing

o[ o) [ [ 1)
5S—} ff;drdv —f)\(r)ﬁ ffdv dr=0,

(A1)

this leads to the Maxwellian distribution function

drR )
) p(r)e—mv /2kBT’ (AZ)

fle,v) = <2kaT
which is the global entropy maximum with the previous con-
straints since 6°S=—kp[ %%zdrdv<0 (the constraints are lin-
ear in f so that their second variations vanish). Using Eq.
(A2), we can now express the entropy and the energy in
terms of p(r) and 7. Up to unimportant constants, we obtain

d
S:ENkBlnT—kBJBI P

n—
n m

dr, (A3)

d 1
E= ENkBT+ > f p(r,))u(r,r")p(r’,t)drdr’ +f pVdr.

(A4)

The temperature 7 can be determined from the energy con-
straint (A4) and substituted in Eq. (A3). Therefore, the en-
tropy becomes a functional of the density alone given by

d
S = “Nky In(E — W[p]) - kg f Linlar,  (A5)
2 m m

where W[p] is the potential energy in Eq. (A4), i.e., the sum
of the second and third terms. By this way, the energy con-
straint has explicitly been taken into account in the expres-
sion of the entropy.

We now have to solve the maximization problem

max{S[p]|M[p] = M}, (A6)
p

where S[p] is given by Egs. (A3) and (A4) or, equivalently,

by Eq. (A5). Finally, the solution of (3) is given by the dis-

tribution function (A2) with the density profile that is solu-

tion of (A6). Let us compute the variations of entropy and

energy up to second order. We have

d or p op d oT\?
AS =—Nkz— — kg In —+1)—dr—-—Nkg| —
2 T m m 4 T

2
- ka @dr,

2o (A7)

d 1
AE=5Nk35T+f@5pdr+zf Spoddr. (A8)

Using the conservation of energy AE=0 to eliminate 5T [or
working directly on Eq. (A5)], we obtain
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1 1 2
- — | Spodd d Spd
o ) PO deBT2<J P r)
S 2
— kg ﬂd (A9)
2pm

Let us determine the critical points of (A6) that cancel the
first-order variations. At first order, we have

1 p op
OS=—— | ®dpdr — kg In—+1|—dr.
T m m

(A10)

The conservation of mass can be taken into account by in-
troducing a Lagrange multiplier. Writing the variational prin-
ciple as

S—adM =0, (A11)
we obtain the mean field Boltzmann distribution
p= Are—mlb/kBT’ (Al2)

where ®(r) is given by Eq. (7). Combining Eq. (A12) with
Eq. (A2), we recover the mean field Maxwell-Boltzmann
distribution (10). However, the present approach allows us to
simplify the condition of thermodynamical stability. Indeed,
the system is stable in the microcanonical ensemble if and
only if the second order variations of entropy (A9) are nega-
tive definite

(6p)* 1 1 g
5| ——dr—— | dpdPdr-——=| | Pdpdr| <0
2pm 2T dNkgT

(A13)

-k

for all perturbations dp that conserve mass at first order, i.e.,
[ 8pdr=0 (the conservation of energy has automatically been
taken into account in the previous derivation). This stability
criterion is equivalent to the stability criterion (13) but it is
simpler because it is expressed in terms of the density in-
stead of the distribution function.

In fact, the previous derivation proves the equivalence
between (3) and (A6) for global maximization. We shall now
go one step further and prove the equivalence between (3)
and (A6) for local maximization, i.e., f(r,v) is a (local)
maximum of S[f] at fixed energy and mass if and only if the
corresponding p(r) is a (local) maximum of S[p] at fixed
mass. To that purpose, we shall prove that the stability crite-
ria (13) and (A13) are equivalent. This extension is important
because local entropy maxima (metastable states) are fully
relevant in the case of systems with long-range interactions
[63].

