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The dynamic least-squares kernel density �LSQKD� model �C. Pantano and B. Shotorban, Phys. Rev. E 76,
066705 �2007�� is used to solve the Fokker-Planck equations. In this model the probability density function
�PDF� is approximated by a linear combination of basis functions with unknown parameters whose governing
equations are determined by a global least-squares approximation of the PDF in the phase space. In this work
basis functions are set to be Gaussian for which the mean, variance, and covariances are governed by a set of
partial differential equations �PDEs� or ordinary differential equations �ODEs� depending on what phase-space
variables are approximated by Gaussian functions. Three sample problems of univariate double-well potential,
bivariate bistable neurodynamical system �G. Deco and D. Martí, Phys. Rev. E 75, 031913 �2007��, and
bivariate Brownian particles in a nonuniform gas are studied. The LSQKD is verified for these problems as its
results are compared against the results of the method of characteristics in nondiffusive cases and the stochastic
particle method in diffusive cases. For the double-well potential problem it is observed that for low to moderate
diffusivity the dynamic LSQKD well predicts the stationary PDF for which there is an exact solution. A similar
observation is made for the bistable neurodynamical system. In both these problems least-squares approxima-
tion is made on all phase-space variables resulting in a set of ODEs with time as the independent variable for
the Gaussian function parameters. In the problem of Brownian particles in a nonuniform gas, this approxima-
tion is made only for the particle velocity variable leading to a set of PDEs with time and particle position as
independent variables. Solving these PDEs, a very good performance by LSQKD is observed for a wide range
of diffusivities.
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I. INTRODUCTION

Stochastic phenomena can be sometimes described by the
Fokker-Planck equation

�p�x,t�
�t

= − �
i=1

N
�

�xi
�Ai�x�p�x,t��

+
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i=1

N

�
j=1

N
�2

�xi � xj
�Bij�x�p�x,t�� , �1�

where p�x , t� is the probability density function �PDF� with t
and x= �x1 , . . . ,xN� representing time and the phase-space
multivariate vector, respectively. Our aim in this work is to
apply the dynamic least-squares kernel density �LSQKD�
modeling �1� for approximating p�x , t�. In particular, we de-
velop the LSQKD formulation for the PDFs with bimodal
shapes that can be seen in various stochastic phenomena for
which there are two stable states �2–6�.

The dynamic LSQKD modeling is based on a global ap-
proximation of PDF in the phase space. The PDF is approxi-
mated through a linear combination of elementary functions
such as Gaussian functions. Such approximations are known
as kernel density estimation proposed and employed in
�7–10� for the “static” problems in which there is no time
involvement. In “dynamic” modeling, introduced for time-
dependent PDFs governed by partial differential equations
�PDEs�, the parameters of elementary functions are assumed
to be functions of time and some of the phase-space variables
�1�. These parameters are governed by a set of differential
equations which are determined by minimizing—in a least-

squares sense—the residual resulting from the substitution of
the approximate PDF in the partial differential equation gov-
erning the PDF. The non-negativity and normalization con-
ditions of PDF are enforced at all times treating them as
constraints of the minimization problem.

The dynamic LSQKD modeling was first employed for
the study of evolution of uncertainties in the initial condi-
tions of the Liouville equation �1�. In that work a system
governed by a Riccati equation and a particle moving in a
fluid under the influence of Stokes drag force were studied.
The results exhibited reasonably good agreements when
compared with the exact solution obtained for the original
Liouville equation through the method of characteristics
�MC�.

The focus of the current study is on the dynamic LSQKD
modeling of Fokker-Planck equations with specific attention
to examples with bimodal PDFs. In Sec. II, we formulate the
dynamic LSQKD for the Fokker-Planck equation. Three
sample problems of double-well potential in the univariate
case, bistable neurodynamical system �3�, and Brownian par-
ticles in nonuniform gas solved through the model are pre-
sented in Sec. III. In Sec. IV the methodology employed in
this work to verify the LSQKD for Fokker-Planck equations
is illustrated. In Sec. V results obtained for sample problems
are discussed and finally some conclusions are remarked in
Sec. VI.

