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Rogue waves and rational solutions of the Hirota equation
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The Hirota equation is a modified nonlinear Schridinger equation (NLSE) that takes into account higher-
order dispersion and time-delay corrections to the cubic nonlinearity. In describing wave propagation in the
ocean and optical fibers, it can be viewed as an approximation which is more accurate than the NLSE. We have
modified the Darboux transformation technique to show how to construct the hierarchy of rational solutions of
the Hirota equation. We present explicit forms for the two lower-order solutions. Each one is a regular
(nonsingular) rational solution with a single maximum that can describe a rogue wave in this model. Numerical

simulations reveal the appearance of these solutions in a chaotic field generated from a perturbed continuous

wave solution.
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I. INTRODUCTION

As pointed out by many researchers, rogue waves can
appear in the ocean and in optical fibers due to modulation
instability (MI) [1-3]. The latter is widely known as the
Benjamin-Feir [4] or Bespalov-Talanov [5] instability. Spe-
cifically, a periodic perturbation on the top of a continuous
wave exponentially increases its amplitude due to the above
instability. Waves in a continuous but limited frequency
range are involved in this dynamics. Modulation instability is
known for a number of nonlinear equations, with the most
important one being the nonlinear Schrddinger equation
(NLSE)
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where x is the propagation variable and ¢ is the retarded time
variable in a moving frame while ¢ is the envelope of the
wave field. It is worthwhile to mention here that the NLSE
was first derived by Lev Ostrovsky [6].

For each frequency, the long term dynamics of MI is
closely related to the so called Fermi-Pasta-Ulam recurrence
[7]. Namely, during the initial stages of the development,
each particular frequency mode in a modulation instability
phenomenon receives its energy from the central mode,
along with the higher harmonics and then returns all the
energy back to the central mode [8]. For the particular case
of the NLSE, this process can be described by an exact so-
lution that has been referred to as the “Akhmediev Breather”
(AB) in a number of earlier works on ocean waves [9-13].
This solution describes the appearance of a periodic se-
quence of maxima on the top of a continuous wave and their
subsequent disappearance on further evolution [14].

A particular case of modulation instability is the one with
a zero frequency (or infinite period) sideband. In this case,
the periodic sequence of maxima is reduced to just a single
peak which “appears from nowhere and disappears without a
trace” [15]. The latter is also described by an exact solution
of the NLSE, which has a simple rational representation. The
lowest-order solution of this class is known as the Peregrine
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soliton [16] and can be obtained as a limiting case of an AB
with zero frequency of modulation [17]. There is a hierarchy
of rational solutions with progressively increasing amplitude
[18]. Each of them can be thought of as a rogue wave. More-
over, the high amplitude waves described by the higher-order
rational solutions appear naturally in the chaotic wave field
as a nonlinear superposition of two or more ABs initiated by
modulation instability with nonzero frequency sidebands
[19,20]. Thus, it is essential to know the structure of rational
solutions in order to understand rogue waves in general.
However, the phenomenon of ocean waves is significantly
more complicated than the one modeled by the simple
NLSE. Even in the one-dimensional case, higher-order terms
that take into account third-order dispersion, self-steepening
and other nonlinear effects have to be added to this equation
[21,22]. Thus, a question arises: do the rational solutions,
which are prototypes of rogue waves, exist for these more
complicated equations? Of course, it is impossible to answer
this question in one step. We have partially analyzed the
problem in one of our previous works [23]. In the present
publication, we make one more step forward in an attempt to
understand this issue. Namely, we take an equation which is
a further modification of the NLSE with the addition of
terms that are responsible for third-order dispersion and a
time-delay correction to the cubic nonlinearity. In particular,
we take the coefficients in such a way that we arrive at an
integrable model. This model is well-known as the Hirota
equation (HE). In dimensionless form it is given by
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where the variables x and ¢ have the same physical meaning
as in Eq. (1). The two terms in Eq. (2) that enter with a real
coefficient a; are responsible for the third-order dispersion
and a time-delay correction to the cubic term, respectively. It
is easy to see that if we set a3=0, then we obtain the NLSE
(1). Of course, it may be too much to expect that the results
could somehow be directly applied in the water wave con-
text, especially taking into account the fact that the second
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dimension is unavoidable in the vast space of the world’s
oceans. On the other hand, in optics, it is common to create
fibers with the desired properties. We cannot exclude that in
future it may become possible to produce a fiber where
propagation is described by the Hirota equation.

