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In this paper, the modified nonlinear Schrodinger equation is investigated, which describes the femtosecond
optical pulse propagation in a monomodal optical fiber. Based on the Wadati-Konno-Ichikawa system, another
type of Lax pair and infinitely many conservation laws are derived. Dark and antidark soliton solutions in the
normal dispersion regime are obtained by means of the Hirota method. Parametric regions for the existence of
the dark and antidark soliton solutions are given. Asymptotic analysis of the two-soliton solution shows that
collisions between two solitons (two antidark solitons, two dark solitons, and dark and antidark solitons) are

elastic. In addition, collision between dark and antidark solitons reveals that dark and antidark solitons can
co-exist on the same background in the normal dispersion regime.
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I. INTRODUCTION

Since the theoretical prediction [1] and experimental dem-
onstration [2] of the optical soliton in a single-mode fiber,
interest has been aroused in the studies of optical solitons
over the past decades [3-5]. Soliton can propagate over a
long distance without the amplitude attenuation and shape
change in the uniform nonlinear fiber under the condition
that the group velocity dispersion (GVD) balances the self-
phase modulation [1]. In the picosecond domain, the propa-
gation of optical soliton pulses in the single-mode optical
fibers is governed by the nonlinear Schrodinger (NLS) equa-
tion [6]. In the regime of anomalous dispersion, the bright
soliton exists, while the dark soliton could arise in the regime
of normal dispersion [2,7,8]. Compared with the bright soli-
ton which is a pulse on a zero-intensity background, the dark
soliton appears as an intensity dip in an infinitely extended
constant background [7]. Dark solitons can be applied in the
optical logic devices [9] and waveguide optics as the dy-
namic switches [10]. Additionally, recent studies have shown
that dark solitons are more resistant to the perturbations than
the bright ones [11].

However, it should be noted that in the normal dispersion
regime there is another type of soliton similar to the bright
soliton [12-16]. Such a type of soliton is called the antidark
soliton which exists in the form of a bright pulse on a non-
zero continuous wave background [12]. In this paper, we
plan to study the formation mechanism and collision dynam-
ics of the dark and antidark solitons in the normal dispersion
regime of the following modified nonlinear Schrodinger
equation [17],

1
iU+ EUUTT+N2|U|2U+isN2(|U|2U)T=0, (1)
which involves the time derivative of the pulse envelope into

the conventional theory of nonlinear self-phase modulation
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[17], where U is a normalized complex amplitude of the
pulse envelope, { is a normalized distance along the fiber, 7
is the normalized time within the frame of the reference
moving along the fiber at the group velocity, the sign of o
represents the normal (o<<0) and anomalous (o>0) re-
gimes, the integer value of N is related to the soliton order
and s is an arbitrary real constant [17]. The last term in Eq.
(1), which represents the self-steepening (SS) effect, plays a
role for the short-pulse propagation in the long optical fibers
or waveguides [18]. Equation (1) can be used to describe the
subpicosecond or femtosecond optical pulse propagation in a
monomodal optical fiber [19,20]. In addition, the modulated
Alfvén wave propagation along a magnetic field in cold plas-
mas can be described by Eq. (1) [21].

In the past decades, studies have been made on the solu-
tions and integrability of Eq. (1) [22-27]. In Refs. [22,23],
the Lax pair of Eq. (1) has been obtained though the Wadati-
Konno-Ichikawa (WKI) scheme. By means of the technique
of determinant calculation, the analytic N-soliton solution of
Eq. (1) has been given [24]. Reference [25] has derived the
N-soliton solution of Eq. (1) by use of the Hirota method
even though the standard bilinear form has not been pre-
sented. In Ref. [26], a family of analytic solutions of Eq. (1)
including the Jacobi elliptic function solutions, stationary pe-
riodic solutions and algebraic soliton solutions have been
obtained through a traveling-wave method and the possibility
of the dark soliton existing in the normal dispersion regime
has also been mentioned. By virtue of an ansatz, an analytic
solution of Eq. (1) has been given, which can exhibit the
phenomena that the inclusion of the term (|U]>U) , produces a
temporal pulse distortion leading to the development of an
optical shock unless balanced by the dispersion [27].