II. DYNAMIC LSQKD FOR FOKKER-PLANCK
EQUATION

In the LSQKD modeling of the Fokker-Planck equation
�1�, p�x , t� is approximated in the general form by
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p�x,t� � �
k=1

K

ak�y,t�pk„z,d�y,t�… , �2�

where y= �y1 , . . . ,yL� and z= �z1 , . . . ,zN−L� satisfying y�z
=x. In Eq. �2�, pk is a known function of z and d
= �d1 , . . . ,dM�, whereas ak and di are unknown functions of y
and t. For a probabilistic system which exhibits a multimodal
behavior for PDF, the approximation made in Eq. �2� for the
form of PDF is of interest since with a number of modes of
the PDF equal to K, each pk in Eq. �2� corresponds to one
mode weighted by ak.

p�x , t� approximated by Eq. �2� does not satisfy Eq. �1�
and results in a residual. The least-squares method is used to
minimize the residual. That is to minimize the functional

J = �
�y

�
�z

r2dzdy + ��t��1 − �
�y

�
�z

pdzdy	 , �3�

where the last term is to account for the constraint of the
normalization condition of the PDF by the Lagrange multi-
plier method. In the LSQKD formulation, we assume that pk
has such a property that

�
�z

pk�z,d�dz = 1. �4�

Applying the normalization condition of the PDF on this
equation gives

�
�y

�
k=1

K

ak�y,t�dy = 1. �5�

It can be shown that this equality is satisfied at any t if it is
satisfied at t=0 and

�
�y

�
k=1

K

ȧk�y,t�dy = 0, �6�

where for any function ḟ =�f /�t. Thus, with Eq. �6� as the
constraint, the functional J in Eq. �3� is simplified to

J = �
�y


F + ��t��
k=1

K

ȧk�y,t��dy , �7�

where

F = �
�z

r2dz . �8�

The minimization is carried out by differentiation of J with
respect to ȧk, ḋm, and � in the dynamic LSQKD modeling.
This minimization method has been introduced and em-
ployed for the dynamic LSQKD modeling of Liouville equa-
tion by �1� providing the general formulation which is appli-
cable in the current work.

In order to clarify the LSQKD formulation for the Fokker-
Planck equation, here we show how it is done for bivariate
cases where z= �x1 ,x2
 and y=�, where � is the empty set.
We assume that the basis functions are pk=gk, where gk de-
notes a bivariate Gaussian; Eq. �2� reads

p�x1,x2,t� = a1�t�g1�x1,x2,t� + a2�t�g2�x1,x2,t� , �9�

where

gk�x1,x2,t� =
1

2���k�1/2exp�−
1

2
yk

T�k
−1yk	 , �10�

where

yk = �x1 − �1,k�t�
x2 − �2,k�t�

	 , �11�

�k = ��1,k
2 �t� ck�t�

ck�t� �2,k
2 �t�

	 , �12�

where �i,k�t�, �i,k
2 �t�, and ck�t� denote time varying means,

variances, and cross covariances, respectively. �k is the co-
variance matrix associated with gk.

Approximating p�x1 ,x2 , t� by Eq. �9� and then substituting
it in Eq. �1� results in the residual r given in the matrix form
by

r = GTȧ + ȧTMḃ + aTQ , �13�

where ȧ=da /dt and ḃ=db /dt are, respectively, time deriva-
tives of

a = �a1 a2 �T, �14�

b = ��1,1 �2,1 �1,1 �2,1 c1 �1,2 �2,2 �1,2 �2,2 c2 �T.

�15�

Superscript T denotes the transpose operation. The rest of
terms in Eq. �13� are defined as follows:

G = �g1 g2 �T, �16�

M =
�G

�b
=�

�g1

��1,1

�g1

��2,1

�g1

��1,1

�g1

��2,1

�g1

�c1
0 0 0 0 0

0 0 0 0 0
�g2

��1,2

�g2

��2,2

�g2

��1,2

�g2

��2,2

�g2

�c2

� , �17�
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Q = „Q�g1� Q�g2� …T. �18�

Vector components in Eq. �18� are calculated by

Q�gk� = �
i=1

2
�

�xi
�Ai�x�gk�x1,x2,t��

− �
i=1

2

�
j=1

2
1

2

�2

�xi � xj
�Bij�x�gk�x1,x2,t�� , �19�

which, in fact, accounts for all terms in Eq. �1� excluding the
time derivative term on the left-hand side when p is substi-
tuted by gk.

Integrating both sides of Eq. �9�, the condition

a1�t� + a2�t� = 1 �20�

must be satisfied at all times since the normalization condi-
tion of the probability density function, i.e., ��pdx1x2=1 in
Eq. �9�, must be met noting that for the Gaussian function
��gkdx1x2=1. Provided that Eq. �20� is satisfied at the initial
time, i.e., a1�0�+a2�0�=1, Eq. �20� is equivalent to

ȧ1 + ȧ2 = 0. �21�

According to the LSQKD modeling, the cost function �11�
is constructed by

J =� � r2dx1x2 + ��t��ȧ1 + ȧ2� , �22�

where ��t� is the Lagrangian multiplier that enforces the con-
straint given by Eq. �21�. The derivatives of J with respect to

components of ȧ and ḃ, and ��t� are set to zero in order to
minimize r in a least-squares sense. This results in the
matrix-form equation

