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We study the stability of classical structures in chaotic systems when a dissipative quantum evolution takes
place. We consider a paradigmatic model, the quantum baker map in contact with a heat bath at finite tem-
perature. We analyze the behavior of the purity, fidelity and Husimi distributions corresponding to initial states
localized on short periodic orbits �scar functions� and map eigenstates. Scar functions, that have a fundamental
role in the semiclassical description of chaotic systems, emerge as robust relative to other states �which are
localized on classical structures� against environmental perturbations. Also, purity and fidelity show a comple-
mentary behavior as decoherence measures.

DOI: 10.1103/PhysRevE.81.047201 PACS number�s�: 05.45.Mt, 03.65.Sq, 03.65.Yz

Since the origin of quantum theory until present the cor-
respondence between the classical and quantum views of
nature has been a major source of debate. Two broad areas
of physics have converged naturally toward its study. On
one hand we have the semiclassical theory of closed systems,
where the problem consists of linking the Hamiltonian with
the unitary quantum evolution as �→0. For integrable
systems the Einstein-Brillouin-Keller �EBK� quantization
scheme �1� provides a precise correspondence between quan-
tum numbers and energy levels and between eigenfunctions
and invariant tori. For chaotic systems the correspondence is
not so precise but the Gutzwiller trace formula �2� and more
recently, the short periodic orbits theory �3� are resources at
our disposal. However, a complete description of chaotic
eigenfunctions in terms of classical invariants is still lacking.
On the other hand, we have the decoherence theory that has
established a correspondence between dissipative quantum
systems and their classical analogs �4�. These studies have
enormous relevance nowadays not only from the theoretical,
but also from the experimental point of view. In fact, deco-
herence poses an unavoidable difficulty to the coherent ma-
nipulation of small scale systems, which in addition gener-
ally have a complex dynamics. Hence quantum mechanics,
nonlinear dynamics and decoherence are necessary ingredi-
ents in many areas of physics, involved in a broad range of
theoretical models and implementations. Just a few examples
are transport in cold atoms and Bose-Einstein condensates
�BECs� �5�, nanodevices �6�, microlasers �7–9�, quantum
dots �10�, and chaotic scattering �11�.

In view of this we can ask ourselves, are there any clas-
sical structures embedded in the quantum realm that emerge
as especially resistant to external perturbations? If so, in
which way? To answer these questions, in this work we in-
vestigate the stability of initial states with different degrees
of classical information under the effects of chaotic evolution
and decoherence. The environment is introduced by coupling
the system to a heat bath at finite temperature, in a way close
to actual experimental situations. In order to capture all the
essential features of dissipative quantum chaotic systems
without unnecessary complications, we focus our study on
dissipative quantum maps �12�. They constitute an ideal test-
bed for semiclassical and decoherence theories.

We find that scar functions, which are states localized
along the stable and unstable manifolds of periodic orbits,
are robust relative to other states when subjected to environ-
mental perturbations. We quantify this stability by studying
the purity and the fidelity, quantities that show different
points of view in order to measure decoherence. We com-
plete this picture by analyzing the Husimi distributions in
phase space.

We perform the evolution of the density matrix � of the
system by means of a two step operator S �12,13�. We use a
composition of a unitary step given by the closed map B
�representing the system dynamics�, and a purely dissipative
step given by the superoperator D�, in the form

�� = S��� = D��B���� . �1�

In this equation B represents the unitary superoperator and �
all the parameters of the environmental model. In the follow-
ing we explain the construction of these two steps.

We consider the baker map B on the unit torus
�14� as the system. It is given by �q� , p��=B�q , p�
= �2q− �2q� , �p+ �2q�� /2� where �q , p� are the position and
momentum coordinates and �x� stands for the integer part of
x. This transformation is an area-preserving, uniformly hy-
perbolic, piecewise-linear, and invertible map with Lyapunov
exponent �=ln 2. The phase space has a very simple Markov
partition consisting of two regions �q�1 /2 and q�1 /2�
associated with the symbols 0 and 1, for which there is a
complete symbolic dynamics. The action of the map upon
symbols can be understood by means of the binary ex-

pansion of the coordinates �p �q�= . . .�−1 ·�0�1 . . .→ℬ �p� �q��
= . . .�−1�0 ·�1. . . where q=�i=0

� �i2
−�i+1� and p=�i=−1

−� �i2
i.