In view of those prevenient studies, aspects motivating us
to make investigation can be summarized as follows: (a)
since Eq. (1) has not been solved by the inverse scattering
transform, we can construct another type of Lax pair and
consequently derive another class of infinitely many conser-
vation laws as further evidence for the integrability of Eq.
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(1); (b) although some analytic soliton solutions have been
obtained in Refs. [24,25,27], there has been an absence of
certain analysis on the formation mechanism of the solitons
of Eq. (1) in the normal dispersion regime. Therefore, we can
construct one- and multisoliton solutions of Eq. (1) with o
<0 by the Hirota method, in order to show that both dark
and antidark solitons can be formed in the normal dispersion
regime, and to make clear which parametric conditions allow
the appearance of dark and antidark solitons, respectively.

With the aid of symbolic computation [3,4,28,29], the
structure of this paper will be arranged as follows. In Sec. II,
another type of Lax pair of Eq. (1) will be constructed by
means of the WKI scheme and infinitely many conservation
laws will be derived via the obtained Lax pair. In Sec. III,
one-, two- and three-soliton solutions of Eq. (1) in the nor-
mal dispersion will be derived via the Hirota method. Para-
metric regions for the existence of dark and antidark solitons,
and the graphical analysis of types of soliton collisions will
be given in Sec. IV. Section V will be our conclusions.

II. LAX PAIR AND INFINITELY MANY CONSERVATION
LAWS

A given nonlinear evolution equation (NLEE) can be con-
sidered integrable when it is equivalent to the compatibility
condition for the associated Lax pair [30]. Lax pair can be
used not only to demonstrate the integrability but also to
construct the soliton solutions via the Darboux transforma-
tion [30]. WKI inverse scattering problem provides us with a
procedure to obtain the Lax pairs of a class of the NLEEs
[31]. Here, we will make use of the WKI scheme to construct
another form of Lax pair of Eq. (1), which is different from
those in Refs. [22,23].

Following such a scheme, the Lax pair of Eq. (1) can be
written as

V=W, W,=MV, (2)

where W=(W,,¥,)" is the vector eigenfunction, 7 denotes
the transpose of the matrix, and L and M are expressible in
the form

i ioN?
—+t- 5 AU
2s  2N<s
B ) i o\ |’
\U* -— -
2s  2N<s
(A(g,r,x) B(Z,7,\) )
S\, N AN )
with
o > 1 i
A R ,)\ =— )\4_< +—i U2))\2—_,
R A U e
U 3 o 2 2 io
B({,7N) ==~ N = | —U+N*|UPU-—U, |\,
2N%s 2s 2
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C(L,mN)=—

0'2U*3(0'*22*i0*)
SN = | U +N’s|UPPU" + U\,
2N-s 2s 2

where \ is the spectral parameter and the asterisk means the
complex conjugate. One can check that the compatibility
condition L;—M +LM-ML=0 is exactly equivalent to Eq.
(D).

The derivation of conserved quantities of a given NLEE is
considered as a key step of solving the initial-value problem
by the inverse scattering transform [30,32], so we will derive
the infinitely many conservation laws. Methods to obtain the
conservation laws of a continuous system can be through the
Lax pair [33], Bicklund transformation [33] and formal so-
lution of the eigenfunction [34,35].

According to the procedure in Ref. [22], by introducing
I'=¥,/¥,, we get the Riccati-type equation from Expres-
sion (2),

( i ioN\?
2s  2N’s

)Q =-NUP+\Q*+UQ, with Q=0UT.

3)

Expanding Q=2 Q,\™" in Expression (3) and equating the
n=1

coefficients of the same power of N to zero, we have the

recurrence relations,

.Nz
Ql = u|U
(o

27 QZ = 0’ (4)

.N2 n U .
Qn+2 = Q(E Qan—k+l + Qn T _TQn + LQn) (}’l = 1)
0 \=l U s

)

According to the compatibility condition (In W),
=(In ¥,),,, we obtain the infinitely many conservation laws:

d d
_ +—J=0 .=1,2,..., 6
&(pj ar’ U ) ©
with
iN’s
pr1=- _|U 2’ (7
g
NZS 2 4 * *
J1=2—(— 3iN%s|U[* - oUU .+ aUU?), (®)
g
N*
pr= ?SGUIUIZ—iN2s2|U|4+s<rUUi‘>, ©)