�A CT 1

C B 0

1T 0T 0
�� ȧ

ḃ

�
� = − �D

E

0
� , �23�

where

A =� � GGTdx1x2, �24�

B =� � MTaaTMdx1x2, �25�

C =� � MTaGTdx1x2, �26�

D =� � aTQGdx1x2, �27�

E =� � aTQMTadx1x2, �28�

where a, G, and M are given by Eqs. �14�, �16�, and �17�,
respectively, and

Q = „Q�g1� Q�g2� …T. �29�

In Eq. �23�,

1 = �1 1 �T, �30�

0 = �0 0 0 0 0 0 0 0 0 0 �T �31�

are the unit and zero vectors, respectively. Elements in ma-
trices seen Eqs. �24�–�28� can be calculated using a math
scripting language. We use MATHEMATICA, a product of Wol-
fram Research, Inc., in this work.

III. SAMPLE PROBLEMS

To conduct the verification of the dynamic LSQKD mod-
eling for the Fokker-Planck equations we focus on three
sample problems of double-well potential, stochastic bistable
neurodynamical system, and Brownian particles in a nonuni-
form gas.

A. Double-well potential problem

This problem may occur where the drift coefficient A�x�
in Eq. �1� is the gradient of a potential function with two
minima. Therefore, there are two stable states for the system.
Such a problem has applications in a large number of elec-
tronic, chemical, and physical systems �2�. Here, we only
consider a univariate case. So the Fokker-Planck equation �1�
is simplified to

�p

�t
= −

�

�x
�U��x�p� + D�2p

�x2 , �32�

where U�x� is the potential function and D is the diffusion
coefficient. By setting the time-dependent term to zero on the
left-hand side of Eq. �32�, an exact solution can be readily
obtained as

ps�x� = N exp�U�x�/D� , �33�

where ps�x� is the stationary probability density function
valid at t→�. N in Eq. �33� is determined from the normal-
ization condition �2�. A double-well potential is the case in
which −U�x� has two minima with a local maximum between
in which case the probability density function is bimodal.

B. Stochastic bistable neurodynamical system

A large number of neurons can be approximately de-
scribed as realizations of a single stochastic dynamics. It is
highly desired to describe activities of such neurons statisti-
cally based on an ensemble of neurons rather than individu-
ally. A single neuron operates by receiving electrochemical
signals from other neurons through synapses. When the sum-
mation of received signals reaches a critical level, known as
the threshold, the neuron sends a signal onto other neurons.
The act of sending a signal by the neuron is called neuron
firing. The statistical description of the dynamics of neuron
firing rates can help us to investigate the dynamics of the
neural populations and their interactions �12,13�. This statis-
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tical description sometimes is modeled through a multivari-
ate Fokker-Planck equation �14,15�.

The temporal dynamics of the firing rates of two different
populations of neurons can be described by the following
system of stochastic differential equations �3,16�:

d�i�t� =
1

	


��i + �

j=1

2

wij� j�t�	 − �i�t��dt +
�

�	
dWi�t� ,

�34�

where �i�t� is the population firing rate of population i
=1,2, wij is the synaptic strength between populations j and
i, and 	 is the time constant. �i represents the sensory input
to the population i and 
� � is the transfer function assumed
to be a sigmoid function,


�x� =
�max

1 + exp
− 
� x

�c
− 1	� , �35�

where �max is the saturation value and �c is the maximal
slope. In Eq. �34�, Wi�t� is a Wiener process �2� where
dWi�t�=�i�t��dt with ��t� denoting a normally distributed
random number with mean ��i�t��=0 and autocorrelation
��i�t�� j�t���=�ij��t− t��, where �ij and �� � are the Kronecker
and Dirac delta functions, respectively. By expanding Eq.
�35� through a Taylor series expansion and assuming a bimo-
dal Gaussian distribution �3�, differential equations for the
first and second moments of the rate of firing from averaging
carried out on Eq. �34� are derived. Here, we solve the same
problem by the dynamic LSQKD model while treating the
sigmoid function in its exact form given by Eq. �35�.

Equation �34� represents a system of Langevin equations
which is statistically equivalent to the Fokker-Planck equa-
tion �1� where x���1 ,�2
 and

A1�x� �
1

	
�
��1 + w11�1 + w12�2� − �1� , �36�

A2�x� �
1

	
�
��2 + w21�1 + w22�2� − �2� , �37�

B11�x� = B22�x� �
�2

	
, �38�

B12�x� = B21�x� = 0. �39�

It is noted that �i�t� are the time-dependent random variables
governed by the Langevin equation �34�, while �i are their
corresponding independent variables in the phase space.

