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Although Casimir forces are inseparable from their fluctuations, little is known about these fluctuations in
soft matter systems. We use the membrane stress tensor to study the fluctuations of the membrane-mediated
Casimir-like force. This method enables us to recover the Casimir force between two inclusions and to
calculate its variance. We show that the Casimir force is dominated by its fluctuations. Furthermore, when the
distance d between the inclusions is decreased from infinity, the variance of the Casimir force decreases as
−1 /d2. This distance dependence shares a common physical origin with the Casimir force itself.
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I. INTRODUCTION

In 1948, Casimir predicted that two uncharged metallic
plates placed in vacuum should attract each other �1�. Indeed,
the boundary conditions imposed by the plates on the elec-
tromagnetic field constrain its quantum fluctuation modes in
such a way that the zero-point energy of the system depends
on the distance between the plates. Such long-range
fluctuation-induced forces arise between any objects that im-
pose boundary conditions on a fluctuating field with long-
range correlations �2�. Casimir-like effects driven by thermal
fluctuations of material media were first discussed by Fisher
and de Gennes in the context of critical mixtures �3–5�. They
also appear in soft matter systems such as liquid crystals
�6,7�, fluid membranes �8–12� and fluid interfaces �13�, as
well as in superfluids �14�. The first direct measurement of
thermal Casimir-like forces was achieved very recently in a
critical binary mixture by Hertlein et al. �15�. Experimental
evidence for fluctuation-induced forces between lipid do-
mains in vesicles was also provided very recently �16�.

The Casimir force actually coincides with the average of
the stress exerted by the fluctuating field �17�. Although Ca-
simir forces are by essence inseparable from their fluctua-
tions, the latter have been scarcely studied. In 1991, Barton
first characterized the fluctuations of the quantum Casimir
force by calculating the variance of the stress tensor �18�.
There have been few studies since then �19�. The fluctuations
of Casimir forces are, however, of fundamental importance.
Indeed, Casimir force measurements are always performed
by probing a fluctuating quantity, either the force itself
�20,21� or the position of one of the interacting objects �15�.
In addition, the distance dependence of the fluctuations of
Casimir forces is intriguing as it shares a common origin
with the Casimir effect: the suppression of fluctuating de-
grees of freedom.

The study of the fluctuations of Casimir-like forces was
initiated by Bartolo et al., who considered the case of paral-
lel plates imposing Dirichlet boundary conditions on a fluc-
tuating scalar field �22�. Although the case studied in Ref.
�22� is quite generic, including, e.g., classical spin systems
�23�, it does not encompass all the soft matter systems that
can give rise to a Casimir-like effect. Membrane inclusions,
for instance, which are small objects interacting with the

membrane through a complicated stress tensor �24,25�, are
left out.

In this Rapid Communication, we calculate the fluctua-
tions of the membrane-mediated Casimir-like force acting
between two inclusions, e.g., proteins, that locally constrain
the curvature of the membrane. First, we show that the
Casimir-like force, which is usually derived from the mem-
brane free energy �8–11�, can be obtained by integrating the
average membrane stress tensor. Then we calculate the vari-
ance of this force and we study its distance dependence. We
also discuss the effect on the variance of the interplay be-
tween the Casimir-like force and the curvature-dependent
force.

II. MODEL

Biological membranes are fluid lipid bilayers that are well
described on a large scale by an elastic curvature energy
known as the Helfrich Hamiltonian �26�:

H =� dr
�

2
��2h�r��2, �1�

where h�r�, with r= �x ,y�, denotes the height of the mem-
brane with respect to a reference plane and � is the mem-
brane bending rigidity. This form holds for symmetric mem-
branes, constituted of two identical monolayers, undergoing
small deformations with respect to the flat shape and for
distances smaller than �� /�, where � is the membrane ten-
sion. The components of the stress tensor � associated with
the effective Hamiltonian H are given by �25�

�xx =
�

2
���y

2h�2 − ��x
2h�2� + ���xh��x�

2h , �2�

�xy = ����xh��y�
2h − ��x�yh��2h� . �3�

We consider inclusions that locally constrain the curvature of
the membrane. This corresponds to the most generic case for
inclusions not subject to external forces or torques. Particles
such as proteins with Bin/amphiphysin/Rvs �BAR� domains
�27� and viral capsids �28� are well-known examples of in-
clusions producing local membrane curvature �29–31�.