According to Eq. (13), a critical point of entropy at fixed
mass and energy is a local maximum if and only if
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2
@drdv -
2mf 2kgT

18f]=- f SpdPdr <0

(A14)

for all perturbations J&f that satisfy M= [dfdrdv=0 and
SE=] 6f(”72+(1))drdv=0. Let us first determine the distribu-
tion function &f,(r,v) that maximizes I[ 5f] with the previ-
ous constraints and the additional constraint Sp=[dfdv,
where Jp(r) is given (it is only ascribed to conserve mass,
i.e., [Spdr=0). Since the specification of Sp determines 5P,
this is equivalent to maximizing I=—[ %ﬁdrdv with the con-
straints [ §fdv=&p, and %féfvzdrdv=— j/ SpPdr. Introducing
Lagrange multipliers, we write the variational problem as

2
ST - f )\(r)6< J 5fdv>dr—,u§< f 5f%drdv>=0.

(A15)

The solution is

2
SF,(r,v) = — mf(r,v)( M% + )\(r)), (A16)

and it is clearly the global maximum of 1 under the previous

constraints since &*1=— I %%Zdrdvso (the constraints are
linear in &f so that their second variations vanish). The
Lagrange multipliers \(r) and u are determined by substitut-
ing Eq. (Al6) in the constraints [d&fdv=75p, and
% [ 8fv?drdv=—[ Sp®dr. Noting that a critical point of en-
tropy at fixed mass and energy can be written as in Eq. (12),
we have the identities

v’ dp(r)

ffde—Z—m kgT, (A17)
food( d\plr)

ff%dv=5(l+5)pm—g(kBT)2. (A18)

Using these identities, we find after simple calculations that

Sp d kT
Nr)=— 2%, 5 (A19)
mp 2
2 f& dd (A20)
= r,
= anGgr? ]

where we have used the constraint [Spdr=0 to simplify
some terms. Therefore, the optimal perturbation is given by
Eq. (A16) with Egs. (A19) and (A20). Since this perturbation
maximizes I[ 5f] with the above-mentioned constraints, we
have I[8f]1<I[5f,]. Explicating I[5f,] using Egs. (Al4),
(A16), (A19), and (A20), we obtain after simple calculations

8p)? 1
() f SpSddr

1 6f] =- -

2
—m(f 5pq)dr) =1[6p], (A21)

where the right-hand side is precisely the functional appear-
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ing in Eq. (A13). Furthermore, there is equality in Eq. (A21)
if and only if 8f=Jf,. This proves that the stability criteria
(13) and (A13) are equivalent. Indeed, (i) if inequality (A13)
is fulfilled for all perturbations Jp that conserve mass, then
according to Eq. (A21), we know that inequality (13) is ful-
filled for all perturbations Jf that conserve mass and energy
at first order; (ii) if there exists a perturbation Sp, that makes
I[8p]>0, then the perturbation Jf, given by Eq. (A16) with
Egs. (A19) and (A20) and Sp=Sp, makes I[ 5]>0. In con-
clusion, the stability criteria (13) and (A13) are equivalent.

2. Canonical ensemble

To solve the maximization problem (18) we can proceed
in two steps. We first minimize the free energy at fixed mass
and density profile p(r). This is equivalent to minimizing the
free energy at fixed density profile. Writing

OF + Tf )\(r)é(ffdv)dr:O, (A22)
this leads to the Maxwellian distribution function
di2
- m —mv2/2kBT A23
f(r,v) (zquBT) p(r)e . (A23)

which is the global minimum of free energy with the previ-
ous constraint since 8*F=k,T[ %%drdv> 0 (the constraint is
linear in f so that its second variations vanish). Using Eq.
(A23), we can now express the free energy in terms of p(r).

Up to unimportant constants, we get

1
:EJp(r,t)u(r,r’)p(r',t)drdr’+fder

+ kT J LonLar. (A24)
m m
We now have to solve the minimization problem
(A25)

min{F[p]|M[p] = M}.
p

Finally, the solution of (18) is given by the distribution func-
tion (A23) with the density profile that is solution of Eq.
(A25). The first variations,

OF + aT6M =0, (A26)
lead to the mean-field Boltzmann distribution
p= Are—mlb/kBT’ (A27)

where ®(r) is given by Eq. (7). Combining Eq. (A27) with
Eq. (A23), we recover the mean-field Maxwell-Boltzmann
distribution (10). However, the present approach allows us to
simplify the condition of thermodynamical stability. Indeed,
the system is stable in the canonical ensemble iff the second
order variations of free energy (A24) are positive definite

1 kT [ (p)?
—f 5p5®dr+ifmdr20 (A28)
m 2p

2

for all perturbations Sp that conserve mass at first order, i.e.,
[ 8pdr=0. This stability criterion is equivalent to the stability
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criterion (21) but it is simpler because it is expressed in
terms of the density instead of the distribution function.