For the LSQKD formulation of this problem, D and E in
Eq. �23� are split into two components:

D = D1 + D2, �40�

E = E1 + E2. �41�

In these equations, for the calculation of D1 and E1, Eqs. �27�
and �28� are used, respectively, where

Q � Q1 = „Q1�g1� Q1�g2� …T, �42�

where

Q1�gk� =
1

	

�

��1
��1gk� +

1

	

�

��2
��2gk� −

�2

2	
� �2gk

��1
2 +

�2gk

��2
2 	 .

�43�

For the calculation of D2 and E2 in Eqs. �41� and �40�, also
Eqs. �27� and �28� are used, respectively, where

Q � Q2 = „Q2�g1� Q2�g2� …T, �44�

where

Q2�gk� = −
1

	

�

��1
�
��1 + w11�1 + w12�2�gk�

−
1

	

�

��2
�
��2 + w21�1 + w22�2�gk� . �45�

It is noted that Q1�gk�+Q2�gk�=Q�gk�, where Q is given in
Eq. �19�. The reason for the split of D and E, and subse-
quently of Q, is that D1 and E1 can be expressed analytically
in terms of a and b, whereas D2 and E2 cannot. Integrals
seen in Eqs. �40� and �41� can be evaluated exactly for D1
and E1. On the other hand, as seen in Eq. �45�, Q2 depends
on 
 and thus integrals seen in Eqs. �40� and �41� involve 

for the calculation of D2 and E2. These integrals cannot be
evaluated exactly when 
 is given in the form seen in Eq.
�35�, so they must be evaluated numerically. In this work, the
numerical method of Hermite-Gauss quadrature �17� is em-
ployed to evaluate integrations for D2 and E2.

Here, we should emphasize that the neurodynamical sys-
tem presented in this section should not be thought as a
double-well potential problem. The reason is that the drift
vector A��A1 ,A2
 given by Eqs. �36� and �37� cannot be a
gradient of a potential function since A is not curl free, i.e.,
��A�0.

C. Brownian particles in a nonuniform gas

The Brownian motion of particles in a nonuniform gas
where there is a gradient of gas velocity can be described by
the Fokker-Planck equation �18�. This equation in a one-
dimensional fluid flow reads

�p

�t
= −

�

�x
�up� −

1

	p

�

�u
��v�x,t� − u�p
 + D�2p

�u2 , �46�

where x and u denote the position and velocity of the particle
in the phase space, respectively. 	p is the particle relaxation
time constant and D is the diffusion coefficient. v is the
velocity field of the gas, which is a given function of x and t.
The thermophoretic effects which are due to the temperature
gradient in the gas �18�, are assumed to be negligible so their
corresponding term is not shown in Eq. �46�.

Setting y��x�, z��u�, d��� ,s�, and p1�G in Eq. �2�,
the general formulation given for LSQKD modeling, the
PDF is approximated by
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p�x,u,t� = a�x,t�G„u;��x,t�,s�x,t�… , �47�

where G is a univariate Gaussian function of u where its
mean � and variance s are functions of t as well as x. Sub-
stituting for p in Eq. �46� from Eq. �47� results in a residual
which can be minimized through the LSQKD approach. This
minimization leads to the following set of equations:

�a

�t
+ �

�a

�x
+ a

��

�x
= 0, �48�

��

�t
+

s

a

�a

�x
+ �

��

�x
+

1

4

�s

�x
=

1

	p
�v�x,t� − �� , �49�

�s

�t
+ 2s

��

�x
+ �

�s

�x
= −

2s

	p
+ 2D . �50�

The important point is that using the LSQKD modeling, we
reduce the number of independent variables �x ,u , t� in Eq.
�46� to �x , t� in the system of equations given above. Also, it
is seen that if the last term on the right-hand side of Eq. �50�
is set to zero, i.e., no random force acting on the particle,
Eqs. �48�–�50� become identical to the equations derived in
our previous work �1� in which the evolution of uncertainty
in the initial position and velocity of a particle has been
studied. It is noted that in that work the formulation has been
developed for � instead of s, where s=�2 denotes the vari-
ance in the Gaussian function in Eq. �47�.

The particle Fokker-Planck equation �46� is statistically
equivalent to

dx�t�
dt

= u�t� , �51�

du�t�
dt

=
1

	p
�v„x�t�,t… − u�t�� + �DW�t� , �52�

where W�t� is a Wiener process �2�, and x�t� and u�t� are the
position and velocity of a single Brownian particle in a tra-
jectory �Lagrangian� description. The first term on the right-
hand side of Eq. �52� accounts for the drag force acting on
the particle from the gas, while the second term is due to the
random collisions of gas molecules on the particle.