A number of higher-order equations related to water
waves have been considered by Osborne in [24]. They allow
approximate integration, unlike the HE which can be inte-
grated completely.

The HE was introduced in [25] and studied in a number of
papers [26-28]. It is an integrable equation which can be
considered as a combination of the NLSE (where ¢ is com-
plex) and the modified Korteweg de Vries (KdV) equation
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where ¢ is real. Indeed, if we eliminate the second order
derivative and cubic nonlinear terms in Eq. (2), consider ¢ as
real and take az=-1, then we arrive at Eq. (3). The mKdV
equation is also known to be a completely integrable equa-
tion that has all the basic features of integrable models. Al-
though combining two completely integrable equations into a
single one does not automatically provide integrability, this
is however the case in this particular instance. On the other
hand, despite producing the integrability, this combination
does not automatically provide us with solutions to the re-
sulting integrable equation. Generally, we cannot use the so-
lutions of either the NLSE or the mKdV and modify them in
a simple way to produce a solution of the HE. This approach
may work to some extent for the lowest-order solutions such
as single solitons or first-order ABs but for more complicated
solutions we have to derive them using more sophisticated
techniques. From simple analysis, we know that the main
effect of the mKdV terms added to the NLSE is to introduce
a “tilt” to the original NLSE solutions [27]. We consider this
assumption in more detail below for the case of rational so-
lutions.

First, let us show that the modified KdV equation by itself
does not have a “rogue wave” solution that could be similar
to the Peregrine soliton in the case of the NLSE. In order to
show this we start with a breather solution of the mKdV Eq.
[29]

Mo t) = — 4qgsech(a), 4)

where a=cos(p)— %sin( ¢)tanh(6), while b=1
+[;fsin(¢)sech(0)]2, 0=2qt+8¢(3p*—g¢*)x, and =2pt
+8p(p>—3¢*)x. The solution has two free parameters p and
q. It is shown in Fig. 1 for the case p=0.45, and ¢=0.5. The
period of the “hills” in the solution is defined by the param-
eter g. When ¢ — 0, the period becomes infinitely large. Tak-
ing the approach that the rogue wave is the limit of the
breather solution when the period increases to infinity, we
can check that the amplitude of the hills actually decreases to
zero (¢—0) when ¢— 0. Thus, for the limit in which we are
interested, the solution degenerates to the trivial one. Physi-
cally, this is a mere consequence of the fact that the mKdV
breather sits on a zero background for any values of the two
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FIG. 1. (Color online) Breather solution of the modified KdV
Eq. (4) for p=0.45 and ¢=0.5.

parameters p and g. Thus, there is not a single-maximum
rogue wave described by the mKdV equation. We do not
consider here the soliton solutions that do not belong to the
class of solutions that “appear from nowhere” [15].

The single AB solution of the Hirota Eq. (2) which is
seeded by modulation instability can be derived using a spe-
cial ansatz similar to that used in Chapter 3 [specifically Eq.
(3.1)] of [30]. It was obtained previously in [27]. It is given
by

B 2(1 = 2a;)cosh(Bx) + iB sinh(Bx) ~
- cosh(Bx) — \/2_111 cos[s(t+vx)]

eix’ (5)

where s=2+1-2a,, and B= V"Z—als while a; is an arbitrary
number in the range 0<a; <0.5 and v=2a;(1+4a,). Equa-
tion (5) is an exact solution of Eq. (2) with one free param-
eter, a;, which defines the period of the solution in the ¢
direction. This solution is shown in Fig. 2 for a;=0.2 and
a/3=0.2.