We model the inclusions as pointlike objects. This is jus-
tified since the typical radius of membrane proteins is com-
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parable to the membrane thickness �see Fig. 1�, which van-
ishes in our coarse-grained description. This simplification
makes the calculation of the force variance tractable. A dis-
advantage of this model, however, is that the size of the
inclusions and the ultraviolet cutoff are not independent from
one another.

III. AVERAGE FORCE

We first consider the case of two inclusions imposing a
vanishing curvature since it gives the Casimir-like force
without the curvature-dependent contribution that would
arise from an average deformation of the membrane
�8,10,11�. In order to calculate the average of the stress ten-
sor, we need the correlation function of the membrane height
and therefore the partition function. The latter is obtained by
integrating over all the configurations satisfying the con-
straints �x

2h=�x�yh=�y
2h=0 at the positions r1 and r2 of the

two inclusions:

Z�u� =� Dh�
i=1

6

�„Dih�Ri�…exp�− �H +� drh�r�u�r�	 .

�4�

Here, �=1 /kBT and u�r� is an external field conjugate to
h�r�; we have used the vectors D= ��x

2 ,�x�y ,�y
2 ,�x

2 ,�x�y ,�y
2�

and R= �r1 ,r1 ,r1 ,r2 ,r2 ,r2� to express the constraints. Writ-
ing the Dirac distributions as Fourier transforms and inte-
grating first over h�r� and then over the Fourier variables
yields �10,11�

Z�u� = Z�0�exp
1

2
� drdr�u�r�C�r,r��u�r��� , �5�

where C�r ,r��= �h�r�h�r��
=G�r−r��+G��r ,r�� is the cor-
relation function of the membrane height. G�r�=�qeiq·r /q4 is
the Green’s function of the operator associated with the Hel-
frich Hamiltonian �1�. Here and in the following, we use the
shorthand �q��kBT /���1/���q��	dq / �2
�2, where 	 is the
ultraviolet cutoff, comparable with the inverse membrane
thickness, and � stands for the membrane size in the absence
of tension or the fluctuation correlation length ���� /� oth-

erwise. The second term in the correlation function, which
comes from the presence of the inclusions, is found to be

G��r,r�� = − �
i,j=1

6

�DiG�r − Ri��Mij
−1D jG�r� − R j� , �6�

where Mij =DiD jG�Ri−R j�.
Let f be the force exerted by the rest of the membrane on

a circular membrane patch of radius r centered on the inclu-
sion number 2 �see Fig. 2�. Its component along the x axis
joining the two inclusions is

fx = r�
0

2


d���xx�r�cos � + �xy�r�sin �� , �7�

with r=r�cos � , sin ��. Let us calculate the average of fx.
Thanks to Eq. �2� and �3�, ��xx
 and ��xy
 can be expressed
as linear combinations of the derivatives of the correlation
function C. For instance, the first term of �xx gives
���y

2h�r��2
=�y
2�y�

2 C�r ,r�� �r�=r. The divergence of the average
stress tensor vanishes everywhere except on the inclusions,
which means that �fx
 is independent of the contour chosen
as long as it surrounds one inclusion. Indeed, for all r smaller
than the distance d between the inclusions, we obtain the
Casimir-like force

�fx
 = 24kBT
�2/	�4

d5 + O„�	d�−9
… , �8�

which was first derived from the membrane free energy
�9–11�. This result coincides with the Casimir-like force be-
tween two rigid disks of radius a �8� for 	=2 /a �9–11�.
Thus, a=2 /	 can be interpreted as the effective radius of our
point inclusions.

