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Large discrepancies between binary classical nucleation theory �BCNT� and experiments result from adsorp-
tion effects and inability of BCNT, based on the phenomenological capillarity approximation, to treat small
clusters. We propose a model aimed at eliminating both of these deficiencies. Adsorption is taken into account
within Gibbsian approximation. Binary clusters are treated by means of statistical-mechanical considerations:
tracing out the molecular degrees of freedom of the more volatile component, we obtain a coarse-grained
system described in terms of the single-component mean-field kinetic nucleation theory �V. I. Kalikmanov, J.
Chem. Phys. 124, 124505 �2006��, allowing an adequate treatment of clusters of arbitrary size. The model
opens a route toward studying binary nucleation in complex systems with nanosized critical clusters.
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Binary nucleation plays a major role in a large variety of
physical processes ranging from atmospheric science to ma-
terials science. Up to date the main theoretical tool describ-
ing this phenomenon is the binary classical nucleation theory
�BCNT� pioneered by Reiss in 1950 �1� and developed by
Stauffer �2� and based on the capillarity approximation. The
latter considers a cluster to be an object with a rigid bound-
ary and uniform intensive properties of the bulk liquid inside
it. It has been known for quite a while that predictions of
BCNT can differ by many orders of magnitude from the
experimental data �3,4� and even lead to unphysical results
violating the nucleation theorem �5�. One of the explanations
of this discrepancy is the inability of BCNT to take into
account the adsorption effects. Wilemski �6� proposed the
revised BCNT based on the combination of capillarity ap-
proximation with the Gibbs concept of dividing surface. For
a binary �and, more generally, a multicomponent� system the
Gibbs construction is not just a useful tool �as in the single-
component case� but a necessity since it is impossible to
choose a dividing surface for a mixture in such a way that
adsorption terms for all species vanish �7�.

Taking into account adsorption within the phenomeno-
logical approach does not resolve another deficiency of the
capillarity approximation: the latter assumes that the surface
energy of a cluster can be described in terms of the plain
layer surface tension. Obviously, for small clusters this con-
cept looses its meaning. This difficulty is not unique for the
binary problem—it appears also in the single-component
case. In a recently formulated mean-field kinetic nucleation
theory �MKNT� �8� this problem was tackled by formulating
an interpolative model between small clusters treated using
statistical-mechanical considerations and big clusters de-
scribed by the capillarity approximation. This approach
proved to be successful in predicting nucleation in various
microscopically diverse substances at conditions when criti-
cal clusters are nanosized objects �8,9�. Statistical-
mechanical treatment of binary clusters in the present model
originates from the analogy with the soft condensed-matter

theory where the description of complex fluids can be sub-
stantially simplified if one eliminates the degrees of freedom
of solvent molecules to be left with the system of solute
particles with an effective Hamiltonian �10�. The situation in
nucleation theory is somewhat similar: the complexity of bi-
nary problem can be substantially reduced if, considering an
arbitrary cluster, we trace out the molecular degrees of free-
dom of the more volatile component. The resulting pseudo-
one-component cluster can be then treated by means of
MKNT.

Following classical theory, we assume that the elementary
process which changes the size of a cluster, containing na
molecules of component a and nb molecules of component b,
is the attachment to it or loss by it of one molecule, either a
or b. These processes are characterized by the impingement
and evaporation rates per unit surface, �i and �i, where i
=a ,b. For vapor to liquid nucleation �i is given by gas ki-
netics �i=yip

v /�2�mikBT, where pv is the total pressure, T is
the temperature, kB is the Boltzmann constant, mi is the mass
of a molecule of component i, and yi is its molar fraction in
the vapor; �i are obtained from the detailed balance condi-
tion stating that in equilibrium net fluxes along na and nb
vanish. In BCNT it is applied to the constrained equilibrium
state which would exist for the vapor at the same tempera-
ture, pressure, and vapor phase activities as the vapor in
question. Instead of using this artificial state we use the full
thermodynamic equilibrium of the system “a+b+carrier
gas” at pv and T. This procedure is a natural extension
to binary mixtures of the Katz kinetic approach �11�. The
quantities referring to full equilibrium are denoted by the
subscript “eq.” We choose this state as a reference for the
vapor phase activities Ai

v�Si=yip
v / �yi,eq�pv ,T�pv�=yi /yi,eq.