IV. VERIFICATION METHODOLOGY

In order to conduct the verification of the LSQKD for the
Fokker-Planck equations studied in this work, two estab-
lished methods are employed to compare LSQKD’s predic-
tions against. The first method is the MC. The MC, as prac-
ticed in its classical form �19�, is a very useful and easy-to-
implement technique to solve PDEs involving only first-
order derivatives, e.g., Fokker-Planck equation �1� at the
limit of Bij =0. The Fokker-Planck equation is known as the
Liouville equation at this limit for which we have imple-
mented MC in our previous work to verify LSQKD �1�. In
the current work we implement MC only for the stochastic
bistable neurodynamical system problem at the limit of �
=0. In the next section we detail how the MC is formulated
and carried out for this special case.

The stochastic particle method �SPM� is the second
method utilized for the verification of LSQKD in Fokker-
Planck equations. The SPM is a mesh-free particle method to
solve parabolic PDEs through tracking an ensemble of “com-
putational” particles �20–22�. This method, which is some-
times used under different names, has been employed to
solve a number of problems ranging from the Vlasov-
Fokker-Planck equation �23� encountered in collisional plas-
mas to the Navier-Stokes equations through vortex-based
methods �24�. In particular, referred by the stochastic La-
grangian model, this method is extensively used to solve the
Fokker-Planck equations with a high phase-space variable
dimension encountered in the PDF modeling of turbulent
flows �25–28�.

In the SPM, the particles are initially distributed in the
phase space using the initial value of the function that the
PDE is solved for. In the case of a Fokker-Planck equation,
particles are driven in the phase space through the stochastic
differential equations �SDEs� statistically equivalent to this
equation. For instance, the Fokker-Planck equation govern-
ing the stochastic bistable neurodynamical system discussed
in Sec. III B, Eq. �34�, is solved for �1�t� and �2�t� which
show in fact the position of an individual computational par-
ticle in the �1-�2 phase space. At any time such as t the PDF
can be constructed from the positions of computational par-
ticles distributed in the phase space using

p�x,t� =
1

np
�
i=1

np

H��x − x�i��t��� , �53�

where np is the total number of particles, x�i� denotes the
position vector of the ith particle in the phase space, �r� de-
notes the magnitude of the vector r, and H� � is the kernel
function. In this work we use the free-source code of SPLASH

developed by �29�. The kernel function used in SPLASH is the
cubic spline. It should be noted that depending on the prob-
lem physics, e.g., Brownian particle problem discussed in
Sec. III C, the computational particles may also represent the
real particles.

Here we would like to mention that our choice of the
SPM for the verification of the LSQKD is rather due to our
more familiarity with the technicalities of this method. Any
other method including the method of local characteristic of
Warnock and Ellison �30�, which directly solves the Fokker-
Planck equation, could serve our verification purposes in this
study.

V. RESULTS

We first show the results for the double-well potential
problem described in Sec. III A. We assume that the potential
field in Eq. �32� is

U�x� = − 1
4 �x2 − 5�2. �54�

By setting U��x�=0, two stable fixed points are found at x
= ��5 and one unstable point at x=0. This is a benchmark
problem discussed by Gardiner �2� in detail. Figure 1 shows
the results of the stationary probability density function for
various values of D obtained by the exact solution given by
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Eq. �33� and by the solution obtained by dynamic LSQKD
modeling. A very good agreement is seen for the case with
D=0.2 in Fig. 1�a�. While the deviation between exact and
model solutions seems to be acceptable for a higher diffusion
D=2, as seen in Fig. 1�b�, it is significant for the highest
diffusion case D=10 as seen in Fig. 1�c�. For the highest
diffusion the locations of picks are reasonably well captured
by the model, though.

The stochastic bistable neurodynamical system discussed
in Sec. III B is studied for these parameters w11=w22=w+
−wI and w12=w21=w−−wI, where wI=1.9, w+=2.4, and w−
=0.43�w+−1� in Eq. �34�, and 
=4 and �c=�max=20 in Eq.
�35�. Similar values for these parameters are used by Deco
and Martí �3,16�.

In order to gain preliminary insight into the stochastic
bistable neurodynamical system, we consider it first with no
randomness. Figure 2 displays the flow vector field of differ-
ential equations,

d�1�t�
dt

=

��1 + w11�1�t� + w12�2�t�� − �1�t�

	
, �55�

d�2�t�
dt

=

��2 + w21�1�t� + w22�2�t�� − �2�t�

	
, �56�

which are the deterministic version of SDEs given by Eq.
�34� where �=0. Nullclines associated with d�1�t� /dt=0 and
d�2�t� /dt=0, which have the equations 
��1+w11�1
+w12�2�−�1=0 and 
��2+w21�1+w22�2�−�2=0, respec-
tively, are seen in Fig. 2. The filled circles in this figure show
the location of the fixed points where nullclines intersect.
The middle fixed point is unstable, whereas the two others
are stable. Two nullclines in the midsection—starting from
one stable fixed point, passing through the unstable fixed
point, and ending to the other stable fixed point—are very
close to each other. This means that the magnitude of vector
field is very small in a narrow region along the nullclines
compared to the rest of the region.

