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We present results from a study of finite-size effect in the kinetics of domain growth with conserved order
parameter for a critical quench. Our observation of a weak size effect is a significant and surprising result. For
diffusive dynamics, appropriate scaling analysis of Monte Carlo results obtained for small systems using a
two-dimensional Ising model also shows that the correction to the expected Lifshitz-Slyozov law for the
domain growth is very small. The methods used in this work to understand the growth dynamics should find
application in other nonequilibrium systems with increasing length scales.
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The kinetics of phase separation in a binary mixture,
A1+A2, when quenched below the coexistence curve is an
active research area �1�. The growth of domains, rich in A1 or
A2 particles, during the phase separation is a scaling phenom-
enon, e.g., the two-point equal-time �t� correlation function,
C�r , t�, characterizing the domain morphology and growth,
exhibits the scaling form �2�

C�r,t� � C̃„r/��t�… , �1�

where C̃�x� is a scaling function independent of the average
domain linear dimension ��t�, which grows as ��t�� t�.

While recent focus has been on systems with realistic in-
teractions and other physical conditions �3�, often the growth
exponent � is poorly understood even in simple systems due
to the lack of appropriate method of analyzing simulation
results. Most of the simulation studies, to date, have stressed
the value of using large systems, with the anticipation of
strong finite-size effects combined with the expectation that
the predicted growth laws will be realized only for
��t→��→�, while also leading to better self-averaging.
Typical system sizes authors consider these days contain
numbers of lattice sites or particles of the order of a million,
which is too large, even for present day computers, to access
long time scales that are often necessary.

The primary objective of this Rapid Communication is to
study finite-size effects in domain coarsening with diffusive
dynamics following a critical quench. We chose to employ,
as a prototype for a large class of phase transition with criti-
cal points, a �d=2�-dimensional Ising model with Hamil-
tonian

H = − J �
�ij	

SiSj, Si = � 1, J � 0. �2�

In particular we wish to understand the behavior of the ef-
fective or instantaneous exponent � as a function of time.
For a conserved order parameter with diffusive dynamics,
associating the rate of domain growth with the gradient of
chemical potential, one can write �1�

d��t�/dt � 
�� �
 � �/��t�2, �3�

where � is the A1-A2 interfacial tension. Solving Eq. �3� one
gets �=1 /3, known as the Lifshitz-Slyozov �LS� �4� growth
law. However for fluid systems where hydrodynamics is im-
portant one expects faster growth �1�.

We show here via the application of finite-size scaling
methods �5� that the LS value of � is realized very early after
the initial quench. This contradicts earlier �6� understand-
ings. Furthermore, effect of size is rather small so that using
a system as small as L2=162, one can confirm the LS growth
law unambiguously. Even though this study is based on the
conserved Ising kinetics in d=2, we expect our observation,
understanding, and technique to find relevance in other sys-
tems exhibiting growing length scales, e.g., ordering in fer-
romagnets, surface growth, clustering in cooling granular
gas, dynamic heterogeneity in glasses, etc. We also observe
that systems do not provide self-averaging proportionate to
their sizes �7�.

In Ising models, the conserved order-parameter dynamics,
where composition of up �A1 particle� and down �A2 particle�
spins remains fixed during the entire evolution, may be
implemented via the standard Kawasaki exchange mecha-
nism �8� where for a Monte Carlo �MC� move interchange of
positions between a pair of nearest-neighbor �nn� spins is
attempted. A move is accepted or rejected according to the
standard Metropolis algorithm �9�. This mimics diffusive
transport in solid binary mixture �9�. In our study periodic
boundary conditions were applied in both the x and y direc-
tions. For L=16, 32, and 64, all results were averaged over
1000 independent initial configurations whereas for L=128
averaging was done over 40 initial configurations.

In Fig. 1, we present snapshots during the evolution of an
Ising system, starting from a 50:50 random mixture of up
and down spins, on a square lattice of linear size L=128
obtained via MC simulation at temperature T=0.6Tc, Tc be-
ing the critical temperature. The times at which the shots
were taken are mentioned on the figure. While the last snap-
shot corresponds to a situation when A1 and A2 phases are
completely separated, the one at t=4.5�106 Monte Carlo
steps �MCS� represents the situation when finite-size effect
began to enter, as will be clear later. Note that all physical*das@jncasr.ac.in
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quantities were calculated from the pure domain morphology
after eliminating the thermal noise via a majority spin rule
where a spin at a lattice site j is replaced by the sign of
majority of the spins sitting at j and nn of j.