Note that (x,¢) is not a function of (¢+wvx) only. Thus, v
is not the “velocity” of the breather, although it introduces
the “tilt” to the “hills” of the solution. The maxima of the HE
ABs are located on a line which is parallel to the x-axis. This
differentiates it from the AB of the NLSE with velocity [20],
where the line of maxima is located at an angle to the x axis.

We also note here that rational solutions are limiting cases
of either solutions describing solitons on a background or
ABs. N-soliton solutions are known for the NLSE and HE.
However, solitons on a background are a different matter
because the boundary conditions are changed. Moreover, pe-
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FIG. 2. (Color online) First-order Hirota breather [Eq. (5)] for
(11:0.2 and a3=0.2.
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riodic solutions such as ABs have eigenvalues that are dif-
ferent from those for solitons. Even if the solutions are
found, taking the limit in each case is tricky and has to be
done carefully. This may be relatively simple for the lowest-
order solutions, but for the higher-order ones, it becomes an
increasingly nontrivial exercise. This is the reason why
higher-order rational solutions have remained unknown until
now. Thus, developing alternative techniques is one of the
ways to overcome this difficulty.

II. MODULATION INSTABILITY AND ABS
OF THE HIROTA EQUATION

We can analyze the development of modulation insta-
bility of a continuous wave (CW) [14,27,30] by setting o
=u(x,r)exp(ix) where we fixed the wave number of the CW
to be 1. We take the solution for u as a constant with a small
periodic perturbation

u(x,t) =1 +[a(x) + ib(x)]cos[ k(1 + vx)],

where « is the period of the perturbation and a(x) and b(x)
are small real values that represent the complex amplitude of
the periodic perturbation. Linearizing u around 1 shows that
the parameter v is given by [27]

v=a;(6 - K?). (6)

Further, in the linear approximation we arrive at the follow-
ing set of two coupled equations:

(K =4)a(x)+2b'(x) =0,

K*b(x) =24’ (x). (7)

Restricting ourselves to exponentially growing solutions
~e® we obtain

a(x) = vexp(&x),

)
b(x) = 2v—exp(dx),
K

where v=a(0) is a small initial amplitude. The instability
growth rate is given by

S=k\|1-—.

4
This expression for the growth rate is the same as for the
NLSE [27]. Consequently, the initial modulation grows ex-
ponentially if its frequency is in the range 0 <<« <<2. The
maxiinum value of the growth rate is 1, and this occurs when
K=12.

Based on this analysis, we can rewrite the solution of Eq.
(5) in terms of « by setting a,;=(4—«?)/8. Then s=«, 8=,
and v=a;(6—-«?) in agreement with Eq. (6) above. A simple
transformation to new variables leads to

B (kp/2)cosh(8x) + i sinh(8x)
- Kp cosh(édx) — cos[ k(r+vx)] -

eix’ (8)

where p=«/ 5. The frequency « is a free parameter of this
solution. Equation (8) describes completely the evolution of
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FIG. 3. (Color online) First-order rational solution of Hirota
equation [Eq. (9)] for @3=0.2. The arbitrary real parameter «j is
responsible for the skew angle of the “ridge” of this solution rela-
tive to the axes.

the nonlinear wave field for every « within the instability
range. After certain propagation distance, this solution re-
turns back to the continuous wave solution. This happens
with the negative exponential ~e~% which was ignored in
the above approximation. Just like the AB of the NLSE, the
ABs (8) can be considered as the exact solution of the Fermi-
Pasta-Ulam recurrence problem [8,31] for the Hirota equa-
tion. Namely, initially all the energy is contained in a central
frequency mode which is a continuous wave. Upon evolu-
tion, the energy is distributed between the modulationally
unstable sidebands and their harmonics. This happens until
the maximum of modulation is reached. After reaching the
highest point of modulation, all the energy returns back to
the original mode, i.e., to the continuous wave.