In order to assess the accuracy of the LSQKD method in
the neurodynamical system at the limit of no randomness, its
results are compared against the results obtained by the
method of characteristics �MC�. Here, we describe how the
MC is formulated for this problem. Having set the diffusion
term in Eq. �1� to zero and substituted Eqs. �36� and �37� in
Eq. �1�, the equation is rearranged in the following form:

�p

�t
+

1

	
�
��1 + w11�1 + w12�2� − �1�

�p

��1

+
1

	
�
��2 + w21�1 + w22�2� − �2�

�p

��2

=
p

	
�2 − w11
���1 + w11�1 + w12�2�

− w22
���2 + w21�1 + w22�2�� , �57�

where 
�=d
�x� /dx. Equation �57� in the trajectory descrip-
tion reads
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FIG. 1. �Color online� The stationary probability density func-
tion for the double-well potential problem by the dynamic LSQKD
�solid line� and exact solution �dashed line� shown for three differ-
ent diffusion coefficients: �a� D=0.2, �b� D=2, and �c� D=10.
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FIG. 2. �Color online� Flow vector field, nullclines, and fixed
points �filled circles�.
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dz�t�
dt

=
z�t�
	

�2 − w11
���1 + w11�1�t� + w12�2�t��

− w22
���2 + w21�1�t� + w22�2�t��
 . �58�

In the MC method, this equation is solved along with Eqs.
�55� and �56� in time employing the initial condition z�0�
= p0(�1�0� ,�2�0�), where p0 is the initial condition for p, i.e.,
p0��1 ,�2�= p��1 ,�2 ,0�. Then the value of p at the position
�1=�1�t� and �2=�2�t�, and time t is the same as the value of
z at time t. That means p(�1�t� ,�2�t� , t)=z�t�.

With the initial condition set to

a = �0.3 0.7 �T,

b = �5.2 1.8 0.5 0.5 0 2.3 8.7 0.5 0.5 0 �T,

�59�

we perform LSQKD and MC simulations for �=0 which
corresponds to a nonrandom case. The contours of p on the
�1-�2 plane are displayed in Fig. 3 for various times. Good

agreements between LSQKD and MC are seen in Figs.
3�a�–3�c�. We observe that the contours of LSQKD are el-
lipses that with the increase in time from Figs. 3�a�–3�c� their
major axes align with the nullclines while their minor axes
become smaller. Smaller minor axes correspond to a smaller
determinant of the coefficient matrix on the left-hand side of
Eq. �23�. Therefore, the inversion of the coefficient matrix
eventually becomes impossible after a certain time as the
minor axes of contour ellipses further shrink. This is when
the simulation by LSQKD is terminated and that is the rea-
son for not having a LSKQD result in Fig. 3�d�, which is for
the largest time seen in this figure. As time progresses the
contours of p further shrink along the major axes as well.
Theoretically, at the limit t→� all contours should become
points on two stable fixed points or better say that p should
become bimodal with two delta functions at the stable fixed
points. We observe this with the continuation of MC simula-
tions.

The LSQKD is verified for the bistable neurodynamical
system for ��0 comparing its results against the results
obtained by SPM illustrated in Sec. IV. Figure 4 shows the
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FIG. 3. �Color online� Contours of the probability density function p��1 ,�2 , t� for the bistable stochastic neurodynamical system obtained
by the dynamic LSQKD �solid line� and the method of characteristics �dashed line� for �=0 at �a� t=0.005, �b� t=0.01, �c� t=0.015, and �d�
t=0.02. Contour values are 0.01, 0.1, and 0.4 from the outermost to the innermost contour, respectively.
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contours of p obtained by LSQKD and SPM for �=0.3 at
four different times. For the LSQKD case, the initial condi-
tions are set to Eq. �59� where a and b are defined by Eqs.
�14� and �15�, respectively. Corresponding to the initial val-
ues of a given by Eq. �59�, where a1=0.3 and a2=0.7, the
SPM simulations are conducted with 30% of computational
particles released with g1 distribution while 70% released
with g2 distribution. g1 and g2 are Gaussian given by Eq.
�10� where �1,1=5.2, �2,1=1.8, �1,2=2.3, �2,2=8.7, �1,1
=�2,1=�1,2=�2,2=0.5, and c1=c2=0. A very good agreement
between LSQKD and SPM results is observed at first two
times shown in Figs. 4�a� and 4�b�, respectively. Moreover,
the agreement between LSQKD and SPM seen in Figs. 4�c�
and 4�d�, which are for later times, is reasonably good. The
diffusion effects in Fig. 4 can be observed via comparing it
to Fig. 3, which is for the nondiffusive case �=0 at corre-
sponding times. Comparing Fig. 3�a� to Fig. 4�a�, which both
are at t=0.005, and Fig. 4�b� to Fig. 3�b�, which both are at
t=0.01, reveals that the drift effects at early times are more
significant than the diffusion effects. In other words, the drift
mechanism is predominant at the early stage of the evolution