Figure 2 shows the plot of ��t� vs t for L=32, 64, and 128,
where ��t� was calculated from the first moment of the
domain-length distribution function �10� P��k� with the
length �k being the separation between two successive inter-
faces in the x or y directions. The flat regions of the data sets
correspond to the situation when the systems have reached
their final equilibrium states so that domains cannot grow
further. This limiting value, for the present calculation,
comes out to be �max�L /2. The last snapshot in Fig. 1 rep-

resents such a situation. In the inset of Fig. 2, we demon-
strate the scaling behavior of the correlation function, as em-
bodied in Eq. �1�, for L=128. The data collapse observed
upon dividing r by ��t� is good starting from as early as t
=103 MCS until t=4.5�106 MCS when the finite-size ef-
fects begin to appear. Apparently, as is clear from the plot of
��t� vs t as well as the scaling behavior of C�r , t� for very
extended time and length scale, the size effect is negligible
almost up to �max. However, to make quantitative statements
an appropriate scaling analysis is called for.

In analogy with critical phenomena �5�, one can construct
the finite-size scaling ansatz �11� by identifying ��t� with the
equilibrium correlation length � and 1 / t with the temperature
deviation from the critical point. At this stage we introduce a
length ��t0� corresponding to the time t0 since the quench at
which the system becomes unstable. In all subsequent dis-
cussions we quantify the growth,

��t� = ��t0� + At�, �4�

by measuring time t with respect to the reference value t0.
Note that slightly poor data collapse in Fig. 2 is primarily
because C�r , t� should have been plotted as a function of
r / ���t�−��t0�� not r /��t�. But C�r , t� contains information
about ��t� and subtracting the influence of ��t0� is a rather
challenging task.

Equation �4� is valid in absence of any finite-size effect.
However, when ��t� is comparable to �max, finite-size effects
comes in and Eq. �4� needs to be modified by accounting for
the size effect via

��t� − ��t0� = y�x�t�. �5�

Here, y�x� is a scaling function, independent of the system
size, which depends upon the scaling variable

x = ��max − ��t0��/t�. �6�

Combining Eqs. �4�–�6�, one can write down the limiting
behavior for x→0 �t→�, �max	�� as

y�x� � x �7�

and for x→� ��max→�� as

y�x� = A . �8�

In Fig. 3, we plot y= ���t�−��t0�� / t� as a function of
x / �x+x0� with x0=5, for which we have varied � and ��t0� to
achieve optimum collapse of the data from different system
sizes. This is obtained for the choices ��t0=20��3.6 and �
=0.334. Note that ��t0� in our analysis is a bare length, in-
dependent of time, while the scaling behavior �Eq. �5�� will
be obtained when this is chosen appropriately. These num-
bers, as expected, provide a constant value of y�x� in the
region unaffected by finite system size, which should be
identified with the growth amplitude A. The arrow in Fig. 3
marks the location where y�x� starts deviating from its con-
stant value, signaling the appearance of finite-size effects at

��t� = �0.75 � 0.05��max. �9�

This value is substantially larger than previous expectations.
Note that the snapshot at 4.5�106 MCS in Fig. 1 corre-
sponds to this borderline.

FIG. 1. Evolution snapshots �black→A1, white→A2� of domain
coarsening in a 2D conserved Ising model following a quench from
a high-temperature random state to T=0.6Tc for a system of size
L2=1282.

FIG. 2. Plot of average domain size as a function of time for
three different system sizes L=32, 64, and 128, as indicated. The
inset shows a scaling plot of C�r , t� vs r /��t� for L=128 for the
three different times mentioned.
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Considering the limiting behavior �Eqs. �7� and �8��, we
construct the following functional form, namely,

y�x� = Ax/�x + 1/�p + qx
�� . �10�

The continuous line in Fig. 3 is a fit to this form with A
�0.295, p�3, q�6400, and 
=4, which has the limiting
behavior �x→�� y�x��A�1− fx−5�. Of course, an exponen-
tial correction term cannot be ruled out. This may be com-
pared with much slower convergence of similar scaling func-
tion in dynamic critical phenomena �12�. In the inset of Fig.
3, we plot ���t�−��t0��−3 vs t−1 for L=64, on a logarithmic
scale to bring visibility to a wide range of data. The continu-
ous line there is a plot of the form ax with a�39=1 /A3. The
linear behavior of data starting from very early times justifies
the introduction of ��t0�.