Within the standard rate theory, combined with the detailed
balance at full equilibrium, the nucleation flux is

J = − ��eq�n� �
i=a,b

Si
ni	R � H, H =

��n�

�eq�n��
i

Si
ni

, �1�

where ��n� is the cluster distribution function, n= �na ,nb�,
�
�� /�na ,� /�nb�, and the diagonal matrix R contains the*vitaly.kalikmanov@twisterbv.com
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rate of monomer collisions with the cluster surface A�n�:
R11=�aA�n� , R22=�bA�n� , R12=R21=0. A general form
of �eq�n� is

�eq�na,nb� = Ce−geq�na,nb�,

where geq=��Geq, �=1 /kBT, �Geq�na ,nb� is the Gibbs free
energy of cluster formation, and C is the normalization con-
stant. Equation �1� is similar to the one discussed in BCNT in
which the constrained equilibrium distribution is replaced
with the product of �eq and nonequilibrium terms. According
to �1� the saddle point n�= �na

� ,nb
�� of the free-energy surface,

g�na,nb� = − �
i=a,b

ni ln Si + geq�na,nb� , �2�

corresponds to the critical cluster. Applying the standard ar-
guments �2� to Eqs. �1� and �2� we find for the total steady-
state nucleation rate

J = �avA
�Z��

i

Si
ni

��eq�na
�,nb

�� , �3�

where �av���=�a�b / ��a sin2 �+�b cos2 �� is the average im-
pingement rate, � is the flow direction at the saddle point,
A�=A�na

� ,nb
��, and Z is the Zeldovich factor. Equation �3�

contains the yet undetermined angle �, which is found by
maximizing the angle-dependent part of J. The advantage of
Eq. �3� is that it reduces the binary nucleation problem to the
determination of �eq�na ,nb�.

Within Gibbsian approximation one distinguishes be-
tween the bulk �interior� molecules in the cluster �superscript
“l”� and the excess molecules �superscript “exc”� accumu-
lated on the infinitely thin dividing surface: ni=ni

l+ni
exc. Both

ni
l and ni

exc depend on the location of the dividing surface,
while their sum can be assumed independent of it to the
relative accuracy of O��v /�l�, where �v and �l are the num-
ber densities in the vapor and liquid phases, respectively. A
special choice, adopted in the present model, is the equimo-
lar surface for the mixture, or the K surface, introduced by
Laaksonen et al. �12�, defined through the requirement
�ini

excvi
l=0, where vi

l is the partial molecular volume of com-
ponent i in the liquid phase. The combination of this expres-
sion with the Gibbs adsorption equation results in the iden-
tification of ni

exc �13�. This choice ensures that the
macroscopic surface tension is independent of the cluster
curvature �5�.

The partition function of an arbitrary cluster is

Znanb

 Zn =

1

�a
3na�b

3nb
qnanb

, �4�

where �i is the thermal de Broglie wavelength of a molecule
of component i, and qnanb

is the configuration integral of the
cluster in a domain of volume V,

qnanb
�T� = qn�T� =

1

na!nb!
�

cl
dRnadrnbe−�Un,

where Rna and rnb are locations of molecules a and b in the
cluster, and Un=Uaa�Rna�+Ubb�rnb�+Uab�Rna ,rnb� is the po-
tential interaction energy in the cluster. The symbol �cl de-
notes that integration is only over those molecular configu-

rations that belong to the cluster. We represent the
equilibrium gaseous state of the a-b mixture as a system of
noninteracting n clusters. The partition function of the gas of
Nn of such clusters is factorized: Z�n�= �1 /Nn!�Zn

Nn. The
chemical potential of a cluster in this gas using Stirling’s
formula and Eq. �4� reads

	n = kBT ln��eq�na,nb�
V�a

3na�b
3nb

qn
	 , �5�

where �eq�na ,nb�=Nn /V. Equilibrium between the cluster
and surrounding vapor requires 	n=na	a,eq

v +nb	b,eq
v , where

	i,eq
v �pv ,T� is the chemical potential of a molecule of com-

ponent i in the equilibrium vapor. Then using Eq. �5�, we
find

�eq�na,nb� = �qn

V
�za,eq�na�zb,eq�nb, �6�

where zi,eq=e�	i,eq
v

/�i
3 is the fugacity of component i in equi-

librium vapor. It is important to note that the chemical po-
tential of a molecule inside an arbitrary binary cluster is not
the same as in the surrounding bulk equilibrium vapor—it
depends on the cluster composition. We present qn in the
coarse-grained form,

qn =
1

na!
�

cl
dRnae−�HCG

, �7�

in which the positions of b particles are integrated out;
HCG=Uaa��Ra

na��+Fb/a��Ra
na� ;na ,nb ,T� is the Hamiltonian

of the equivalent single-component cluster, where
Fb/a��Ra

na� ,na ,nb ,T�=−kBT ln qb/a is the free energy of b
molecules in the instantaneous environment of a molecules,

qb/a��Ra
na�� 


1

nb!
�

cl
drnbe−��Ubb+Uab�.