of p. Later on an equilibrium is reached between drift and
diffusion in the direction transverse to nullclines. The sizes
of minor axes of elliptical contours remain almost unchanged
from Fig. 4�c� to Fig. 4�d�.

The stationary state of the stochastic neurodynamical sys-
tem studied in this work is displayed in Fig. 5 for �=0.2, 0.3,
and 0.4. At the stationary state the drift and diffusion effects
are in equilibrium in both lateral and transversal directions to
the nullclines. In addition there is a balance between two
neural populations represented by two modes of p. This bal-
ance is due to “escaping particles” �2�, presented by a low p
contour value of 0.01 for the SPM case around the unstable
fixed point in the middle, from one neural population to an-
other. Practically, because of these escaping particles, the
population balance is reached between two populations cor-
responding to two stable states in the system. There is a
fairly good match between SPM and LSQKD p contours in
Figs. 5�a� and 5�b� presenting �=0.2 and 0.3, respectively.
On the other hand, LSQKD fails to represent the bimodal
probability density for �=0.4 as seen in Fig. 5�c�. In this
case, two Gaussian functions are close to each other both
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FIG. 4. �Color online� Contours of the probability density function p��1 ,�2 , t� for the stochastic bistable neurodynamical system obtained
by the dynamic LSQKD �solid line� and SPM �dashed line� for �=0.3 at �a� t=0.005, �b� t=0.01, �c� t=0.1, and �d� t=2. Contour values are
0.01, 0.1, and 0.4 from the outermost to the innermost contour, respectively.
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representing one mode of the PDF. The broken contour el-
lipses of LSQKD are due to these two Gaussian functions
with centers next to each other on the nullclines and on one
side of the unstable fixed point.

In this section from here on out we discuss the case and
results obtained for Brownian particles in a nonuniform gas
described in Sec. III C. The velocity of the gas v�x , t� re-
quired in Eqs. �46� and �49� is assumed to vary in space
according to

v�x,t� = 1 + v0 sin�2�x� , �60�

where v0 is a constant. The reason for having assumed such
a function for the variation of the fluid velocity is that the
sinusoidal function results in a multimodal behavior of the
PDF in the x direction �1�. To initiate the simulations for the
Brownian particles, it is assumed that the PDF is initially
bivariate Gaussian,

p�x,u,0� =
1

2����1/2exp�−
1

2
xT�−1x	 , �61�

where

x = �x

u
	, � = �0.05 0

0 0.05
	 . �62�

The LSQKD and SPM are conducted with this initial PDF
for parameters 	p=1 in Eq. �46� and v0=0.3 in Eq. �60�. The
system of equations �48�–�50�, equations derived by LSQKD
modeling, is discretized in the x direction through finite dif-
ference upwind scheme and solved in time numerically
through the explicit Euler scheme �31,32�.

Figure 6 displays the PDF contours of Brownian particles
at three different time levels of t=1, 2, and 3. PDF contours
at t=0 �not shown in the figure� are circles with centers at
x=0 and u=0 corresponding to the initial Gaussian PDF
given in Eq. �61�. Although the PDF greatly deviates from
the initial Gaussian function as time increases, this deviation
is attributed to the fact that different particles at different
locations on the phase space experience different drag forces
according to Eq. �52�. The multimodality of PDF in the x
direction is evidently seen in Fig. 6�c�, while the PDF is
unimodal in the u direction. An excellent performance by the
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FIG. 5. �Color online� Contours of stationary probability density function p��1 ,�2 ,�� for the stochastic bistable neurodynamical system
obtained by the dynamic LSQKD �solid line� and SPM �dashed line� for �a� �=0.2, �b� �=0.3, and �c� �=0.4. Contours are for 0.01, 0.1,
and 0.4 from the outermost to the innermost contour, respectively.
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LSQDK is observed as its PDF contours and their SPM
counterparts are very close to each other.

