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A quantum kinetic approach for the energy relaxation in strongly coupled plasmas with different electron
and ion temperatures is presented. Based on the density operator formalism, we derive a balance equation for
the energies of electrons and ions connecting kinetic, correlation, and exchange energies with a quite general
expression for the electron-ion energy-transfer rate. The latter is given in terms of the correlation function of
density fluctuations which allows for a derivation of increasingly realistic approximation schemes including a
coupled-mode expression. The equilibration of the contributions of the total energy including the species
temperatures in dense hydrogen and beryllium relevant for inertial confinement fusion is investigated as an
example.
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I. INTRODUCTION

The experimental characterization of strongly coupled
plasmas and warm dense matter becomes increasingly accu-
rate with the development of new methods for the creation
and probing of such states. For instance, x-ray scattering al-
lows not only for the measurement of the equation of state
but also to obtain structural, dynamic, and collective proper-
ties of dense matter �1–5�. Moreover, traditional shock �6,7�
and isentropic compression experiments �8,9� keep extending
the parameter space tested. With these new possibilities, one
is now able to probe the physics of high-energy density mat-
ter as it is encountered during inertial confinement fusion
�10� or in the interior of planets �11,12�.

The creation of states with high energy density in the
laboratory requires a large and fast energy input into matter.
Since static techniques, such as diamond anvil cells, are re-
stricted to lower temperatures and densities, one relies on
dynamic experiments applying intense particle beams or la-
sers to heat and compress the material under investigation.
Inevitably, highly nonequilibrium states are produced with
the energy being pumped mainly into either the ion or the
electron subsystem.

Nonequilibrium states are of great interest by itself as
they reveal many dynamic and collective properties of the
system more clearly. However, a good understanding of the
relaxation processes driven by the initial energy deposition is
also needed for definitive measurements of equilibrium prop-
erties. Apart from the hydrodynamic response, temperature
equilibration takes the longest of all relaxation processes
and, thus, defines the minimum time delay between pump
and probe pulses needed for equilibrium measurements.

Temperature equilibration is furthermore interesting since
its time scale of a few picoseconds is experimentally acces-
sible �4,5,13�. However, an intense discussion about relax-
ation times started when Dharma-wardana and Perrot �14�
found considerably smaller energy-transfer rates as predicted

by the Landau-Spitzer �LS� theory �15,16� and early com-
puter simulations �17,18�. Indeed, experiments investigating
dense plasmas found also strong indications of longer relax-
ation times, thus smaller energy-transfer rates �19–21�.

Two shortcomings of the easy-to-use LS approach were
associated with these discrepancies: �i� the neglect of the
collective excitations in the plasma and �ii� the use of clas-
sical collisions in a �unscreened� Coulomb field. The latter
was investigated applying a quantum approach for binary
collisions which yields however even larger energy-transfers
rates �22–24�. Considering independent electron and ion
modes within Fermi’s golden rule �FGR� yields rates very
close to the LS results �25,26�. The coupling of the electron
and ion modes can however change the mode structure and
consequently the effective electron-ion interaction. Such
coupling effects are also known for electron-phonon systems
in semiconductors �27,28�. For a more realistic description of
temperature equilibration, it is thus essential to develop a
theory that includes the collective modes of the fully coupled
electron-ion system.

Rigorous descriptions of temperature relaxation not only
consider the energy-transfer rates but also involve the inter-
play of all contributions to the internal energy. In addition to
the kinetic parts, which define the species temperatures, cor-
relations and exchange energies �29–32� and the ionization
equilibrium �33–35� can considerably influence the relax-
ation process.

Here, we assume ionization, recombination, and charge-
transfer processes to be completed and concentrate on the
electron-ion energy relaxation including collective modes
and correlation energies in a fully coupled system. We use a
quantum kinetic description which avoids any ad hoc cutoffs
known from classical descriptions and enables us to rigor-
ously derive balance equations and formulas for the energy-
transfer rates in two-temperature plasmas. Thus, a consistent
description of temperature changes, heat capacities, and en-
ergy transfer is developed.
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In Sec. II, general energy balance equations for multicom-
ponent systems are derived. This approach allows for consid-
ering correlations in both the internal energies and the
energy-transfer rates. Interestingly, it follows that the
electron-ion cross term in the interaction energy contributes
equally to the energies of the electrons and ions.