By construction HCG guarantees that qn and hence all ther-
modynamic properties of the original �na ,nb� cluster coin-
cide with those of the single-component cluster. The dia-
grammatic expansion of ln qb/a in the Mayer functions of a-b
and b-b interactions results in the expansion of Fb/a in
m-body effective interactions between a molecules �10�,

Fb/a = F0�na,nb,T� + U2��Ra
na�;xb,T� + ¯ ,

where xb=nb
l / �na

l +nb
l �. The zeroth-order contribution

F0�na ,nb ,T�, called the volume term, does not depend on
positions of molecules but is important for thermodynamics
since it depends on cluster composition. Thus, HCG

=F0�na ,nb ,T�+UCG��Ra
na� ;xb ,T� with the total coarse-

grained interaction energy,

UCG = Uaa��Ra
na�� + U2��Ra

na�;xb,T� + ¯ .

This yields the formally exact result

qn = e−�F0qna

CG, where qna

CG =
1

na!
�

cl
dRnae−�UCG

. �8�

By tracing out the degrees of freedom of b molecules, we are
left with the single-component cluster of pseudo-a molecules

V. I. KALIKMANOV PHYSICAL REVIEW E 81, 050601�R� �2010�

RAPID COMMUNICATIONS

050601-2



with an unknown interaction potential uCG�R ;xb ,T�, which
depends on xb and T.

The volume term is F0=Fb,id+F0,exc, where Fb,id
=kBTnbfb,id is the free energy of ideal gas of b molecules in
the cluster volume Vcl=�inivi

l, and F0,exc is the excess �over
ideal� contribution due to b-b and a-b interactions; fb,id de-
pends only on intensive quantities. The calculation of F0,exc
in terms of interaction potentials is a very challenging task.
For our purposes, however, we do not need to know its exact
form but can make use of the general statement that F0,exc is
a homogeneous function of the first order in na and nb �14�:
�F0,exc=nbf0,exc, with f0,exc depending only on intensive
quantities. Thus, the volume term becomes exp�−�F0�
=
b

nb, where 
b is an unknown function of xb and T. The
configuration integral qna

CG of the cluster with na identical
particles can be analyzed using the formalism of the single-
component MKNT of Ref. �8�, in which an arbitrary n clus-
ter is considered to consist of the two groups of molecules:
the core ncore and the surface ns, fluctuating around their
mean values ncore�n� and ns�n�, and

qna

CG

V
= C
a

nae−�microna
s �na�. �9�

Here, 
a=1 /zsat, where zsat�T� is the fugacity at saturation;
�micro is the reduced free energy per surface particle, termed
in �8� the “reduced microscopic surface tension.” MKNT al-
lows one to express the parameters in Eq. �9� in terms of the
equilibrium properties of the substance,

�micro = − ln�−
B2psat

kBT
, C =

psat

kBT
e�micro, �10�

where B2�T� is the second virial coefficient and psat�T� is the
saturation pressure; na

s depends parametrically on the coordi-
nation number in the liquid phase. Within the coarse-grained
procedure, the properties of the pseudo-a fluid are function-
als of uCG. It is practically impossible to restore uCG from the
microscopic considerations. An alternative to the micro-
scopic approach is the use of the known asymptotic features
of �eq�na ,nb�. Substitution of Eqs. �8� and �9� into Eq. �6�
yields

�eq�na,nb�pv,T = C��
i

�
i�xb�zi,eq�nie−�microna
s
. �11�

Intensive thermodynamic properties of the cluster molecules
depend on the bulk composition xb, implying that

a ,
b ,�micro must be considered functions of xb. Let us fix
xb and consider the two-phase equilibrium at pcoex�xb ,T�,
which is the pressure above the bulk binary solution with
composition xb. In this state the fugacities are zi,coex
=e�	i,coex /�i