The solution (8) is valid in the whole frequency interval
0 < k<2 including the points 0 and 2. At these border points
we have to consider special limits. Taking the limit k — 0, we
have a; — 1/2. Applying the L’Hopital’s rule either to Eq. (5)
or to Eq. (8), we obtain

1+2i )
lx:|etx’ (9)

¢1=—{1—4 b,

where
Dy =1+4(t+ 6a5x)* + 4x°.
So here we have
v="6as. (10)

Thus, this is the simplest form of the lowest-order rational
solution of the Hirota equation. It is shown in Fig. 3. The
solution has the same form as the first-order rational solution
of the NLSE [15], apart from the fact that ¢ is replaced with
t+vx. Consequently, the “ridge” of the solution is tilted to
the ¢ axis. This can be attributed to the “convective behavior”
of systems with higher-order dispersion [32].

The existence of solutions localized in two directions is a
remarkable feature of PDEs like the NLSE. Their existence
for the Hirota equation is a further confirmation that such
solutions play a very special role as prototypes of rogue
waves. Our earlier studies revealed that the Hirota equation
is not the only extension of the NLSE which has doubly
localized structures [23]. However, higher-order solutions of
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this type can only be constructed for integrable equations. In
this sense, the Hirota equation is a model that allows us to
construct them using existing techniques.

II1I. MODIFIED DARBOUX TRANSFORMATION SCHEME

The “Darboux transformation” (DT) is a step by step
technique of constructing composite solutions out of simple
ones [33]. In the case of the NLSE, the DT can be used to
construct multisoliton solutions out of the trivial zero solu-
tion or multi-AB solutions out of simple CW solution [19].
Solutions of either class consist of a corresponding ‘“‘hierar-
chy” of solutions depending on the number of solitons or
ABs involved in each.

DT cannot be directly used to obtain the hierarchy of
rational solutions. It has to be modified to make it applicable
to this special class of solutions. Usually, rational solutions
can be derived from the solutions of another class taking
special limits. For example, the lowest-order rational solu-
tion (9) may be obtained either as a limiting case of a Ma
soliton or an AB [19]. Similarly, higher-order solutions can
be calculated as the limiting cases of N soliton or N-AB
solutions. Below, we modify the DT technique in such a way
that these limits are taken in the intermediate calculations
rather than applied to the solutions themselves. This modifi-
cation has allowed us to construct the hierarchy of rational
solutions directly.

As before [19] we start with the linear set of equations
representing the integrable nonlinear equation. For the case
of the Hirota equation, it can be written as

R,=iJR+UR,

1
R,=-JR+iUR+-VR+ a;MR, (11)

R:H, (12)
S

with two linear complex functions r=r(x,¢) and s=s(x,7) and
where U,J and M are the following square matrices:

where

o i
U"Lw 0 }’J'{o —i}’ 13
— iy wf]
V= s 14
[—w, igf? (1
M=[‘,‘” "“3}, (15)
—ia, a;
where
ay =4+ 2yl — g + i,
ay = 4+ 20+ Py + 2912,
and
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ay= 49" =245 + Y+ 207y,

Thus, the linear functions r and s depend on which solution
¢ we use in the matrices.

The second equation in Eq. (11) can be written in shorter
form if we combine several matrices into a single one

w w
Rx:|: 11 12 ]R, (16)
Wa1 — Wiy
where
I
W11=—1_5|¢| - az(ay),
wp=—¢ +5¢;+la3(03),
and

1 .
wy == - 5%"‘ ias(a,).