Section III demonstrates how known expressions for the
energy-transfer rates, namely the FGR and CM rates, follow
from the presented formalism. It is shown that these rates
describe the transfer of total energy between the subsystems
and the approximations made are highlighted. As the effects
of coupled collective modes are still under discussion
�14,36–40�, we present a few examples for the electron-ion
energy-transfer rates.

In Sec. IV, we show the temperature evolution in dense,
fully coupled systems including quantum effects and nonide-
ality contributions. We find deviations from an ideal tem-
perature relaxation and demonstrate how correlations and
collective modes affect the shape of the temperature curves,
the relaxation time, and the final temperature. It turns out
that the most important effect of coupled modes �CMs� is not
an increase in relaxation time but a different form of the time
evolution of the electron and ion temperatures, while corre-
lations mainly affect the final plasma temperature. A com-
parison with recent molecular-dynamics �MD� simulations
�41� shows rather good agreement for the electron-ion energy
transfer of the nearly classical system considered but small
deviations in the final temperature due to quantum effects.

II. ENERGY BALANCE EQUATION

In kinetic theory, one usually derives balance equations
starting from a specific kinetic equation. This approach
makes it particularly difficult to incorporate contributions to
the potential energy. Here, we choose another way by start-
ing from the definitions of kinetic and potential energies in
terms of reduced density operators and using their equations
of motion, the Born-Bogoliubov-Green-Kirkwood-Yvon
�BBGKY� hierarchy. Afterwards approximations, which al-
low generalization of the results of standard kinetic theory,
will be introduced.

To describe energy relaxation, we derive a balance equa-
tion for the total energy of spatially homogeneous plasmas
consisting of electrons with density ne and ions in a charge
state Z with densities nZ. Electrons and ions are both consid-
ered to have established well-defined but different tempera-
tures.

The mean kinetic and the potential energies of species ‘a’
are defined by

�Ka�t�� = Tr
1

�Ĥa�̂a�t�� , �1�

�Va�t�� =
1

2	
b

Tr
1,2

�V̂ab�̂ab�t�� , �2�

where �̂a and �̂ab are the one- and two-particle density op-
erators. The traces are performed over one- and two-particle
spaces with respect to vectors 
1� and 
2� in the respective

state spaces for particles a and b. Note that the electron-ion
cross term is here split equally between electron and ion
energies. The density operators are determined by their equa-
tion of motion which are the first two equations of the quan-
tum version of the BBGKY hierarchy �42�

i�
�

�t
�̂a = �Ĥa, �̂a� + 	

b

Tr
2

�V̂ab, �̂ab� , �3�

i�
�

�t
�̂ab = �Ĥab, �̂ab� + 	

c

Tr
3

��V̂ac + V̂bc�, �̂abc� . �4�

Here, the square brackets denote the commutator, that is

�Â , B̂�= ÂB̂− B̂Â.
Using the first equation, we find for the change in the

mean kinetic energy of species a,

�

�t
�Ka� =

1

i�
	

b

Tr
1,2

Ĥa�V̂ab, �̂ab� �5�

as the contribution following from the first term at the right-
hand side �rhs� of Eq. �3� vanishes due to the cyclical invari-
ance of the trace. For further considerations, we rewrite Eq.
�5� in the form

�

�t
�Ka� =

1

2i�
	

b

Tr
1,2

��Ĥa + Ĥb��V̂ab, �̂ab��

+
1

2i�
	

b

Tr
1,2

��Ĥa − Ĥb��V̂ab, �̂ab�� . �6�

The first term on the rhs can be transformed using Eq. �4� for
the two-particle density operator. Furthermore, we define

Ĥa+ Ĥb= Ĥab
0 , and it holds that Tr Â�B̂ , Ĉ�=−Tr B̂�Â , Ĉ�.