N4 "
Jy= ﬁ(4ista'| Ul* = 4iN*$|U|° + PU*U,— 0P U

+6N*s2a|U|PUU - isa?U, U+ isa”UUL),  (10)
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N®
o= 2 P U 3iaN U - 2

+N*s*0|UPU* U, - 250*UU: + 40N>’ | UPU U
+is?0?UUL), (11)

%
Js= 35 (i |UP + NS {UN + 4iN's o U]° - 4iN°sC U]

— 50U U+ 4N** 0| U U U . - iN*s* * U™ U*

- 25 UU+ 8N*s°o|U|*UU + 2is*a”U,U”

— 4iN*s*?|U|PU U + is*0° UU_+ 2iN*s*o?|UPUU,
+5°0°UUY),

(12)

where p; and J; (j=1,2,...) are called the conserved densi-
ties and conserved fluxes, respectively. The first three ones
represent the energy, momentum and Hamiltonian conserva-
tion laws, respectively.

III. DARK AND ANTIDARK SOLITON SOLUTIONS VIA
THE HIROTA METHOD

The Hirota method has been used to obtain the soliton
solutions of the NLEEs [36]. If the NLEE is bilinearized, one
may get the soliton solutions, especially the multi-soliton
solutions directly through the truncated formal perturbation
expansion at different levels [36,37]. In the following part,
we will employ this method to construct the soliton solutions
by means of symbolic computation.

Through the following gauge transformation,

U=uexp(— uf |u|2d7'>, (13)
T
Equation (1) can be transformed into
1
iug+ EO'MTT+N2|M|21/£+iSN2(|u|2)uT=0. (14)

By introducing the rational dependent variable transforma-
tion u=g/f where g(£,7) and (£, 7) are both complex func-
tions, the bilinear form of Eq. (14) is obtained as follows:

(iDg+gDi—u)(g-f)=o, (15)
- A2
DTU*'f)=_ﬂ|gz’ (16)
g
, 2u 2N* ., isNE
Di-— (" N=—"lgf-——DJg" g, (17)
g g (o

where w is a real constant to be determined, D, and D, are
the bilinear differential operators [36] defined by
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d a \"f a a \"
DmDn . =\ —_ - - = N N I=f =1+
¢ (f-8) <(9§ (9(') (07_ (97_,> fL, gL T)|g_§, =
According to the gauge equivalence between Egs. (1) and
(14), Egs. (15)—(17) can lead to Eq. (1) by taking the depen-
dent variable transformation U=uf"/f. Therefore, Egs.
(15)—(17) can also be regarded as the bilinear form of Eq.

(D).
The expansions of g and f with respect to a formal expan-
sion parameter & are of the form

g=go(l+eg +&’g+e7g3+), (18)

F=fo(l+efi+efr+& s+, (19)

where g, and f, (n=0,1,2,--+) are the complex functions to
be determined. Substituting Expansions (18) and (19) into
Egs. (15)—(17) and truncating the perturbation expansion at
different levels, we can yield one- and multisoliton solutions
of Eq. (1).

A. One-soliton solution

To obtain the one-soliton solution of Eq. (1), we terminate
the power series expansions as g=gu(1+eg;) and f=fy(1
+ef}), and assume that

go=pe ', fo=eT,

gr=—ae’, fi=pe’ with O=«k7+0l, (20)

where p, 7, &, k, and w are all real constants, « and 8 are
both complex ones. Substituting Expression (20) into Egs.
(15)—(17) and after some symbolic calculations, we have

Ns2p
=—N*p?—-——.
K 20

Without loss of generality, by setting =1, the one-soliton
solution can be explicitly expressed as

(1-ae’)(1+ B’
U= [(3éT—
pexpli(367— nd)] 1+ g’y
+a"+ B+ B :
=p\/1‘ A PP e )
2|B|cosh(6+1n|g|) + B+ B
with
Nsp? 3N452p4
=——, :—N2 2 _ s
¢ 20 g p 8o
23N sp*o

= 1 + | s = — y
p=sl+io), e 4’ - K2N4S2p4 + K a?