Then, a periodic orbit �PO� of period L can be represented
by a binary string � of length L. The coordinates of the
first trajectory point �q0 , p0� on the periodic orbit can
be obtained explicitly in terms of the binary string as
q0= ·��� . . . =� / �2L−1� and p0= ·�†�†�† . . . =�† / �2L−1�,
where � is the integer value of the string � which represents
a binary number, and �† is the string formed by all L bits of
� in reverse order. The other trajectory points can be easily
calculated by iterations of the map or by cyclic shifts of �.
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When quantizing this system any state �	� must satisfy
periodic boundary conditions on the torus, for both the posi-
tion and momentum representations. This amounts to taking
�q+1 �	�=ei2
�q�q �	� and �p+1 �	�=ei2
�p�p �	�, with �q,
�p� �0,1�. This implies a Hilbert space of finite dimension
N= �2
��−1. The discrete set of position and momentum
eigenstates is given by �qj�= ��j+�q� /N� �j=0,1 , . . .N−1�,
and �pk�= ��k+�p� /N� �k=0,1 , . . . ,N−1�, labeled by
the corresponding eigenvalues qj, pk. They are related
by a discrete Fourier transform, i.e., �pk �qj�
=1 /	N exp�−i�2
 /N��j+�q��k+�p��
�GN

�q,�p�. Throughout
the Brief Report we assume a phase space with antisymmet-
ric boundary conditions ��q=�p=1 /2�. The unitary operator

B̂ that performs the closed quantum evolution is given by
�14,15�

B̂ = GN
†�GN/2 0

0 GN/2
� . �2�

We incorporate dissipation and thermalization to the
quantum map by coupling it to a bath of noninteracting os-
cillators in thermal equilibrium at a temperature T. The de-
grees of freedom of the bath can be eliminated by means of
the usual weak coupling, Markov and rotating wave approxi-
mations �16�. As a result we arrive at a Lindblad equation for
the density matrix of the system � that can be written as a
completely positive map D��dt� in the operator-sum
�or Kraus� representation

��t + dt� = D��,T��dt����t�� = �

=0

2

K
��t�K

† , �3�

where

K0 = 1 −
1

2 �

=1

2

K

† K
,

K1 = �
k=1

N−1

	�dt�1 + n̄�k��k�pk−1��pk� ,

K2 = �
k=1

N−1

	�dtn̄�k�k�pk��pk−1� �4�

are the infinitesimal Kraus operators satisfying �
K

† K
=1

to first order in dt �17�. In these equations � is a system-bath
coupling parameter that can be associated to a classical ve-
locity dependent damping �at T=0 gives the contraction rate
of the phase space�. The population densities of the bath are
given by n̄= 
exp��Ek / �kBT��−1�−1, where we have taken
Ek= pk

2 /2, and the Boltzmann constant kB=1. Then, we inte-
grate D��,T��dt� numerically to obtain the dissipative step.

We now briefly describe the scar function construction
�18–20�, the main tools we use to study the stability of clas-
sical structures. These functions are also essential in the
semiclassical description of chaotic eigenfunctions �3�. They
are wave functions highly localized on the stable and un-
stable manifolds of POs, and on the energy given by a Bohr-

Sommerfeld quantization condition on the trajectory. We are
going to use a formulation suitable for maps on the torus,
though they apply also to general flows. The first step is to
define the Periodic Orbit Modes �POMs� for maps, ��POM

maps� as
a sum of coherent states centered at the fixed points of a
given PO �, each one having a phase �20� �see Fig. 3�a� for
an example�. Then, the scar function is obtained after apply-
ing a dynamical average and can be written as

��scar
maps� = �

l=−t

t

eiS�l/� cos�
l

2t
�B̂l��POM

maps� , �5�

where t stands for the number of iterations of the map up to
the Ehrenfest time TE=ln N /�, and S� is the classical action
of � �see Fig. 3�b� for an example�. It is worth mentioning
that for t=0 the POMs are recovered, but as t is increased
this function sharpens its quasienergy width while extending
in phase space along the stable and unstable manifolds of the
periodic orbit. Eventually, it turns into a true eigenstate if the
propagation time reaches the order of the Heisenberg time.

In our calculations we have considered five types of initial
states. Besides the already mentioned scar states and POMs,
we have studied the behavior of eigenstates of the map hav-
ing a significant overlap with scar functions. Also, we have
considered states developed along the stable and unstable
manifolds. These last two cases correspond, respectively, to
eigenstates of the position and momentum operators, since
for the baker map the direction of the manifolds coincide
with those of the corresponding axes. In addition, we have
selected q and p values that represent points belonging to the
periodic orbits shown. In summary, we compare states with
relevant classical imprints �localized on POs and their mani-
folds� with strictly quantum states �map eigenstates�. All re-
sults correspond to N=100.