In fact, the previous derivation proves the equivalence
between (18) and (A25) for global minimization. We can
also prove their equivalence for local minimization, i.e.,
f(r,v) is a (local) minimum of F[f] at fixed mass if and only
if the corresponding p(r) is a (local) minimum of F[p] at
fixed mass. To that purpose, we have to prove that the sta-
bility criteria (21) and (A28) are equivalent. The method is
similar to the one described in the previous section, the only
difference being that we have to relax the energy constraint.
This amounts to taking u=0 in the previous derivation.
Therefore, the optimal perturbation that minimizes &°F[ Jf]
given by Eq. (21) with the constraints [dfdv=3Jp and
J8pdr=0 is given by Eq. (A16) with Eq. (A19) and u=0.
Since this perturbation minimizes &°F[df] with the above-
mentioned constraints, we have &F[df]= & F[f,]. Expli-
cating 6°F[&f,] using Egs. (21), (A16), and (A19), and u
=0, we obtain after simple calculations

2
SF[5f] = 1 f Sp&Pdr + ksT f malr = 8F[ p),
2 m 2p

(A29)

where the right-hand side is precisely the functional appear-
ing in Eq. (A28). This proves the equivalence between (21)
and (A28) (the argument is the same as in the previous sec-
tion except that of is not ascribed to conserve energy any-
more).

Remark. From the stability criteria (A13) and (A28), we
clearly see that canonical stability implies microcanonical
stability (but not the converse). Indeed, since the last term in
Eq. (A13) is negative, it is clear that if inequality (A28) is
satisfied, then inequality (A13) is automatically satisfied. In
general, this is not reciprocal and we may have ensembles
inequivalence. However, if we consider a spatially homoge-
neous system for which ® is uniform, the last term in Eq.
(A13) vanishes (since the mass is conserved) and the stabil-
ity criteria (A13) and (A28) coincide. Therefore, for spatially
homogeneous systems, we have ensembles equivalence.

APPENDIX B: EXPLICIT EXPRESSIONS OF THE
POTENTIAL

In this Appendix, we limit ourselves to the case d=1 al-
though the results can be easily generalized to any dimen-
sion. Using standard methods, we can obtain the Green func-
tion associated with the screened Poisson equation (65) in a
box with Neumann boundary conditions. Then, we find that
the potential is explicitly given by

R
D(x) = f p(x u(x,x")dx', (B1)
-R
with
"no_ _ E— —lx—x'
ulx,x') = ko Sinh(2kaR) (cosh[ky(2R — | D]
+ cosh[ko(x +x")]). (B2)
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In an infinite domain (R— +%), we obtain

G '
— —efoh=l, (B3)
ko

u(lx—x'[) =

Similarly, for the modified Newtonian model (44) with Neu-
mann boundary conditions, the potential is explicitly given
by

R
<1>(X)=GJ (p—p)(x)|x—x'|dx’, (B4)
-R

and this expression remains valid in an infinite domain (R
—>+oo).

APPENDIX C: EXTERNAL POTENTIAL FOR THE
MODIFIED NEWTONIAN MODEL

For the modified Newtonian model (44), the potential can
be written as

O(r) = f (p=p)(x")u(r,r’)dr’, (C1)

where u(r,r’) is the Green function of the Poisson equation
with Neumann boundary conditions. Comparing Eq. (Cl)
with Eq. (7), we find that the external potential is

V(r)= —ﬁf u(r,r’)dr’. (C2)
Using Eq. (C2), the potential energy (8) can be written as

1
W=-=

1
5 p(I)dr—EﬁJp(r)u(r,r’)drdr’. (C3)

Interchanging the dummy variables r and r’ and using the
symmetry u(r’,r)=u(r,r’), we get

1 1
=Equ)dr—iﬁfp(r’)u(r,r’)drdr’. (C4)

Finally, using Eq. (7), we obtain

=%f(p—ﬁ)(bdr+%ﬁf V(r)dr. (C5)

Therefore, the potential energy is given by Eq. (54) up to an
unimportant additive constant % pJV(r)dr=
—3P*fu(r ¥’ )drdr’.