Then, we obtain

1

2	
b

Tr
1,2

1

i�
�V̂ab�Ĥab

0 , �̂ab��

=
�

�t

1

2	
b

Tr
1,2

�V̂ab�̂ab� −
1

2i�
	

b

Tr
1,2

�V̂ab�V̂ab, �̂ab��

−
1

2i�
	
b,c

Tr
1,2,3

�V̂ab��V̂ac + V̂bc�, �̂abc�� . �7�

The first term on the rhs is the time derivative of the mean
potential energy �cf. Eq. �2��. The other two terms vanish due
to the properties of the traces performed over two- and three-
particle space, respectively. Equation �6� can then be cast
into

�

�t
�Ka� +

�

�t
�Va� = 	

b

Zab, �8�

which connects changes in the kinetic energy with the time
derivative of the mean potential energy �Va� of species a, and
the energy-transfer rate between species a and b given by
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Zab =
1

2i�
Tr
1,2

��Ĥa − Ĥb��V̂ab, �̂ab�� . �9�

Note that only terms with b�a give nonzero rates and that
Zab=−Zba holds. Summation over species a in Eq. �8� thus
gives

	
a

�

�t
�Ka� + 	

a

�

�t
�Va� = 	

a,b
Zab = 0, �10�

which expresses the conservation of total energy.

III. ENERGY-TRANSFER RATE

Expression �9� for the energy-transfer rate between the
species is not suitable for evaluation. Here, we first derive a
general formula in terms of the correlation function of den-
sity fluctuations and then show how approximate forms can
be derived from that general expression.

A. General expressions

We write the energy-transfer rate in the form

Zab =
1

2i�
Tr
1,2

��Ĥa − Ĥb��V̂ab, �̂a�̂b + �̂ab
corr�� , �11�

where �̂ab
corr denotes the correlation part of the two-particle

density operator �̂ab. The density matrix of �̂ab in position
space can be written as

�12
�̂ab�t�
2�1�� = ��a
†�1�,t��b

†�2�,t��b�2,t��a�1,t�� ,

�12�

with the creation and annihilation operators of each species
�a

† and �a, respectively. Spin variables will be suppressed for
simplicity.

Our goal is to derive expressions for the energy-transfer
rate for dense multi-temperature plasmas including the im-
portant contributions of collective excitations. For this pur-
pose, it is useful to apply the relation �b�a�

�12
�̂ab
corr�t�
2�1�� = i�Lab

� �11�t,22�t��
t=t�, �13�

which connects the correlation part of the density matrix
with the correlation function of density fluctuations Lab

� . The
latter is given by

i�Lab
� �11�t1,22�t2� = ��b

†�2�,t2��b�2,t2��a
†�1�,t1��a�1,t1��

− ��b
†�2�,t2��b�2,t2����a

†�1�,t1��a�1,t1�� .

�14�

Applying Eq. �13� and the equations of motion for the func-
tion Lab

� �t , t��, one can derive the following expression for the
energy-transfer rate �see the Appendix for details�:

Zab = − � Tr
1,2
�

−�

� d�

2�
�V̂abLab

� �12;�,t� . �15�

Here Lab
� �12;� , t� is the Fourier transform of Lab

� �1t1 ,2t2�
with respect to the difference time �= t1− t2 and the macro-

scopic time is given by t= 1
2 �t1+ t2�. If we further account for

the fact that the function iLab
� �1t1 ,2t2� is real and, therefore,

iLab
� �12;� , t� has an even real part and an odd imaginary

part, the energy-transfer rate can be written as

Zab = − 2 Im Tr
1,2
�

0

� d�

2�
�Vab i�Lab

� �12;�,t� . �16�

Using the position space for the evaluation of the trace and
introducing the Fourier transform with respect to the relative
variable r=r1−r2, the rate Zab for spatially homogeneous
systems �no dependence on R= 1

2 �r1+r2�� takes finally the
form

Zab = − 2V Im� d3q

�2���3�
0

� d�

2�
�Vab�q�i�Lab

� �q;�,t� ,

�17�

where V denotes the volume. Thus, the rate of energy trans-
fer between species a and b is determined by the Fourier
transform of the correlation function of density fluctuations
Lab

� �q ;� , t�. The property Zab=−Zba can be shown using the
relation Lab

� �� , t�=Lba
� �−� , t�.

B. Equations for the function Lab

Appropriate approximation schemes for the correlation
function of density fluctuations Lab

� are required before ex-
pression �17� can be applied to determine the energy-transfer
rate. Lab

� is defined in the particle-hole channel and is a spe-
cial case of the function Lab. Thus, we start from the equation
for the function Lab defined on the Keldysh time contour
�43,44�

Lab�t1,t2� = 	ab�t1,t2� + 	
c,d
�

C
dt̄ 	ac�t1, t̄�VcdLdb�t̄,t2� .

