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Kibble-Zurek mechanism and infinitely slow annealing through critical points
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We revisit the Kibble-Zurek mechanism by analyzing the dynamics of phase ordering systems during an
infinitely slow annealing across a second-order phase transition. We elucidate the time and cooling rate
dependence of the typical growing length, and we use it to predict the number of topological defects left over
in the symmetry broken phase as a function of time, both close and far from the critical region. Our results
extend the Kibble-Zurek mechanism and reveal its limitations.
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The out-of-equilibrium dynamics induced by a quench are
the focus of intense research [1,2]. Interesting realizations
are quenches through a second-order phase transition, which
take the system from the symmetric phase into the symmetry
broken one. Below the transition, system-size dependent
times are needed to reach equilibrium and to realize the
spontaneous symmetry-breaking process. Before this (typi-
cally unreachable) asymptotic limit the symmetry is broken
only locally: the system is formed by ordered regions of size
growing with time [3]. Only when this size reaches the order
of the volume of the sample the symmetry is broken globally
and the spatial average of the order parameter deviates from
zero. The majority of theoretical studies focused on the dy-
namics after infinitely rapid quenches although experimen-
tally quenches are performed at finite speed. Indeed, since
the typical time scale on which the system evolves is its age,
i.e., the time elapsed since crossing the critical point, finite
quench time scales (7,) eventually become short compared
to the relaxation time. Thus, they alter the out-of-equilibrium
dynamics at short times only. The opposite limit of an ex-
tremely slow annealing, corresponding to very long 7,
needs a separate treatment. Surprisingly, this has not been
studied in detail in the statistical physics literature with,
however, some exceptions for disordered systems [4—6]. Tt
has, instead, attracted a lot of attention within the cosmology
and, more recently, the condensed-matter communities. An
explanation of the slow dynamics induced by this protocol
was given by the so-called Kibble-Zurek (KZ) mechanism
[7-10]. This is an equilibrium scaling argument that yields
an estimate for the density of topological defects left over in
the ordered phase as a function of the quenching rate close to
the critical point. The argument has been recently general-
ized to study very slow “quantum annealing” across quantum
phase transitions in isolated systems [11-13].

The aim of this work is to obtain a more complete picture
of the slow dynamics induced by an extremely slow anneal-
ing. With numerical and analytical arguments we unveil the
limitations of the KZ approach, and we obtain a full scaling
description of the slow dynamics. Our main result is that the
dynamic evolution is characterized by a first adiabatic re-
gime in agreement with KZ, followed by critical coarsening
and, finally, standard coarsening at very long times. We
present a universal scaling function that characterizes the
growth of the correlation length out of equilibrium under
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slow cooling procedures, and we relate it to the number of
topological defects in cases in which these exist.

We start our discussion by recalling the KZ mechanism
[8-10]. We take a system in equilibrium at equilibrium at a
value g,> g of the control parameter in the symmetric phase
and subsequently anneal it at finite rate (in typical situations
g corresponds to temperature). As KZ, we focus on the pro-
tocol g(t)=g.(1-1/7y) starting from, say, go=g(-7p)=2g..
Henceforth we use the standard notation of dynamical criti-
cal phenomena [14] and we set the microscopic time and
length scales to one. Far from the critical point the equilib-
rium relaxation time, 7,,, is barely larger than the micro-
scopic time. Thus, for very small annealing rate, i.e., very
long 7y, the system evolves adiabatically and remains in
equilibrium at the running g(¢). However, this regime must
inevitably break down since 7,, diverges at the critical point
as |Ag|™"% with Ag=g-g. KZ argued that the end of
the adiabatic regime occurs when the remaining time, 7,
needed to reach g. becomes smaller than 7,,. This is cer-
tainly a lower bound and yields 7 7,,(§) = Tgﬂl/ (+7269) With
g=g(~1). The distance from the critical point at —f is Ag
o 7'3/ (I+7269) K7 assumed that after —7 the topological defect
configuration remains frozen, in the sense that the order pa-
rameter ceases to evolve. In this so-called “impulse” regime
the effect of lowering g is to reduce fluctuations, which are
in general of thermal origin since very often g is related to
the temperature. The main prediction of KZ is the number of
topological defects, N, at the symmetric instant 7 where the
coupling-constant equals g.—Ag. Within their approach N is
inherited from the configuration at —, it is therefore equal to
the number of defects in equilibrium at ¢, and it is estimated
to be N(f) =[f2£,,(8)17¢= 29| Ag|*" with f of the order of 1.
Knowing the 7, dependence of Ag allows one to derive the
7o dependence of N,