N*sp*k —iok?> — 2w

a=-
N’sp*k+iok> - 2w

i 1-ae’ \[1+pB%’\
(p=3§7'—77§—51n 1-a‘e?)\ 1+ e’ '

where s is a real arbitrary constant.
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The dispersion relation is given by

1 /
w: w= 5(— KkN%sp* = = 2i2N*s?p* — 41N p*o — *a?),

(22)

1
o' w= E(_ kN%sp? +\— 2k2N*s2p* — 41N pPo — K o).
(23)

B. Two-soliton solution

By truncating g and f as g=go(l+g,+g>) and f=f(1
+f1+f>), the two-soliton solution of Eq. (1) is presented as

0
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o sl et e)fo(L4 /i +/)
ol +f1+ )T '

(24)
where
8o=p exp(=ind),
fo=exp(=ié7),

g1=—a; exp(6,) — a, exp(6,), f1= [ exp(6;)

+ 3, exp(6,),

82 = X121 exp(0; + 65),  fo=x12818, exp(6; + 6,),

with

1
— (A2 242 22 2 4
= KT+ w){, = 2(—N spTK; = V= 2N p'K; —4N"pOK; —a’ZKj),

2
/

2.2 .
N-spkj—iok; — 2w,

2.2 . j
N-sp°k;+ioK; — 2w;

2N2sp20'1<3

jo

2
J

Bi=si(1+ig), @;=-

: (j=1,2),

4w]2~ - N4S2p4K]2- + 02/(;t

0’2K‘1‘K§ - 20’2ka% + olk%Kg + 4K§w% - 8K Kyw Wy + 4K%w§

X12=0_242

9
K|K;+ 20’2ka3 + 0’2K%K§ + 4K%w% - 8K Ky Wy + 4K%w%

where s;’s (j=1,2) and «;’s (j=1,2) are all arbitrary real
constants.

C. Three-soliton solution

Following the procedure above, the three-soliton solution
of Eq. (1) can also be obtained as

_ go(1+g+ 8+ g)fo(1+ 11 +1>+[3)
[fo(l+f1+ 2+ f3)]

U . (29)

where

go=pexp(=inl), fo=exp(-ién),
g1=—a; exp(6;) — a, exp(6,) — a3 exp(6s),
f1= B exp(6)) + B, exp(6,) + B5 exp(65),

82 = X201, exp(6; + 6,) + x 135 exp( 6, + 65)

+ X230003 exp( 6, + 63),

f2= Xx12B182 exp(6; + 6,) + x1381 85 exp(6, + 65)
+ X238:8; exp(6, + 63),

83=— X131 a5 exp(0; + O, + 603),  f3
= X12381 8285 exp(0; + 6, + 65),

with

0;=Kk,7+ w;{,

1 ’ 2 2 3
w;= 5(— N*spPk; = \- 2N4S2p4Kj - 4N2p20'Kj - 0’2Kj),

2.2 .2
N-sp™kj—iok; — 2w,
) )

Nospkj+iok; - 2w;

a'j=—

B Bi=si1+ip)),
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(=12,3), Xi123= X12X13X23>

+ 20’2K1K2 + 0’2K1K2 + 4K2a)1 8K KW w,y + 4K1w2

2

2+ 207K K5 + KK + 4G 07 — 8K K30, 03 + 4K 0]

2N2Sp20'K3~
Qj==7" 42427024 for

4w; = N's"p'Kj + 07K;

0'2/(1 K2 20’21(1 Ky + O'ZKl Ky + 4K2w1 — 8K Ky Wy + 4K1w§
X12= 02

0’2K1K3 20’2K1K3 + O’2K1K3 + 4K3(1)1 - 8K K3w w3 + 4K1w3

0'2 4

0’2K2K3 20’2K2K3 + 0‘2K2K3 + 4K3a)2 — 8Ky K33 + 4K2w3
X23=

where s;’s (j=1,2,3) and «;’s (j=1,2,3) are arbitrary real
constants.