�18�

Here, 	ab is the polarization function, Vab is the Coulomb
potential, and the symbol �C stands for the integration along
the Keldysh contour. For simplicity, only the time variables
were given explicitly. Applying the well-known techniques
originally introduced by Keldysh, equations for the correla-
tion functions Lab


 , and for the causal and anticausal functions
Lab

c and Lab
a can be obtained from Eq. �18� �43,44�. Further-

more, the equations for the retarded and advanced functions
follow easily.

Now we will specify our considerations for a two-
component plasma consisting of electrons and ions. As a first
approximation, we assume that 	ab=�ab	a where 	a is the
polarization function of the subsystem containing species a.
Correlation effects within the subsystems will be included
via local-field corrections �see below�. The inclusion of cross
correlations between the species in 	ab is nowadays not fea-
sible.

Applying this approximation, we have the following sys-
tem of equations defined on the contour:

Lee = 	e + 	eVeeLee + 	eVeiLie,

Lei = 	eVeeLei + 	eVeiLii,
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Lie = 	iVieLee + 	iViiLie,

Lii = 	i + 	iVieLei + 	iViiLii. �19�

Here, we used a compact form where all variables are sup-
pressed; in the time domain, the equations have the same
integral structure as Eq. �18�. It is now useful to introduce
two auxiliary functions, Le and Li, defined by

La = 	a + 	aVaaLa, �20�

which describe subsystems containing only electrons or ions.
Then the equation for Lei takes the form

Lei = LeVeiLi + LeVeiLiVieLei = Pei + PeiVeiLei, �21�

with the definition Pei=LeVeiLi. Again, Eq. �21� has to be
considered on the Keldysh contour.

The equation for the correlation function Lei
� on the physi-

cal time axis can be obtained from Eq. �21� using the
Langreth-Wilkins rules �45�

Lei
��t1,t2� = Pei

��t1,t2� + �
−�

+�

dt̄ Pei
��t1, t̄�VieLei

A �t̄,t2�

+ �
−�

+�

dt̄ Pei
R �t1, t̄�VieLei

��t̄,t2� . �22�

The advanced density response function Lei
A needed here is

determined by

Lei
A �t1,t2� = Pei

A �t1,t2� + �
−�

+�

dt̄ Pei
A �t1, t̄�VieLei

A �t̄,t2� �23�

and the retarded function, e.g., Lei
R , satisfies an equation of

the same form. From the definition Pei=LeVeiLi, we find that
the equations for the quantities Pei

�, Pei
R , and Pei

A have similar
structures as Eqs. �22� and �23�, respectively.

Again, we introduce difference and sum variables, i.e., �
= t1− t2, t= 1

2 �t1+ t2�, r=r1−r2, and R= 1
2 �r1+r2�, and apply a

gradient expansion where we only account for the terms of
lowest order with respect to the variables t and R �44�. In
spatially homogeneous plasmas, there is no dependence on
R. After Fourier transformation with respect to the difference
variables, Eqs. �22� and �23� become a set of algebraic equa-
tions for functions with the variables q, �, and t. To get a
compact representation, we suppress these variables again.
For Lei

�=̂Lei
��q ;� , t� it then follows that

Lei
� = Pei

� + Pei
�VieLei

A + Pei
RVieLei

�

= �1 + Lei
RVie�Pei

��1 + VieLei
A �

=
1

1 − Pei
RVie

Pei
� 1

1 − ViePei
A , �24�

where Pei
�=Le

�VeiLi
A+Le

RVeiLi
�. In the second step,

we have used the relation Lei
R/A=Pei

R/A / �1−Pei
R/AVie�. With

Pei
R/A=Le

R/AVeiLi
R/A, we finally obtain

Lei
��q;�,t� =

Pei
��q;�,t�


1 − Le
R�q;�,t�Vei�q�Li

R�q;�,t�Vie�q�
2
.

�25�

C. Fermi golden rule formula

Assuming weak coupling between electrons and ions, the
correlation function Lei

� can be approximated by the first term
in the first line of Eq. �24�

Lei
��q;�,t� 
 Pei

��q;�,t� . �26�

Inserting this approximation into the general expression for
the energy-transfer rate �17� yields

Zei�t� = − 2V Im� d3q

�2���3�
0

� d�

2�
�Vei�q�i��Le

��q;�,t�

�Vei�q�Li
A�q;�,t� + Le

R�q;�,t�Vei�q�Li
��q;�,t�� .