Figure 7 shows the PDF contours of Brownian particles
for three different D=1�10−4, 1�10−3, and 1�10−2 at the
same t=2. It is seen that with the increase in D the width of
contours increases in the u direction. This increase is ex-
pected and it is due to the effect of random forces applied on
particles as modeled by the second term on the right-hand
side of Eq. �52�. A very good agreement is seen between
LSQKD and PDF in Figs. 7�a� and 7�b�. This agreement is
good in Fig. 7�c� which corresponds to the case with the
largest D.

VI. DISCUSSION AND CONCLUSIONS

Three sample problems are studied in this work where
their corresponding Fokker-Planck equation is modeled by
the dynamic LSQKD and the results are verified against the
results obtained by the MC or the SPM. The first one is a
double-well potential problem with one phase-space variable
in its Fokker-Planck equation and the second one is a sto-
chastic bistable neurodynamical system with two phase-

space variables in its Fokker-Planck equation. In both prob-
lems through LSQKD modeling, a system of ordinary
differential equations �ODEs� is derived. Our results ob-
tained for the double-well potential problem and the stochas-
tic neurodynamical system reveal that the LSQKD is a good
approximation for these cases with low to medium diffusiv-
ity. For high diffusive cases, the LSQKD either fails to rep-
resent the bimodal shape of the PDF or poorly approximates
the PDF. The third problem studied in this work is the mo-
tion of Brownian particles in a nonuniform gas for which the
corresponding Fokker-Planck equation with two phase-space
variables is modeled through LSQKD modeling by which a
system of three PDEs with only one phase-space variable is
derived. For a wide range of diffusion coefficients, a very
good performance by the LSQKD is observed for this prob-
lem.

One way to improve the accuracy of LSQKD for the
bistable neurodynamical system especially in the case of
high diffusivity would be to approximate the PDF with a
larger number of Gaussian functions used to construct the
kernel density function. In this case the higher accuracy
would be achieved with a price to pay; that is, to deal with a
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FIG. 6. �Color online� Contours of probability density function
p�x ,u , t� for Brownian particles in a nonuniform gas for D=0.001
obtained by dynamic LSQKD �solid line� and SPM �dashed line� at
�a� t=1, �b� t=2, and �c� t=3. Contours are for p�x ,u , t�=1, 4, and
7 from the outermost to the innermost contour, respectively.
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FIG. 7. �Color online� Contours of probability density function
p�x ,u , t� for Brownian particles in a nonuniform gas at t=2 ob-
tained by dynamic LSQKD �solid line� and SPM �dashed line� for
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system of ODEs with a large number of unknowns. We think
that the dynamic LSQKD model with two Gaussian func-
tions should be thought as a good starting point to conduct a
preliminarily analysis of the Fokker-Planck equations for
which a bimodal PDF is expected. It is definitely much safer
to use it for low diffusive cases.

The dynamic LSQKD is an efficient model for solving the
PDF governed by the Fokker-Planck equation as instead of
solving this partial differential equation, directly, one solves
a system of ordinary equations with time as the independent
variable or solves a system of PDEs with time and a reduced
number of phase-space variables as independent variables.
Due to the gained dimension reduction through the LSQKD
modeling, it is computationally less expensive. For instance,
the LSQKD models the Fokker-Planck equation �46� given
in the x-u space for the case of Brownian particles in a non-
uniform gas through Eqs. �48�–�50� in the x space. In this
example the LSQKD approximates the variation of the PDF
by a Gaussian function in the u direction, as seen in Eq. �47�;
therefore, the numerical discretization with sufficient reso-
lution �sufficient number of particles� needs to be carried out
only in the x direction for Eqs. �48�–�50�. Consequently, the

LSQKD is computationally much less expensive than the
SPM for which the numerical discretization with sufficient
resolution must be carried out in both x and u directions. In
other words, the SPM directly solves the Fokker-Planck
equation in two dimensions, while the LSQKD indirectly
solves it through three coupled model equations in one di-
mension. The CPU time for a typical run in the case of
Brownian particles in a nonuniform gas is 1735 s by the
SPM with 4�105 particles, while for the same setup it is 170
s by the LSQKD with 1.6�104 one-dimensional grid points.
All computations are performed on a Mac OS X with a 2.4
GHz Intel Core 2 Duo CPU and a 4 GB 1067 MHz DDR3
memory. It is noted that this supremacy of the LSQKD in the
computational efficiency is gained having assumed that the
PDF is Gaussian in the u direction. Obviously for problems
with strong non-Gaussianity, a univariate Gaussian assump-
tion is not a good approximation. Employing multiple Gauss-
ian functions, i.e., increasing K in Eq. �2�, or employing
basis functions other than the Gaussian function which have
more parameters may improve the approximation while it
increases the computational costs.
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