Indeed, it is easy to check that the condition of compatibility
R, =Ry,

of the linear equations leads directly to the Hirota equation.
It is easy to check that, when a;=0, the above set of equa-
tions is reduced to the linear set presented in [19]. The ei-
genvalue in Eq. (11) and the following equations has been
specified in order to deal with rational solutions. Namely, A
=i.

Once we solve the above equations for a given (seeding)
solution of the Hirota equation ¢;, we can find the next level
solution using a simple transformation, namely,

4is.r:

= - — L 17
I//J %—1 |rj|2 + |Sj|2 ( )

where i;_, is the solution of the previous step while ¢; is the
solution of the next step. We start with a simple “seeding
solution” in the form

o =e".
This allows us to solve the equations for r and s with ease.
Substituting these solutions into the Eq. (17) we obtain the

next (first-)order solution of the Hirota equation.
Namely, solving the linear equations, we find

1 .
r :Tzexp(— %)[2(r+6a3x)+2ix— 1], (18)
\J

X

1
s =—rexp( )[2(r+6a3x)+2ix+ 1]. (19)
iN2 2

These expressions lead directly to Eq. (9) above, and one
can easily verify that it satisfies the Hirota equation. The
amplitude profile of this solution is shown in Fig. 3. It is easy
to see from this figure its similarity to the rational solution of
the NLSE shown in Fig. 5 of [19] except for the finite tilt
with respect to the axes. The tilt is related to the finite value
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of a3 and is zero when a3=0. An interesting observation is
that on the central line where x=0 the shape is independent
of az. This means that the additional terms in the Hirota
equation do not have any effect on the rogue wave profile at
x=0 where the profile has its maximum. Indeed, this profile
is the same as that in the NLSE case. Consequently, the
overall maximum value of the amplitude profile is ¢,(0,0)
=3 for any value of «;.

IV. SECOND-ORDER RATIONAL SOLUTION

Linear functions corresponding to the next-higher-order
solution of the HE are also complex. We can write them
explicitly in the form

72=72r+ir2i, (20)

S2=S2r+i52i. (21)

Finding these functions using the standard algebraic relations
of the DT is not possible as those relations do not produce
new solutions when the two eigenvalues involved in the so-
Iution coincide. This is exactly our case. Thus, we do not
have any other choice but to solve the Eq. (11) once again
with the matrices that contain the HE solution ; of first
order. The linear functions found this way can be written as

ryy=m exp(%)[— a(x,— 1) + azxe(x,— 1) — d2d(x,— 1)

+ a%xbl(x,— 1) - agxzbz(x,— )+ a§x3b3(x,— 1)

- aSx*b, /Dy, (22)

Fai=m exp(%)[xk(x,— 1) — azp(x,t) + a%xg(x,— 1)
- agxzfl (x,— 1)+ a§x3f2(x,— 1) - a§x4f3]/D1 , (23)

ix
Sy, =M exp(g)[xk(x,t) + asp(x,1) + adxg(x,1) + aax*f (x,1)

+ a§x3f2(x, t) + agx4f3]/D1 . (24)

Sy =—m exp(%)[a(x, 1) + azxe(x,1) + a%d(x,t) + agxbl(x,t)

+ aéxzbz(x,t) + a§x3b3(x,t) + a§x4b4(x,t)]/D1 , (25)

where m is an arbitrary real constant reflecting the fact that
linear functions can be of any amplitude and the polynomials
q,a,k,c,p,d,g,b, and f are defined below.