�27�

As we consider systems with well-defined temperatures for
each species, the correlation functions for every subsystem
La

� can be expressed in terms of the spectral and Bose func-
tions

iLa
��q;�,t� = Aa�q;�,t;Ta�nB��/Ta� �28�

where

Aa�q;�,t;Ta� = − 2 Im La
R�q;�,t;Ta� �29�

and nB�� /Ta�= �exp��� /kBTa�−1�−1. Applying these rela-
tions to the electron-ion energy transfer yields

Zei�t� = − V�� d3q

�2���3�
0

� d�

2�
�
Vei�q�
2

�Ae�q;�,t�Ai�q;�,t�
NB��� , �30�

where we introduced 
NB���=nB�� /Te�−nB�� /Ti�. This ex-
pression agrees with the FGR formula derived by Dharma-
wardana and Perrot �14�. It is fully determined by the inde-
pendent spectral functions of the electron and ion
subsystems. In our derivation, this decoupling originates in
approximation �26�. Although being derived in lowest order,
expression �30� has a number of advantages compared to the
LS approach: �i� it is a rate for the total-energy transfer, not
only the kinetic contributions; �ii� it is fully quantum me-
chanically which avoids arbitrary cutoffs; and �iii� it allows
for the incorporation of strong coupling within the sub-
systems.

Strong coupling within a subsystem can be accounted for
by local-field corrections �LFCs�. Using static local-field cor-
rections, the retarded density response functions can be writ-
ten as

La
R�q;�,t� =

	a
0�q;�,t�

1 − Vaa�q��1 − Ga�q,t��	a
0�q;�,t�

. �31�

Here, 	a
0 is the polarization function in the random phase

approximation �RPA�
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	a
0�q;�,t� =� dp

�2���3

fa�p,t� − fa�p + q,t�
�� + �a�p� − �a�p + q� + i�

,

�32�

where fa is the distribution function of the particles in the
subsystem a in local equilibrium with temperature Ta. The
local-field factor Ga is connected to the static structure factor
Saa�q , t� via �46�

Ga�q,t� = 1 −
kBTa

naVaa�q�� 1

Saa�q,t�
− 1� . �33�

D. Coupled mode expression

Approximation �26� leading to FGR formula �30� has to
be avoided for a description of coupled modes. For such
generalization, we consider the full expression for Lei

� as in
Eq. �25� in energy-transfer rate �17�. Again, we write the
density response in terms of spectral functions using Eqs.
�28� and �29� and arrive at

Zei�t� = − V�� d3q

�2���3�
0

� d�

2�
�
Vei�q�
2

�
Ae�q;�,t�Ai�q;�,t�
NB���


1 − Le
R�q;�,t�Li

R�q;�,t�Vei
2 �q�
2

. �34�

This equation has the same structure as that given in Ref.
�14� when coupled collective modes are considered. CM ex-
pression �34� and FGR formula �30� differ by the denomina-
tor which describes the coupling of ion and electron modes
in two-temperature plasmas. This becomes clear if one rec-
ognizes that both functions Ae and Ai are renormalized by
this denominator which contains the electron and the ion
responses. As a result, the ion modes in the CM description
are screened and become acoustic, whereas in the FGR ap-
proach an ion plasmon mode exists �40�.

Another important difference between the FGR and CM
description is how strong-coupling effects modify the results.
Within FGR, the ionic response can often be treated analyti-
cally: the � integral in Eq. �30� can be performed using the
f-sum rule for the ionic response function �25,26�. In this
case, the ionic correlations are accounted for without the
need of an explicit calculation of Gi�q , t�, and the full FGR
result agrees with the one in RPA. Thus, strong coupling
does not affect the FGR result. Such a treatment is not pos-
sible within the CM approach. Here, the full, two-component
mode structure must be calculated and integrated numeri-
cally. Coupled collective modes have been shown to signifi-
cantly reduce the electron-ion energy transfer even for weak
coupling �40�. Naturally, strong coupling affects the occur-
rence, the position, and the width of the ion acoustic modes
and, therefore, can further change the energy-transfer rates.
Indeed, ionic LFCs play the most important role as the ions
are usually the most strongly coupled species. Here, we in-
clude ionic LFCs via the connection to the static structure
factor �33� where the latter is calculated with the
hypernetted-chain method �see, e.g., Refs. �47,48��.