In d=1, according to Eq. (B4), the potential of interaction
is u=Glx—x'|. Therefore, the external potential (C2) is ex-
plicitly given by

V(x) =—pG(x*+ R?). (C6)

The additive constant in the energy (C5) is therefore

1_(® 4
2P V(x)dx = - ng R°. (C7)
-R
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APPENDIX D: THE MINIMUM ENERGY

Let us consider the modified Newtonian model (44) in d
=1. At T=0, the density profile is a Dirac peak p=M 8(x) and
the energy (57) is

1 (% [dd\?
E= — | dx.

-— D1
4G ) g \ dx (®D

For a symmetric density profile, the modified Poisson equa-
tion can be integrated into

D' (x) = ZGf p(x")dx" = 2Gpx,
0

(D2)

which is the appropriate Gauss theorem. If all the mass is
concentrated at x=0, we obtain

d'(x) = GM(sign(x) - 1%) : (D3)
Substituting this expression in Eq. (D1), we obtain E=
—~GM?R/6. The total normalized energy is therefore

A L

max — 6 (D4)
This corresponds to the minimum energy of the branch n
=1.

Let us consider the screened Newtonian model (65) in d
=1. At T=0, the density profile is a Dirac peak p=M &(x) and
the energy (75) is E:%MCI)O. According to Eq. (B2), the
potential created in x by a mass M located at x"=0 is

GM cosh[ky(R — x])]

Pl =- k,  sinh(koR)

where we have used elementary trigonometric identities to
simplify ~ the  expression. This leads to dy=
~GM /(ky tanh(kyR)) and E=—GM?/(2k, tanh(kyR)). The to-
tal normalized energy is therefore

w__

max 2w tanh(w) (D6)

This corresponds to the minimum energy of the branch n
=1.

APPENDIX E: APPROXIMATE EXPRESSIONS OF THE
DENSITY PROFILE

In d=1, the screened Emden equation (69) can be written

as
%:e_‘/’—)\+/<2¢/=—j—l‘;, (E1)
with
Vip)=eV+ \iy— %K%. (E2)

This is similar to the equation of motion of a particle of unit
mass in a potential V(i) where ¢ plays the role of position
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and ¢ the role of time. Using the boundary condition =’
=0 at £=0, we find that the first integral (pseudo energy) is

:1<d_¢f
AV

This first-order differential equation can be easily integrated
until é=«, which formally solves the problem.

Let us consider the limit py— +% corresponding to a—
+o0_ In the inner region, the term e¥ dominates and Eq. (E1)
reduces to the ordinary Emden equation whose solution is
the Camm profile [29,81],

2
) FV()=1. (E3)

1
Ve —— (E4)
e .
cosh?(& \E)

In the outer region, the term e~ can be neglected and Egs.
(E1) and (E3) reduce to

2

Z—g’f =— N+ &2, (E5)
1{dy\? 1
5<d—‘é> +>\¢—5K2¢2=1. (E6)

The boundary condition at the wall is ¢'(a)=0. Substituting
this result in Eq. (E6), we get )\(ﬂ(a)—%szf(ay:l. The
physical  solution of this equation is ¢(a)=(A
—V\?=2«%)/ k. Solving Eq. (ES) with these boundary con-
ditions, we find that

Nl 5—
Wé) = - pw@ —2«% cosh[k(é- a)]. (E7)
The matching of the outer solution with the inner solution
implies that ¢,,,,(0)=0. Using xa=u, we obtain

\’5 1
~—E C (a— ). (E8)
tanh(w) a

Finally, substituting the inner profile (E4) in Eq. (74), we
obtain at leading order

7~ \Ea (a— + ). (E9)

For a—+0o, the density profile tends to a Dirac peak p
=M &(x). The potential energy reduces to W= %MQ)O. Using
Egs. (80) and (E8), and xk=pu/a, we recover Eq. (D6).