For convenience, we introduce ¢(z) as follows:

q(t) =3+ 12t + 168 + 16¢*.
The polynomials ¢,a,k,c,p,d, and g are then given by
a(x,t) =—q(1) — 8x*(3 — 61+ 2x%),
k(x,t) = — 8(41° + 4x%t = 3t + 4x* + 3),

c(x,1) =24(- 88 — 122 + 8x%t + 2t — 4x* - 1),
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p(x,t) == 6[q(t) + 16x*(= 1 + 3t + 61 + x%)],
d(x,1) = 6[13¢(r) — 8x*(9 — 421 + 2x?)],

g(x,1) =48(47 — 361> — 20x%t — 15t + 16x% + 18).
Furthermore, the 'b’ polynomials are given by

by(x,r) = 144[13(7 = 81 + 12¢% + 16£°) + 12(11 + 41)x°],
b,(x,1) = 3456(— 26 + 391 + 78> + 6x%),
bs(x,1) = 269568(1 + 41),

b, =1617408.
And finally the 'f’ set of polynomials is given by
f1(x,1) =288(37 — 361 + 841> + 28x?),

Fo(x,1) = 20736(9¢ - 1),

f3=414720.

Linear functions given by the above equations allow us to
find the complete second-order solution according to Eq.
(17).

Although the coefficient m is arbitrary, for convenience of
further calculations, we relate it to a; through the equation

2m*(1 = 12003 + 6084a3) = 1.

Defining it this way saves us from writing excessively com-
plicated formulas for G,, H,, and D, in the solution below.
With this simplification, we can now write the exact second-
order rational solution of the Hirota equation explicitly

G, + itz)

D, (26)

y(x,1) = eix(l +

where

G,/12 = — 161* = 384 asxr® — 24[4(3643 + x> + 1172
—96a3x[12(1203 + 1)x* + 7]t — 16(1296 a3 + 21603
+5)x* = 724403 + 1)x% + 3, (27)

Hy/24 = — 161* - 384zt — 8[ (43243 + 4)x* - 3]7°
— 96a3x1[4(3605 + 1)x% + 1] - 16(36053 + 1)%*
—8(180a; + 1)x* + 15, (28)
and
D, = 641% + 2304 asxt — 432(624 a3 — 405 — 1)x*
+36(55605 + 11)x* + 9 + 64(36a3 + 1)°x°
+384a53(12(60a3 + 1)x% — 1)x + 481*((7200a3 + 4)x?
+1) + 12(16(6480a3 + 21605 + 1)x* — 24(60a5 + 1)x*
+9)2 + 144a3x(16(36a5 + 1)%x* + (8 — 864a3)x> + 17)1.
(29)
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FIG. 4. (Color online) Second-order Hirota rational soliton [Eq.
(26)] for a3=0.17.

Indeed, the function (26) exactly satisfies the Hirota equa-
tion. This can be checked using modern tools for analytic
calculations such as “Mathematica” or equivalent, and also
numerically. The amplitude profile of this solution is shown
in Fig. 4 while the contour plot of the same function is in
Fig. 5.

Of course, when a;=0, the solution reduces to the NLSE
second-order rational solution [19]. On the central line x=0,
where the solution reaches its maximum, we have

G,(0,1) = 12(3 - 241> — 161%),
and
D,(0,7) =9 + 108¢% + 48¢* + 64°,

so the wave profile is then independent of a;. Remarkably,
the function #,(0,7) is the same as for the solution of the
NLSE. The absolute maximum value of the profile occurs at
(x,7)=(0,0) and equals to 5 for any aj.

FIG. 5. (Color online) Contour plot [(dimensionless) ¢ horizon-
tal and x vertical] of the second-order Hirota rational soliton [Eq.
(26)] for a3=0.17.

PHYSICAL REVIEW E 81, 046602 (2010)

max|y(t,x)|

FIG. 6. Numerical simulations for the Hirota equation, showing
the field maxima on evolution. Parameters of the simulation are
presented inside of this figure.

V. ROGUE WAVES IN A RANDOM FIELD

The rational solutions that we have found analytically are
regular. They have no singularities, contrarily to other types
of rational solutions [34,35]. This implies that they may have
a physical meaning. Do they have it in reality? In our previ-
ous work [20] we found that rational solutions of the NLSE
equation are closely related to the rogue waves. They do
appear in a CW field modulated by a chaotic perturbation.