We want to recall the approximations applied during the
derivation of Eq. �34�: first, the polarization function was
used in a diagonal form, i.e., 	ab=�ab	a, where 	a is re-
stricted to the contributions coming from species a. Thus, 	a
is the polarization function of the subsystem of species a.
Second, only the lowest-order term in the gradient expansion
with respect to the macroscopic time t is considered as the
subsystems are assumed to be in local equilibrium with tem-
perature Ta �44,45�.

Again, the key quantities in Eq. �34� are the density re-
sponse functions of the subsystems given by Eq. �31�. For
numerical calculations, it is more convenient to write the CM
formula �34� in a different form. From Eq. �20� it follows
that

La
R�q;�,t� =

	a
R�q;�,t�

1 − 	a
R�q;�,t�Vaa

�
	a

R�q;�,t�
�a

R�q;�,t�
, �35�

with �a
R being the retarded dielectric function of the sub-

system a. The imaginary parts are given by

Vaa Im La
R�q;�,t� = Im �a

R−1
�q;�,t� = −

Im �a
R�q;�,t�


�a
R�q;�,t�
2

.

�36�

Then, the energy-transfer rate can be written as

Zei�t� = − 4V�� d3q

�2���3�
0

� d�

2�
�
NB���

�
Im �e

R�q;�,t�Im �i
R�q;�,t�


�R�q;�,t�
2
�37�

with the dielectric function of the fully coupled system

�R�q;�,t� = 1 − 	
a

Vaa�q�	a
R�q;�,t� �38�

in the denominator. In this description, strong coupling de-
scribed by LFCs is included in the dielectric functions both
in the nominator and the denominator. The mode structure is,
however, only defined by the zeros of the dielectric function
of the entire system �R.

E. Results for the energy-transfer rates

The numerical evaluation of Eqs. �30� and �37� has been
described in Ref. �40�. Figure 1 shows the results for the
electron-ion energy-transfer rates applying different ap-
proaches for hot highly compressed hydrogen. In this case,
the ion coupling, estimated by the classical coupling param-
eter �ii= �Ze�2 / �aikBTi� with ai= �3 /4�ni�1/3, is very high.
The electrons are however mostly weakly coupled as they
become degenerate at low temperatures. To include degen-
eracy, we define the electron coupling by replacing 3

2kBTe in
the classical definition by the average electron kinetic en-
ergy. The highest electron coupling is thus given by the T
=0 results at low temperatures.

In Fig. 1, we have also plotted LS rates using hyperbolic
orbits �16,26�. The latter agrees with the FGR rate at high
electron temperatures, but it is consistently smaller for lower
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temperatures as the classical approach breaks down for these
cases with degenerate electrons. The CM rates with and
without LFC are considerably smaller than FGR rates. The
maximum lowering at lower electron temperatures is almost
an order of magnitude and the high-temperature ratio is
roughly one-half �40�. For the high ion coupling considered
here, LFCs are quite important. In the case of Fig. 1, they
result in slightly increased energy-transfer rates compared to
CM rates that neglect LFC and use a dielectric function in
RPA. In other cases, we find a further reduction in the rates.

IV. ENERGY AND TEMPERATURE RELAXATION

The energy relaxation in two-temperature systems can be
determined via Eq. �8� using an appropriate energy-transfer
rate as for instance given by formula �37�. First, the species
energies must be related to the temperatures via an
quasiequation of state. Here, we consider two-component
plasmas with temperatures Te and Ti and ions in a single
charge state Z. The total energy of each subsystem �a=e , i�
can be expressed by the internal energies

Ua�Te,Ti� = �Ka� + �Va� . �39�

Consistent with energy-transfer rates �30� and �37�, the cross
contributions Uei are divided evenly between the electron
and ion energies. Then the energy balance equations for both
subsystems �Eq. �8�� can be combined as

�
�Ue

�Te

�Ue

�Ti

�Ui

�Te

�Ui

�Ti

��
dTe

dt

dTi

dt
� = � Zei�Te,Ti�

− Zei�Te,Ti�
� , �40�

and one obtains for the temporal evolution of the electron
and ion temperatures

�Te

�t
=

Zei�Te,Ti�



� �Ue

�Ti
+

�Ui

�Ti
� , �41�

�Ti

�t
= −

Zei�Te,Ti�



� �Ue

�Te
+

�Ui

�Te
� , �42�

with 
 =
�Ue

�Te

�Ui

�Ti
−

�Ue

�Ti

�Ui

�Te
.