IV. FLUCTUATIONS

Using the stress tensor provides a way to calculate the
variance of fx:

FIG. 1. �Color online� Atomistic molecular dynamics simulation
of a BAR domain inducing a strong local curvature in a lipid mem-
brane. Reproduced with permission from Ref. �27�. Copyright
�2006� National Academy of Sciences, USA.

FIG. 2. �Color online� Two curvature-inducing inclusions of ra-
dius a separated by a distance d in a fluctuating membrane. The
black line is the contour used for the calculation of the Casimir
force by integration of the stress tensor.
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�fx
2 = r2�

D
d
d��Vxx�r,r��cos � cos 


+ 2Vxy�r,r��cos � sin 
 + Vyy�r,r��sin � sin 
� ,

�9�

where Vij�r ,r��= ��xi�r��xj�r��
− ��xi�r�
��xj�r��
, with r
=r�cos � , sin ��, r�=r�cos 
 , sin 
�, and D= �0,2
�
� �0,2
�.

Given partition function �5�, we may use Wick’s theorem
to express the correlation functions Vij in terms of C. For
instance, the term in Vxx�r ,r�� that originates from the prod-
uct of the first and second terms in �xx gives vxx�r ,r��
=− 1

2�2��y
2�x�

2 C�r ,r���2. We represent diagrammatically its
contribution to �fx

2 as

r2�
D

d�d�vxx�r,r��cos � cos � = −
�2

2
.
�10�

Each line stands for the propagator C�r ,r��, and the dashes
�respectively, dots� come from �x or �x� �respectively, �y or
�y�� depending on whether they stand on the left or on the
right of the diagram; the angular integrations are understood.
All the diagrams that contribute to �fx

2 are displayed in the
supplementary material �32�. Since C=G+G�, each diagram
breaks into four terms. For the diagram in Eq. �10�, one of
these terms reads explicitly as

= − r2�
q,k,q�

qy
2kx

2�i�q�Mij
−1� j�k�

q4k4

qy�
2qx�

2

q�4

� �
D

d�d� cos � cos �ei�q+q��·rei�k−q��·r�,

�11�
where the double line stands for G��r ,r�� while the dashed
line stands for G�r−r��, and � j�q�=Qje

−iq·Rj with Q
= �qx

2 ,qxqy ,qy
2 ,qx

2 ,qxqy ,qy
2�. The integrals in Eq. �11� can be

performed analytically in the unphysical limit 	r�1. The
result will guide our understanding of the physical case r
=a. Summing all the diagrams in �fx

2 �32� then yields �fx
2

�r4	6�kBT�2�ln�	��−4�	d�−2+O(�	d�−4)� /192, where
zero-average oscillations at the cutoff frequency with ampli-
tude in �	d�−5/2 have been discarded.

Since even a piece of inclusion-free membrane is subject
to a fluctuating force of finite variance, �fx

2 depends on the
contour chosen to calculate fx, contrary to �fx
. Thus, in order
to obtain the fluctuation of the Casimir-like force acting on
an inclusion, we should take a contour that includes the in-
clusion and only it. As in our model, the effective radius of
the inclusions is a=2 /	, the best we can do is to choose r
=a and to set, from now on, 	=2 /a. In order to calculate
�fx

2 for r=a, we have computed the integrals of the diagrams
numerically. Our study �see Fig. 3� shows that the leading
behavior of �fx

2 in a /d is well described by the formula

�fx
2 � 0.112

�kBT�2

a2 
ln�2�

a
	 − 0.239 −

a2

d2� , �12�

which has the same main features as the analytical result
found in the limit 	r�1. The only difference is the presence

of the constant −0.239, which is negligible compared to the
logarithmic term. As it can be absorbed in the definition of �,
we shall discard it from now on. In the physical regime,
corresponding to ��a and d�2a, Eq. �12� is always posi-
tive.