IV. ANALYSIS OF THE SOLITON SOLUTIONS

A. Parametric regions for the existence of dark and antidark
soliton solutions

From Solution (21), in order to ensure a real dispersion
relation and a continuation of the dark soliton regime, we
must require that the GVD parameter o be a negative con-
stant and have a certain range, which further determines the
choice of the wave number «. After the algebraic manipula-
tions, we have

’
oKl 2K3 + 20’2K2K3 + 0’2K2K3 + 4K3w2 - 8Ky K303 + 4K2w3

1
o+ ENZSZP2 <0, (26)
P h
\—\/— N*s?p* - 2N’ pPo < k< - \—V/— N*s?p* - 2N*p?or,
o o
(27)

which are the basic conditions to ensure the existence of the
soliton solutions of Eq. (1).
Note that Solution (21) can be rewritten as

4t

U= \/ 1-
P (40? — K®N*s?p* + k*d?)[2 Vs? + 5202 cosh(6+ Invs2 + 0%%) + 25]

which can describe two types of solitons, namely, dark and
antidark solitons, depending on the sign of A=4w?
— K2N*s2p*+ k*o?. If the parameter s> 0, then for the case of
A <0, Solution (28) represents the antidark soliton solution,
while A>0 corresponds to the dark one. However, If the
parameter s <0, for the cases of A<<0 and A>0, dark and

\
\\\\\\\\\\\‘\\\:

TR

W
\\Q\\\\\\
)

FIG. 1. (Color online) (a) Elastic collision between two antidark
solitons via solution (24) with the parameters p=1.5, s=—1, N=2,
o=-8, k;=0.5, k,=1, and 5;=s,=1. (b) Corresponding trajectories
of (a) at: {=—12 (short dashed curve), {=-2 (long dashed curve)
and =10 (solid curve).

e'’

(28)

antidark soliton solutions will be obtained. In the following
part, we will take the instance of >0 to discuss the ranges
of parameters with respect to each type.

It can be found that the case of w* leads to A >0, which
means one can only get the dark soliton solution. While for

(b)

T

FIG. 2. (Color online) (a) Elastic collision between a dark soli-
ton and an antidark soliton via solution (24) with the parameters
p=15, s==1, N=2, 0=-8, k;=1.1, k,=—1.4 and s;=5,=1. (b)
Contour plot of (a).
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FIG. 3. (Color online) (a) Elastic collision between two dark
solitons via solution (24) with the parameters p=1.5, s=—1, N=2,
o=-8, k;=0.8, k,=1.3 and s;=s,=1. (b) Contour plot of (a).

the case of w~, one could obtain both dark and antidark soli-
tons. According to the analysis of the one-soliton solution,
we get the parametric conditions associated with dark and
antidark solitons,

!2;—
s <0 and _\X2<K<O

1 — ’2—

s <0 and _\X1<K<——\X2,
Ko
Dark solit0n<

2 —

s>0 and 0<K<—_\X2,

2# 1 —

s >0 and _\X2<K<—\Xl,
o

(29)

1
s <0 and 0<K< \X1’
Antidark soliton (30)
I —
s>0 and —\y; <k<0,
so

With X1==3N*s*p*=8N?s’p’o—402, x,=—N*s’p*-2N’p*0,
2 _ 20
3N2 2 <p <. N22*

B. Soliton collisions

For the purpose of better understanding the collision dy-
namics between two solitons, we make an appropriate
asymptotic analysis of Solution (24) as follows:

(a) §7 (6,~0, 6,——=)
a +al+ B+ B .
U—>SI=P\/1— 1oyt Bt By e,
2|By|cosh(6; +1n|B,|) + B + Bi
(31)
with

3t i 1—a1e"1<1+ﬁ*e01>3
= -n{—=In .
1 T 2 |1 ale(’l 1+ Be”

(b) 8 (6,~0, 6,—+)
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(b) T

FIG. 4. (Color online) (a) Elastic collision between three anti-
dark solitons via solution (25) with the parameters p=2, s=—1, N
=1, 0=-3.1, k;=0.6, k,=0.8, k3=0.4, 5;=s3=1 and s,=2000. (b)
Contour plot of (a).

U—S,
@B ‘ \/ Wt ar+ Bt iy
= > 1— *e 2,
Bi 2|B;|cosh( 6, +1n|x;2/3,) +B2+ B,
(32)
with
. 3 7] By \ 3
a 1- 21+ Bre™
¢ =3¢ 7~ iln{ oy e ( = az) ]
2 | B 1 —ae™\ 1+ Bye
(c) ST (6,~0, 6,—+x)
U— Sy
_ | @B \/1_ a +ai+ i+ oivt
B 2|B1[cosh(6; +Inlx1nB1) + B+ B
(33)
with
i |« 1—ae’ [ 1+ B
o =3¢r- ng——ln{ LA ( by 01) ]
2 131 1—aje”"\ 1+ e
(d) S35 (6,~0, 6;——x)
U_>s;=p\/1— ekl Rl Rl S
2|B;|cosh(6, +1n|B,)) + B + B
(34)
with

i | 1= ae®( 1+ Ble®)\?
¢;=3§T—ng—§1n[ &l ( P ”