In order to reveal the usefulness of our solutions, we
made numerical simulations of the Hirota equation that start
with a CW solution which is perturbed by a random function
characterized by two parameters: the amplitude of the pertur-
bation and its correlation length. The latter also defines the
range of frequencies involved in the initial dynamics. Nor-
mally, we should fill the interval of frequencies that are
modulationally unstable. Frequencies that are beyond that
range may not grow directly due to the instability but they do
grow due to the four-wave mixing process. Thus, the pres-
ence of these frequencies in the initial conditions is also im-
portant in the overall dynamics.

Specifically, when solving the Hirota equation we used
the following initial conditions:

#0,1) = 1 + palt),

where a(f) is a complex stochastic function. Its real and
imaginary parts are independent, and each has normal statis-
tics with variance unity and a Gaussian correlation function.
M renormalizes the variance of the whole initial condition to
the desired (small) value. We take w=0.1 in the simulations
presented below. It is essential that the real and imaginary
parts of the function a(r) are independent. We know that the
amplitude of a purely periodic perturbation has to have a
specific complex value to lead to a homoclinic orbit (see Fig.
1 of [14]). Any other complex number results in an orbit
periodic in the x variable. Thus, the randomness of the initial
condition would not be complete without this requirement.
Starting from the above initial condition leads to the ex-
ponential growth of those spectral components which are
modulationally unstable. Of course, the initial amplitudes of
these components are different for each realization. The nu-
merical results for a particular choice of a, u=0.1, 7, and a
particular realization are shown in Fig. 6. Here, for each x we
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plot the maximum value of the field amplitude found in the
whole range of the ¢ coordinate. In our simulations, the ¢
interval is taken to be [-300,300] which is sampled with
65 536 points. This result corresponds to a special realiza-
tion, as usually the absolute maximum does not reach such a
high value as 5.

The initial growth in Fig. 6 is almost perfectly exponential
and related to a particular maximum emerging from the oth-
erwise chaotic field. The growth continues until x is around
4. Further evolution becomes chaotic in the x direction with
the abrupt jumps in the curve due to the fact that the position
of the absolute maximum changes its temporal position as
the numerical grid is very wide and therefore comprises a big
number of local maxima at each x. The general evolution of
the two-dimensional field ¢ is somewhat different from the
case of the NLSE [19]. However, these detailed features will
be discussed elsewhere. What is important for us here is the
field profile around the absolute maximum of the curve
found in Fig. 6. Namely, we are interested in the point which
is close to x=42.2. Once we find the value ¢ where this
maximum occurs, we can plot the color contour plot of the
transverse profile of the field in Fig. 7. This plot is very
similar to that presented in Fig. 5 for the exact rational solu-
tion of the second order. If we eliminate the radiation waves
around the peak this would be the rational solution of the
second order with high accuracy. The amplitude at the point
of maximum in the latter case is close to 5 which is another
confirmation that we are dealing with the rational solution of
the second order. Thus, the rational solutions of the second
order can play the role of the rogue waves in the field de-
scribed by the Hirota equation. Our numerical simulations
confirm this.

VI. CONCLUSIONS

In conclusion, we have modified the Darboux transforma-
tion method to find rational solutions of the Hirota equation
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FIG. 7. (Color online) Numerical solution of the Hirota equation
around a maximum of the field which approximately equals to 5, for
a3=0.17 (absolute maximum in Fig. 6). Note its similarity to the
rogue wave shown in Fig. 5.

of the first and second orders. Our numerical simulations
have shown that the second-order rational solution is a pro-
totype of a rogue wave produced by the Hirota equation from
random initial conditions with a given small amplitude of
chaotic perturbations. Given that Hirota equation has the
terms which may describe more accurately the waves in the
ocean and in optical fibers than the nonlinear Schrodinger
equation, our findings could be important for further progress
in understanding the rogue wave phenomenon.
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