Energy and temperature relaxation are thus determined by
the energy-transfer rates and the heat capacities of the elec-
trons and the ions. The numerical evaluation of the energy-
transfer rates was described in Sec. III �see also Ref. �40��.
The next subsection will describe the calculation of the heat
capacity and then we will give results for the relaxation.

A. Internal energies

The quantum behavior of the electrons and the strong-
coupling effects for the ions are important properties that
must be incorporated into the calculation of the internal en-
ergy and subsequently the heat capacity of the electron and
ion subsystems in a dense two-temperature plasma.

In the approach presented, the electrons can be highly
degenerate, partially degenerate, or classical. Moreover, cor-
relations can change the electron heat capacity. The most
accurate method to determine the heat capacity of a corre-
lated electron gas utilizes the density of states �DOS� g���
and the Fermi function f�� ,�e ,Te� �49�

�Ue

�Te
= �

−�

�

d��� − �F�
� f��,�e,Te�

�Te
g��� . �43�

Here, �F is the Fermi energy and it would be required to
calculate the DOS first, preferably by a first-principles simu-
lation. This is however unfeasible for calculating a complete
temperature relaxation process. Easier models for the DOS
exist for the free-electron gas only. Instead, we opt to calcu-
late the internal energy for the electrons via the Green’s func-
tion technique �44�. This method makes it possible to incor-
porate all terms up to second order in the interaction �50�,

Uee�Te,�e� = Ue
id�Te,�e� + Uee

HF�Te,�e� + Uee
MW�Te,�e�

+ Uee
e4n�Te,�e� , �44�

ne�Te,�e� =
2

�e
3 I1/2��e/kBTe� . �45�

Here, �e
2=2��2 /mekBTe is the deBroglie wavelength.

The ideal internal energy is given by

Ue
id�Te,�e� =

3V
��e

3 I3/2��e/kBTe� . �46�

The Fermi integrals I� are defined in Ref. �44�. Equation �46�
is valid for arbitrary degeneracy including the classical and
the T=0 limits where the heat capacities are cV=1.5kB and
cV�T, respectively.

The higher-order terms in Eq. �44� are the Hartree-Fock
�HF�, Montroll-Ward �MW�, and normal e4 exchange �e4n�
terms. These terms can also be evaluated for arbitrary degen-
eracy �44,50,51�. The description is consistent with the ap-
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FIG. 1. �Color online� Energy-transfer rates for hydrogen plas-
mas with ne=ni=1026 cm−3 and Ti=104 K in different approxima-
tions: LS as defined in Ref. �40�, FGR �Eq. �27��, CM �Eq. �37�� in
RPA �no LFCs�, and CM including ionic LFCs according to Eq.
�33�. The ion coupling is �ii=191.
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proximations made for the energy-transfer rates. It is quite
sufficient for laser-produced two-temperature systems with
comparably hot electrons. For the cold electrons as found in
shock-produced states such perturbation approach is not suit-
able. However, the heat capacity is only determined by the
DOS at the Fermi edge for such degenerate systems, and we
expect the ideal heat capacity to be a sufficient approxima-
tion.

The heat capacity of the strongly coupled ions is the main
source of deviation from the ideal behavior. The ideal ion
heat capacity can be very well represented by its classical
value so that we can write

1

N

�Ui

�Ti
=

3

2
kB +

�ui
c

�Ti
. �47�

The correlation contribution ui
c to the internal energy of the

ionic subsystem can be computed within the effective one-
component model from the �temperature-dependent� pair dis-
tribution function gii via

ui
c�Ti,Te� =

ni

2
�

0

�

dr�gii�r;Ti,Te� − 1��ii�r;Te� . �48�

The pair distribution function may be obtained via the
hypernetted-chain �HNC� equation applying an effective po-
tential �ii �52�. This technique allows to reasonably well
represent the features of strong coupling in the ionic system
�47,48�. The use of the Coulomb potential is equivalent to
the FGR �uncoupled electron and ion subsystems�. In first
order, the effect of the electrons can be incorporated by using
a linearly screened potential

�ii�r;Te� =
Z2e2

r
exp�− �e�Te�r� . �49�

To incorporate degeneracy, the inverse screening length of
the electrons has to be calculated from the electron Fermi
distribution via �e

2= �4e2me /��3��0
�dpfe�p�.