1- aze‘92 1+ B,e”

Comparing expression (31) with Eq. (33), and expression
(32) with Eq. (34), we can see that the physical quantities of
the solitons do not change before and after the collision on
account of |aj|=|B,| (j=1,2), although there exist the small
phase shlfts (ln|)(12,81| In|B))/x; and  (In|B,]
—In| x128,)/ K, respectively. Therefore, the collision between
two solitons is elastic.

In order to demonstrate the collision behavior between
two solitons, we will graphically analyze the two-soliton so-
lution through the choices of the parameters. Figure 1 dis-
play the collision between two antidark solitons with the
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-20 20
(b) T

FIG. 5. (Color online) (a) Elastic collision between three dark
solitons via solution (25) with the parameters p=2, s=-1, N=1,
o=-3.1, K;=0.8, ky=—1.35, k3=1.16, 5, =s3=1 and 5,=2000. (b)
Contour plot of (a).

wave numbers x; and k, both satisfying condition (30).
Apart from the elastic collision features, an interesting phe-
nomenon arises, namely, at the moment of the collision the
two solitons emerge into one and the amplitude is lower than
that of any one before the collision as shown in Fig. 1(b),
which is different from the regular collision between two
antidark solitons in Refs. [13,16]. Moreover, as we know,
few studies have been done to discuss the interaction be-
tween two antidark solitons. If «; and k, satisfy conditions
(29) and (30), respectively, the dark and antidark solitons of
Eq. (1) coexist on the same background and exhibit the elas-
tic collision which can be seen in Fig. 2. Similarly, the elastic
collision between two dark solitons is presented in Fig. 3
when the wave numbers k; and k, both meet condition (29).
Therefore, by adopting the values of the wave numbers «;’s
(j=1,2), we can control the type of collision behavior be-
tween two solitons.

With respect to the three-soliton solution, we can also
have the similar behavior of the soliton collision by modify-
ing the parameters in the corresponding regions. Collisions
among three solitons are all pairwise elastic as shown in
Figs. 4—6, which are similar to the cases in Ref. [38]. Figure
4 displays the pairwise elastic collisions among three anti-
dark solitons with different amplitudes and velocities at three
different positions with the choices of parameters s;’s and
K;’s (j=1,2,3) which affect the velocities and initial phases
of the solitons. The three solitons collide with one another
without any change in the physical quantities except for the
small phase shifts during the process of the collision. By
choosing the parameters under condition (29), we get the
pairwise elastic collisions among three dark solitons at three
different spots in Fig. 5. Meanwhile, in Fig. 6, we present the
phenomenon that the two antidark solitons collide elastically
with one dark soliton.
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\
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FIG. 6. (Color online) (a) Elastic collision between two antidark
solitons and one dark soliton via solution (25) with the parameters
p=2, s=—1, N=1, 0=-3.1, k=08, k,=1, k3=0.5, and s;=5s,
=g3=1. (b) Contour plot of (a).

V. CONCLUSIONS

In conclusion, we have investigated Eq. (1) which de-
scribes the femtosecond optical pulse propagation in a mono-
modal optical fiber. Another type of lax pair (2) has been
constructed via the WKI scheme and infinitely many conser-
vation laws in Expression (6) have been presented, which
further prove the integrability of Eq. (1). In addition, bilinear
form (15)—(17) has been derived via the Hirota method.
Moreover, dark and antidark soliton solutions in expressions
(21), (24), and (25) have been obtained through the bilinear
form. Besides, conditions for the existence of the dark and
antidark solitons have also been given in expressions (30)
and (29). Through the asymptotic analysis of two-soliton so-
lution in expression (24), collisions between solitons includ-
ing two antidark solitons, two dark solitons, and dark and
antidark solitons are found to be all elastic (as seen in Figs.
1-3). Meanwhile, the phenomenon that dark and antidark
solitons can coexist on the same background has been veri-
fied to be existent for Eq. (1). Pairwise elastic collisions
among three solitons have also been demonstrated through
Figs. 4-6.
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