N(f) o Tédv/(lﬂlzeq) at fo Tgeq/(l+vzeq)‘ (1)

We stress that for each 7, this expression should be mea-
sured at the special instant f(TQ) after the phase transition.
The system’s behavior at r>7 is not fully addressed by KZ.
In some publications it is assumed that any further evolution
[15,16] can be neglected, whereas in others it is reckoned
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that after 7 the system resumes its out-of-equilibrium evolu-
tion with a mechanism that depends on the problem at hand
(domain growth, vortex-antivortex diffusion and annihila-
tion, etc.) [9] and the density of defects may therefore con-
tinue to decrease although no detailed study was performed.
Numerous numerical [15-19] and experimental [20-24] pa-
pers tested the quantitative consequences of the Kibble-
Zurek mechanism with variable results. While the numerical
studies claimed that they successfully verified the predic-
tions, the conclusions are less clear in the experlmental
works that studied vortex formation in superfluid “He and
SHe with null results in the former [20] and agreement with
the KZ prediction in the latter [21]. See [22-24] for discus-
sions of some recent experimental results disagreeing with
the KZ prediction.

In the following we revisit the KZ scaling analysis. We
focus on the dynamics of classical systems coupled to an
environment, a setting in which the dynamics are stochastic
and the energy, directly linked to the number of topological
defects, is not conserved. We use the temperature of the ther-
mal bath as the control parameter driving the second-order
phase transition and a linear cooling rate 7(t)=T.(1-1/7y).
These choices are made to keep the discussion simple; ex-
tensions to more complicated protocols are straightforward
and will be partially addressed later. Moreover, we restrict to
systems with a unique equilibrium correlation length and a
single dynamic counterpart, the typical growing length. We
solely deal with problems with power-law scaling laws,
which link, e.g., the correlation length to the distance from
criticality, and length scales to time scales [25]. These re-
strictions exclude from the analysis complex systems with
several competing lengths and problems with quenched dis-
order. Henceforth we focus on the growth law of the size of
the correlated regions, R(z). This will allow us to discuss
systems characterized by topological defects as well as those
that are not from the same point of view. We shall explain
below how the density of topological defects can be obtained
from R(z).

Let us start our analysis with some simple remarks. First,
although the initial adiabatic regime and the departure from
it are expected, the existence of the impulse regime is ques-
tionable. During this regime, which would take place be-
tween —7 and 7, the system is supposed not to evolve [7-10].
However, it is well known that after a rapid quench into the
critical region any system undergoes critical coarsening de-
scribed by the growth of a typical linear length scale for
correlated regions, R(Af) ~ Ar'%eq where At is the time spent
in the critical region and z,, is the exponent that links the
equilibrium relaxation time and correlation length close to
criticality [26,27]. Above criticality, the major difference be-
tween slow and rapid quenches is in the extension of the
adiabatic regime. The slower the quench or the annealing,
the closer the system gets to the critical point in equilibrium.
However, also for very slow annealing, the system eventu-
ally departs from the adiabatic evolution and has to undergo
critical coarsening.

Our second remark is that once getting across the critical
point, when the running temperature T(¢) is far enough from
T., the dynamics crosses over to standard coarsening. In or-
der to get a better insight into this process, let us recall that
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an infinitely rapid quench to a temperature 7<<7, leads to
a growth law R=\(T)At'% [1]. Now z, is the dynamic
exponent that, quite generally, is different from z,, and
depends on the dynamic rules. The prefactor vanishes at
T. and is characterized by a singular power law \(T)
=|T-T,|""1*e/2d = & %% [28]. If the annealing rate is fi-
nite, one naturally expects the growth law at long times and
far from the critical point to be R =\(T())A¢'%. The reason
is that the dynamical process renormalizing the value of
N(T (7)) should be finite and, hence, evolve on a much faster
timescale than the coarsening one which instead is of the
order of the age of the system and diverges with z.