Next, to further substantiate our claim on negligible cor-
rection to scaling as well as recommendations for using
small systems, we introduce a length �s by writing

���t� = ��t� − �s = ���t0� − �s� + At� �11�

and define an instantaneous exponent �6� �i
=d�ln ���t�� /d�ln t� to find

�i = �
1 − ���t0� − �s�/����t��� . �12�

In Eq. �11�, the finite-size scaling function y�x� is omitted
since, at this point, we are interested in the time regime un-
affected by finite system sizes. According to Eq. �12�, when
�i is plotted as a function of 1 /���t�, for ���t��0 one ex-
pects linear behavior with a y intercept equal to �. Note that
this linear convergence was earlier �6� attributed to strong
corrections to scaling. Figure 4 shows such plots for �s=0,
3.6, and 5.0, as indicated. The dashed lines have y intercept
�=1 /3 and slopes m=−���t0�−�s� /3. The consistency of ac-
tual data with the dashed lines is remarkable, particularly, the

behavior of �i for �s=��t0=20��3.6 again speaks to the
choice of ��t0� and strongly indicates that the LS scaling
regime is realized very early. Also notice the inset for �i vs
1 /���t� with �s�3.6 for varying system sizes L=16, 32, and
64.

This result is in strong disagreement with earlier �6� un-
derstanding of domain coarsening in two-dimensional �2D�
conserved Ising models that � is strongly time dependent,
the LS value being recovered only asymptotically as
��t→��→�. The route to this finite-time correction was
thought to be an additional term �1 /��t�3 in Eq. �3�, ac-
counting for an enhanced interface conductivity. Note that a
term �1 /��t�3 in Eq. �3� could also be motivated by intro-
ducing curvature dependence in � via � / �1+2� /��t��, � be-
ing the Tolman length �13�. However, our observation of
negligible correction to the exponent, starting from early
times, is consistent with the growing evidence that the Tol-
man length is absent in a symmetrical situation �14�. Thus
only corrections of higher orders are expected. Essentially,
the misunderstanding about the strong ��t� dependence in �
was due to the presence of a time-independent length in ��t�
which our analysis subtracts out in appropriate way.

The appearance of growing oscillations in � around the
mean value, as seen in Fig. 4, was also noted by Shinozaki
and Oono �15�. In a finite system, as time increases, for an
extended period of times two large neighboring domains of
the same sign may not merge, thus lowering the value of �i,
after which their meeting brings drastic enhancement of �i.
This character is in fact visible in the direct plot of ��t� for
L=128 in Fig. 2. This oscillation could be a source of error if
one obtains � from least-squares fitting.

In conclusion, this Rapid Communication reports a com-
prehensive finite-size scaling analysis of domain coarsening
in a two-dimensional phase separating system. Our accurate
and appropriate estimate of the growth exponent, for which

FIG. 3. Finite-size scaling plot of y, with ��t0=20��3.6 and
�=0.334, as a function of x / �x+x0� with x0=5. The continuous
curve is a fit to Eq. �10� with the parameters mentioned in the text.
The arrow roughly marks the appearance of finite-size effects. Inset:
���t�−��t0��−3 vs t−1 for L=64. The straight line has slope 39.

FIG. 4. Plot of the instantaneous exponent �i as a function of
1 /���t� for three different choices of �s for L=64. The dashed
straight lines have slopes −1.19, 0, and 0.49, respectively. The ar-
row on the ordinate marks the value �=1 /3. Inset: �i vs 1 /���t� for
�s=3.6 and L=16, 32, and 64.
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we quote 0.334�0.004, is almost coincident with the ex-
pected LS value �=1 /3, within small error bars. As opposed
to the earlier conclusions, the correction appears to be very
small, thus LS scaling behavior is obtained very early. Small
primary finite-size effects is surprising but welcome mes-
sage, suggesting a strategy of avoiding large systems and,
rather, focusing on accessing long time scales which often is
necessary for systems exhibiting multiple scaling regimes.
Our observation should be contrasted with an earlier study
by Heermann et al. �11� that reports very strong finite-size
effects. The latter study was based on an extreme off-critical
composition and should not be considered to have general
validity. Even though size effects may be situation and sys-
tem dependent, recent study �16� of phase separation in a
binary fluid at critical composition provides good agreement

with the findings of the present work. Nevertheless, one
should be prepared to encounter stronger size effects in more
complicated situations, e.g., in systems generating aniso-
tropic patterns �3�. In line of this work many earlier studies
on domain coarsening may need to be revisited for proper
understanding which was not gained because of lack of reli-
able methods of analysis. In a later paper we will address
similar issue for nonconserved dynamics.
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