3, where 	i,coex�xb� is the chemical potential at xb
equilibrium. The distribution function for this state has the
form of Eq. �11� where zi,eq is replaced with zi,coex. Now,
from the entire cluster size space let us consider the clusters
falling on the xb-equilibrium line nb

l =na
l �xb /xa�. The Gibbs

formation energy of such a cluster contains only the surface
term, ��na ,nb�pcoex,T�exp�−�microna

s�na ;xb ,T��, implying that

i�xb�=1 /zi,coex�xb�. Now we can identify

psat = ya
coex�xb�pcoex�xb� , �12�

where yi
coex�xb� is the equilibrium vapor molar fraction of

component i at xb equilibrium. Since uCG is not known, we
have to introduce an ansatz for B2, which should depend on
xb. The simplest form, satisfying the pure component limit, is
B2=�i,jxixjB2,ij, where B2,ii�T� is the second virial coefficient
of the pure component i, and B2,ab�T� is the cross virial term;
the calculation of these quantities is discussed in �15�. Com-
bining Eq. �11� with Eqs. �10� and �12�, we obtain

�eq�na,nb�pv,T = ��ya
coex�xb�pcoex�xb��e−geq�na,nb;xb�,

geq�na,nb;xb� = − �
i

ni ln� yi,eqpv

yi
coex�xb�pcoex�xb�	

+ �micro,a�xb��na
s�na;xb� − 1� . �13�

The critical cluster is the saddle point of the free-energy
surface g�na ,nb�, given by Eqs. �2� and �13�, in the space of
total numbers ni. Note that the ambiguity in the prefactor C,
inherent to BCNT, is eliminated.

Our choice to trace out the b molecules in the cluster in
favor of a molecules could have been reversed: we could
trace out a molecules to be left with the effective Hamil-
tonian for the b molecules resulting in Eq. �8� with the
single-component cluster containing pseudo-b particles. Al-
though Eq. �8� is exact, the calculation of qna

CG in it invokes
approximations inherent to MKNT. Its domain of validity is
�8� ��B2yi

coexpcoex��1, where i=a or b. It is clear that to
obtain accurate predictions one has to trace out the more
volatile component �which we assumed to be component b�.

We discuss implication of the proposed coarse-grained
nucleation theory �CGNT� to nucleation of n-nonane �a� and
methane �b� in the absence of carrier gas. The properties of
the mixture at coexistence are found from the Redlich-
Kwong-Soave equation of state �15�. If pv is sufficiently
high, methane not only removes the latent heat �thus, acting
as a carrier gas� but also takes part in the nucleation process
due to unlike interactions. Figure 1 shows CGNT nucleation
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FIG. 1. �Color online� Nonane/methane nucleation at T
=240 K. Solid lines: CGNT; dashed lines: BCNT. Symbols: experi-
ment �4,16�.
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rates for T=240 K and various pv together with experimen-
tal data of �4,16�. Also shown are the BCNT predictions of
Ref. �17�. The agreement between CGNT and experiment
lies within the range of experimental accuracy for most of
the conditions except for extremely low Sa5 at 40 bar.
BCNT works fairly well for low pv �10 and 25 bar� but fails
drastically at higher pv. Predictions of the critical cluster
content at a fixed J=1010 cm−3 s−1 are shown in Fig. 2. At

pv18 bar nucleation can be viewed as a single-component
process. Beyond 18 bar methane penetrates into the critical
cluster; the nucleation process demonstrates binary features,
becoming pronounced at higher pv. It is remarkable that this
change occurs at the “compensation pressure” pcomp �18� be-
yond which the partial molecular volume of nonane in the
vapor phase becomes negative. As pv is increased, na

tot grows
very slowly, while nb

tot increases rapidly. At high pv the criti-
cal cluster is a nanosized object with a core-shell structure:
its interior is rich in nonane while methane is predominantly
adsorbed on the K surface. From the slopes of experimental
data sets in Fig. 1 one can determine, using nucleation theo-
rem, na,expt

tot corresponding to Jexpt=1010 cm−3 s−1. Figure 2
demonstrates different tendencies of experimental and theo-
retical critical cluster contents: na,expt

tot falls with pv while the-
oretical na

tot slowly increases. This discrepancy results in the
departure of CGNT curves from experiment at high pv.

In conclusion, the proposed model, which takes into ac-
count adsorption and treats small clusters without invoking
capillarity approximation, opens a route toward studying
nucleation in complex systems with nanosized critical clus-
ters.
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