We now endeavor to connect the dots and present a gen-
eral scenario for infinitely slow annealing. Our main conjec-
ture, which is motivated by the previous discussion and the
fact that the system stays for a very long time in the vicinity
of the critical point, involves the growth of the length scale
R(1),

710 )]} ©
This asymptotic form encompasses equilibrium above the
critical point, x=t/ Teq[T (r)]<-1, critical coarsening, x
« (1), and the crossover to standard coarsening x> 1. The
limits of f(x) are obtained by requiring to find the expected
adiabatic behavior and standard coarsening on the two ex-
tremes,

R() = &,(T(1)) 1< = 7,,(T(1))
[ (T)] - Cedp a1 7, (T(1))

R(t) = @UﬂV{

(3)

This imposes that f(x) be a constant for x<<—1 and propor-
tional to x'/% for x> 1. We expect the scaling function f(x) to
be universal since it describes evolution on diverging time
and length scales close to the critical point. A sketch of &,,
and R is shown in Fig. 1. Our scaling assumption applies to
coarsening with and without topological defects. In the
former case, the decaying typical number of topological de-

fects, N(t) =R(1)™, reads for r= T,

N( t) —~ Tzév/zd(zeq—zd) t—d/zd[ 1+ v(zeq—zd)] ) (4)

Note that a qualitatively similar dependence on ¢ and 7, was
found numerically in [29] in a system with vortex-antivortex
pairs. Evaluating the above expression at t=7= 75“‘1/ (+72q) e
recover KZ’s result [Eq. (1)]. Ours, however, is more general
since it applies to any time ¢ and it allows one to describe all
the slow annealing evolution. For example, N(r) Téd/zd on
times of the order of the inverse annealing rate, = 7, thus
showing that a substantial decrease takes place after 7. In
comparison with the KZ mechanism, our arguments allow
one to understand why R(f) = fR(~7) with a factor f that can
be as large as 10 in some cases [15]. This was somewhat
mysterious in the KZ scenario where defects are frozen out
in the impulse regime. We understand the reduction in the
number of topological defects as due to critical coarsening.
Taking this phenomenon into account is crucial for more
general annealing protocols, e.g., T(r)=6( t)T (1—1/ 7'('))
+6()T . (1-1/ 7(2)) For a large ratio 7'( /74 the system
spends a long tlme in the critical reglon and R(#) evolves
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FIG. 1. (Color online) (a) The control parameter, Ag(r)=[g(z)
-g.)/ g, for different cooling rates. The crossover between adia-
batic and out of equilibrium dynamics are signaled as —f; for 7o,
<79, (b) Sketch of the control parameter dependence of the equi-
librium correlation length (thick red line) and the dynamic growing
length R for four linear cooling rate procedures with 70,<To,,,-
Values of the control parameter at which the dependence changes
from adiabatic to critical are shown as g; (for simplicity we plot
them as singular points in the evolution of R. In reality they just
correspond to crossovers). For comparison the assumption of con-
stancy during the impulse and subcritical regimes are shown with
thin horizontal lines.

during the critical coarsening from [7'(Q')]"’ (+r2eg) 1o
[Tg)]'}/(l+'}zf‘i).