Our result �Eq. �12�� shows that �fx
2 is dominated by a

distance-independent term, which corresponds to the fluctua-
tions of the zero-average force exerted on a single inclusion
by the membrane bulk. To leading order in a /d, the signal-
to-noise ratio for the Casimir force is thus

�fx

�fx

� 24
0.112 ln�2�

a
	�−1/2�a

d
	5

�13�

so that the Casimir force is very small compared to its fluc-
tuations in the physical case d�2a. Besides, the distance
dependence of �fx

2 originates from the suppression of fluc-
tuation modes by the boundary conditions imposed by the
two inclusions, so it shares a common physical origin with
the Casimir effect. To extract this d dependence, we can
define the Casimir effect relative to the fluctuations as

��fx
2

�d
� 0.224

�kBT�2

d3 . �14�

This result, obtained for point inclusions, is independent of
the cutoff. The question whether this universality holds for
extended domains with dimension a independent of the cut-
off 	 would be interesting to address.

V. INCLUSIONS INDUCING A NONZERO CURVATURE

When the inclusions impose a finite local curvature �see,
e.g., Fig. 1�, a component due to the average deformation of
the membrane adds to the Casimir force �8,10,31�. The par-
tition function can be obtained using the same method
�10,11� as in the zero-curvature case discussed before. The
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FIG. 3. Left: Nondimensional force variance �fx
2¯ =�2a2�fx

2 for
d→� as a function of � /a. The points are results from our numeri-

cal integrations, the line is the fit �fx
2¯ =0.112�ln�2� /a�−0.239�.

Right: d dependence of �fx
2¯ for � /a=103. Oscillations at the cutoff

frequency have been smoothed out. The line is the fit �fx
2¯ �d→��

−�fx
2¯ =0.112a2 /d2+7.18a4 /d4. Similar results were obtained for

other values of � /a �102 and 104�, with the same coefficient in front
of a2 /d2.
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correlation function �h�r�h�r��
− �h�r�
�h�r��
 remains un-
changed, equal to C�r ,r��. The only change is the average
deformation of the membrane: �h�r�
=ViMij

−1D jG�r−R j�,
where V contains the elements of the curvature tensors of the
two inclusions. We restrict ourselves to inclusions imposing
the same isotropic curvature c�a−1 so that V
= �c ,0 ,c ,c ,0 ,c�. The correspondence with finite-size inclu-
sions imposing a contact angle variation 
 over a length a is
obtained for c=
 /a.

Integrating the average stress tensor over a contour that
surrounds one inclusion but not the other �see Fig. 2� gives
the sum of the Casimir force �Eq. �8�� and a curvature-
dependent force, i.e.,

�fx
 = 24kBT
�2/	�4

d5 − 32
�
2 �2/	�4

d5 + O„�	d�−7
… .

�15�

We thus recover from the stress tensor the total membrane-
mediated interaction �8–10�.

Studying the fluctuations of fx is a straightforward gener-
alization of the zero-curvature case. The only difference is
that Wick’s theorem applies to h�r�− �h�r�
 instead of h�r� so
that diagrams involving �h�r�
 appear in the calculation. In

the limit 	r�1, we obtain analytically �fx
2

�r4	6�kBT�2���
�ln�	��−4��
��	d�−2+O(�	d�−4)� /192
with ��
�=1+12
��
2 and ��
�=1+8
��
2. The con-
clusions drawn in the vanishing curvature case still hold, but
the Casimir effect relative to the fluctuations becomes
��fx

2 /�d� 1
24�	r�4�kBT�2��
�d−3. Thus, in the nonsmall cur-

vature regime 
� �8
���−1/2, we obtain

��fx
2

�d
�

kBT�
2

d3 . �16�

The kBT�
2 factor, which replaces the �kBT�2 appearing in
the pure Casimir case, reveals the interplay between the Ca-
simir force and the curvature-dependent force.

In summary, the stress tensor is a powerful tool that al-
lows for studying the Casimir-like force between membrane
inclusions, especially its fluctuations. Using a coarse-grained
description in which the inclusions are pointlike, we have
calculated the variance of the Casimir force. Our results
show that the fluctuations dominate the average force, and
that they depend on the distance between the inclusions. Fur-
ther possible developments include treating the case of ex-
tended inclusions and testing our results using coarse-grained
membrane numerical simulations such as those in Ref. �31�.
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