The behavior of the coherence is studied through the pu-
rity, defined as P=tr��2� �tr denotes the trace�. We show
results for two representative orbits in the left and right col-
umns of Fig. 1 �they are denoted by �=01 and �=0011,
respectively�. In obtaining these results we have considered
two different couplings with the environment ��=0.001 and
�=0.01�, and two different values of the temperature �T=1
and T=1000�. We find that the scar functions, the map eigen-
states that have a maximum overlap with them, and the
POMs, all behave in a similar way. However, the purity de-
cay is faster in the case of the map eigenstates when com-
pared to that of the corresponding scar functions. On the
other hand the position eigenstates are the less and the mo-
mentum eigenstates the most decoherent ones. This validates
the hypothesis that entropy production, then entanglement
with the environment, is governed by the classical unstable
behavior of the system �4�. The more localized on classically
unstable regions the initial distribution is, the fastest its en-
tropy production results. In this sense, position eigenstates
decohere at the slowest pace, nevertheless, scar function
states come in second place and have far more dynamical
information than the former ones.

In order to have a complementary stability criterion we
have explored the fidelity calculated as F=	�	���	�. This
quantity clearly shows a different point of view for studying
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stability, as it measures the degree of overlap between the
pure initial state �	� and the evolved density matrix �. This
time we find that although the scar functions and the corre-
sponding map eigenstates have a similar behavior, the latter
are more stable than the former when the temperature is low.
For higher values the situation changes and the scar func-
tions become more stable than the map eigenfunctions. The
coupling with the environment seems to play a similar role
than temperature, since the decay rate difference for low val-
ues of T shrinks as � grows. Finally, POMs fidelity decays
faster, and the position and momentum eigenstates have the
greatest decay rate but with big oscillations, whose periodic-
ity is given by the dynamics. Hence, for low temperatures
the stability is governed by the quantum mechanics of the
system. Initial states that are closer �greater overlap� to the
map eigenfunctions turn out to be the most stable ones. In
this sense, scar functions are more stable than POMs, which
in turn are more stable than position and momentum eigen-

states. But when the effects of the environment become
stronger, scar functions emerge again as relatively robust,
having the lowest decay rate of all the initial states we have
considered. This is shown in Fig. 2, where we have used the
same orbits, parameter values, colors, and patterns as those
chosen for Fig. 1. The picture is completed by means of the
Husimi distributions obtained at different times. They can be
seen in Fig. 3, where the evolution of the POMs, the scar
functions and the map eigenstates for the orbit �=0011 can
be found. The higher stability of the scar functions is evident
in this representation. When already the POMs shape cannot
be distinguished anymore they still display a high level of
detail, showing their characteristic localization along the
manifolds of the corresponding orbit. Moreover, the eigen-
state rapidly loses its original details and seems to converge
to the scar function.

In conclusion, the loss of purity, or entropy production, is
governed by the classical instability of the system, while the
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FIG. 1. �Color online� Purity P �logarithmic
scale� as a function of time �measured in units of
map steps�. In the left column we show results for
the orbit �=01, while in the right one for �
=0011. Upper panels correspond to �=0.001, and
lower ones to �=0.01. Orange �light gray� lines
correspond to T=1 and blue �dark gray� lines to
T=1000. Solid lines stand for scar functions,
long-dashed lines for eigenstates of the map,
short-dashed for POMs, dot-dashed for position
eigenstates, and dotted for momentum eigen-
states. N=100.
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FIG. 2. �Color online� Fidelity F �logarithmic
scale� as a function of time �measured in units of
map steps�. We show results for the same orbits,
use the same parameter values, and colors and
patterns criterion as in Fig. 1.

BRIEF REPORTS PHYSICAL REVIEW E 81, 047201 �2010�

047201-3



fidelity decay for low temperatures �and weak coupling with
the bath� is dominated by the overlap of the initial state with
the map eigenfunctions. However, when temperature rises
the situation changes and the localization on classical struc-
tures plays again a fundamental role. By analyzing these
quantities we have found classical structures in quantum me-
chanics that are relatively robust when subjected to environ-
mental perturbations. They are the scar functions, which are
associated to periodic orbits and the stable and unstable
manifolds in their vicinity. Husimi distributions in phase
space allowed us to clarify this picture. We have shown that
scar functions keep their shape virtually intact at times when
the POMs have already lost all their characteristic features.
Hence, more than just localization on the periodic points is
needed to provide stability. Finally, by exploiting the sim-
plicity of the manifolds of our map we could verify that any
kind of localization on them is not enough to guarantee ro-
bustness against external perturbations, but the one provided
by scar functions. Remarkably, the purity and fidelity loss of
the map eigenstates �with the exception of low temperatures
in the last case� is generally faster than that of the scar func-
tions. In fact, when the system remains closed the eigenstates
are the most stable distributions. When it is opened we con-
jecture that the portion of the eigenstates that differ from the
scar functions are the more susceptible to perturbations due
to their finer structure. Then, scar functions represent the
stable classical skeleton of the map eigenstates against envi-
ronmental perturbations. It is worth underlining that these
classical structures which survive for longer times are also
the main classical ingredient needed to construct the eigen-
states, according to the short periodic orbit theory.
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