In the following we provide numerical evidence for the
conclusions outlined above by presenting results of a Monte
Carlo simulation (using the heat bath algorithm with random
sequential updates) of the 2d Ising model (IM) on square and
triangular lattices. In particular, we check Egs. (2)—(4) and
the universality of the scaling function f(x). We equilibrate
the system at 7y=2T,, and we use a linear cooling rate that
takes the temperature of the bath from 7|, at t=—7, to 7=0 at
t=7y. We find that the system undergoes an adiabatic evolu-
tion until it falls out of equilibrium close to 7. The typical
correlation length, R(r), is extracted from the analysis of the
space-time correlation C(r, 1) = (s(X)s(X+7)) = g[r/R(t)] with
the average taken over 100 initial conditions and noise real-
izations. We use various ways to determine R and verify that
they yield equivalent results. Two of them are C[R(z),f]
=1/2 and R(t)=[d*rr*C(r,1)/ [d?rr*~'C(r,t) with { a param-
eter that is chosen for convenience, namely, to weigh differ-
ently shorter or longer distances. In the top panel of Fig. 2
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FIG. 2. (Color online) Top panel: Test of dynamic scaling
hypothesis (2) and the limits [Eq. (3)] in the 2dIM on a triangular
and a square lattice, annealed at different cooling rates given in the
key. A zoom on the critical region |x| =<1 is shown in the inset. The
exponents are v=1, z,,=2.17, and z,=2. Bottom panel: number
of defects at t=t, for different cooling rates. Points represent
the numerical data while the line corresponds to the prediction
N(rp)= Taj/ d

we test the scaling hypothesis, Eq. (2), and the limits of the
scaling function f(x) [Eq. (3)]. For both the square and tri-
angular lattices we find very good agreement between nu-
merical data and theoretical expectation. The square-root
growth at positive times demonstrates that standard coarsen-
ing cannot be ignored. The scaling collapse improves, as
expected, restricting the range of |x|.

A zoom on the small |x| region is shown in the inset.
Moreover, we find that the scaling functions for square and
triangular lattices coincide within numerical accuracy, con-
firming the universality of f(x). The bottom panel of Fig. 2
displays N(TQ) and confirms the Téd/zd decay; the power is
shown as a guide to the eyes next to the data.

A further test is provided by the analytic solution to the
evolution of the O(N) model in the large N limit for a very
slow annealing. This is a N¢* field theory in which the order
parameter is upgraded to an N-dimensional vector and the
fourth-order term in the double-well potential is conveniently
normalized to allow for an N— o0 limit in which the model
becomes solvable but still nontrivial [1]. Note that although
there are no topological defects, since the large N limit is
taken at fixed dimension, N> d, the dynamics are still char-
acterized by a growing correlation length R(z). The analysis
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of a finite rate quench is a simple generalization of the treat-
ment of infinite rate ones (see, e.g., [1]). We find that scaling
(3) holds with »=1/2 and z,=z,,=2 in all d>2. Due to the
coincidence of the z exponents the prefactor in the bottom
expression of Eq. (3) equals one and the dependence on 7,
disappears.

As a summary we analyzed the dynamic evolution in-
duced by annealing with rate 1/7,(7,— ) in pure systems
characterized by conventional dynamic scaling and standard
low-temperature coarsening. We obtained a complete picture
of the dynamics which is characterized by three regimes:
adiabatic, critical coarsening, and standard coarsening. Using
scaling arguments we found the growth law of the correla-
tion length during the annealing and its 7, scaling depen-
dence. The crossover between adiabatic and coarsening re-
gimes is governed by a universal scaling function. We tested
our findings with numerical simulations of the 2d Ising
model and a large N analysis of the O(N) model in d>2.
Our results generalize the KZ mechanism and, at the same
time, show its limitation. In particular we find that the defect
dynamics are not frozen in the so-called impulse regime as it
can be found by using more general annealing protocols than
a linear ramp in temperature.
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Physical situations in which understanding the evolution
during a slow annealing is important and which we plan to
study in the future are disordered and quantum systems. Sev-
eral studies have dealt with the former; see, e.g., [4—6]. The
latter have only recently received attention in connection
with quantum quenches and annealing in cold atoms. In
these cases the conditions are different from the ones ana-
lyzed in this Rapid Communication since isolated systems in
which a coupling is slowly changed through a quantum criti-
cal point are usually considered. The absence of the thermal
bath may drastically change the physics. The KZ mechanism
has been argued to apply mutatis mutandis to the isolated
quantum case as well [11,12]. This has been verified in some
integrable cases [13].

We close with a note on an exact study of the cooling rate
effects in the relaxation of the classical Ising chain with
Glauber dynamics by Krapivsky that shows qualitative but
not quantitative agreement with the KZ mechanism [30].
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