The modified Emden equation (48) can be studied simi-
larly. In fact, most of the preceding results remain valid by
taking k=0. The potential is V(i)=e ¥+ \i. It has a mini-
mum at =—In X\ so that the solution (¢) of the Emden
equation (with energy £=1) oscillates around this value. In-
tegrating Eq. (E3), the density profiles of the solutions of the
branch n=1 are given by

v dx
§: INnr1 —x N0
0 V2(1 —e™=\x)

with =< a. The half-period of the oscillations of the function

W(§) is

(E10)
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L_ fWL
2 Jy 2(1-eF=-\y)’

where ifa) is solution of e ¥+ \y{a)=1 obtained from
Eq. (E3) with ¢'(a)=0. Let us now consider the limit p,
—+o0, The inner solution is given by the Camm profile (E4)
and the outer solution is

(E11)

M ==~ M- aP (€12

which is consistent with Eq. (E7) when x— 0. The matching
condition #,,,,(0)=0 then yields

J”E
N~ (s +00). (E13)
a
Using Eq. (53), we obtain at leading order
77~V5a (a— +0). (E14)

APPENDIX F: THE BIFURCATION POINT

In this Appendix, we shall determine the point at which
the spatially homogeneous branch bifurcates to the spatially
inhomogeneous branch and show that it coincides with the
point at which the spatially homogeneous branch becomes
unstable (see Sec. V). For a more detailed theory of bifurca-
tions, we refer to the paper of Schaff [82].

For the modified Newtonian model, the differential equa-
tion determining the field ®(r) at statistical equilibrium can
be written as

AD =S,G(Ae™P"® - p). (F1)

The homogeneous solution corresponds to p=p, ®=0, and
A=p. Considering a small perturbation ®=0+ ¢(r) with ¢
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<1 around the homogeneous solution and linearizing the
differential equation (F1), we obtain

Adp+S,GBmpd=0, (F2)

with the boundary conditions V¢-n=0 on the boundary. The
boundary conditions determine the allowable wavenumbers
k*=S,GBmp. They take discrete values k=k, (see Sec. V)
which in turn determine discrete values of the temperature
T,. The first point of bifurcation corresponds to the smallest
wavenumber k. This is associated with the critical tempera-
ture (113) at which the homogeneous branch becomes un-
stable. Other branches of bifurcations appear at smaller tem-
peratures. They correspond to successive quantized values &,
of the wave number.

For the screened Newtonian model, the differential equa-
tion determining the field ®(r) at statistical equilibrium can
be written as

AD — i3 = S,GAeP"®. (E3)

The homogeneous solution corresponds to p=const, ®
=const with —k(z)(I):Sde. Considering a small perturbation
d=const+ ¢(r) with <1 around the homogeneous solution
and linearizing the differential equation (F3), we obtain

A+ (S,GBmp - kg)p=0, (F4)

with the boundary conditions V¢-n=0 on the boundary. The
boundary conditions determine the allowable wavenumbers
kZESdG,Bmp—k%. The first point of bifurcation corresponds
to the smallest wave number k; (see Sec. V). This is associ-
ated with the critical temperature (111) at which the homo-
geneous branch becomes unstable. Other branches of bifur-
cations appear at smaller temperatures. They correspond to
the successive quantized values k, of the wave number.
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summed symmetrically about each particle. This leads to a
modified Poisson equation of form (44). This is not a
“swindle” but rather the right way to make the system math-
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ematically well defined. These authors also consider a screened
Newtonian interaction. In their studies, the screening is intro-
duced as a procedure of regularization of the basic gravita-
tional force and they are ultimately interested in the small
screening limit k5— 0. In our study, partly motivated by bio-
logical problems (Keller-Segel model), we allow for an arbi-
trary screening, as it is related to the degradation of the chemi-
cal (in the biological problem). We also consider the modified
and screened Poisson equations in infinite [70,71] and finite
domains (with Neumann boundary conditions in the biological
problem), while in the gravitational studies of Joyce et al.
[73,74], these equations make sense only in infinite domains
(and for ky—0).
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