If an effective ion-ion potential is used, electron-ion con-
tributions are included in the internal energy of the ions.
These terms can be separated by evaluating Eq. �48� for both
Coulomb and effective potentials where the pair distribution
has to be always calculated using an effective potential. The
difference of both calculations is the cross contribution
which is then distributed evenly between the electron and ion
subsystem. Contributions from �Ui /�Te and �Ue /�Ti arise
here naturally.

B. Numerical results and discussion

The principal progression of temperature relaxation is
demonstrated in Fig. 2 where an ideal noninteracting system
is considered. On a scale of picoseconds, electron and ion
temperatures equilibrate. The final temperature of the system
with Z=1 is the arithmetic average of the initial electron and
ion temperatures if electrons and ions obey the same statis-
tics, i.e., Boltzmann. In the quantum case, the electron heat
capacity is reduced compared to its classical value. Hence, a
considerable lowering of the final equilibrium temperature
occurs for the case with a quantum heat capacity.

The final plasma temperature depends only on the quasi-
equation of state, that is, heat capacities �44� and �47� of the
subsystems. It is independent of the energy-transfer rate. The
energy-transfer rates, on the other hand, govern the evolution
of the temperatures and the relaxation time. Figure 2 com-
pares different approaches for the energy-transfer rates. The
LS transfer rate �16,26� gives the longest equilibration time.
We restrict us here to classical heat capacities as the LS rate
was derived in a purely classical framework. Comparing the
result of the LS relaxation with the relaxation on the basis of
the CM rate, one observes that the CM relaxation time is
smaller by roughly a factor of 5. This is even more surprising
when noting that during the first stages of the relaxation CM
rates are lower than LS rates and consequently a very slow
equilibration is predicted. However, the CM relaxation accel-
erates for small temperature differences relative to the LS
equilibration and finally results in a shorter total relaxation
time.

There are three reasons for this behavior. First, the larger
temperature difference in the CM case between 10−4 and
10−2 ps will eventually drive increased energy transfer as
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FIG. 2. �Color online� Ideal temperature relaxation in a laser-
produced two-temperature hydrogen plasma. The lower panel
shows the temporal evolution of the electron and the proton tem-
peratures subject to different energy-transfer rates. The heat capaci-
ties are taken to be the ones for ideal gases in the classical limit �c�
as well as the full quantum �q� expression �46�. The middle panel
shows the energy-transfer rates during the relaxation. For better
comparison, the upper panel shows rates normalized by the tem-
perature difference.
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Zei�Te−Ti. Second, the coupled-mode effect, that consider-
ably reduces energy transfer, exists only for large tempera-
ture differences and is negligible for later times �see upper
panel in Fig. 2� �40�. Third and most importantly, the ap-
proximations for the LS energy-transfer rates break down,
yielding too low LS rates �see Fig. 1 and Refs. �22,40��.

Let us now compare results based on expressions which
were quantum statistically derived and thus justify the use of
the quantum heat capacity for the electrons. The FGR rates
are highest and consequently predict the fastest relaxation.
The CM rates on the basis of the RPA dielectric function are
the smallest leading to the longest relaxation time. Further-
more, the CM rate does not merge with the FGR rate in the
quantum case when approaching equilibrium as the electrons
are highly degenerate. This behavior occurs as the Fermi
temperature defines the mode spectrum in this case and ion
acoustic modes, which reduce the rates, exist even for Ti

Te. Moreover, strongly coupled ions have to be considered
here. Including LFC into the rates predicts a relaxation only
slightly longer than FGR �not shown�.

Figure 3 demonstrates the influence of strong coupling in
the energy-transfer rates and the heat capacities. The nonide-
ality contributions to the electron and ion heat capacities
were calculated as described in Sec. IV A. Together with the
consideration of LFC according to Eq. �33� in the CM
energy-transfer rate, this results in a consistent description of
the equilibration process. Not only kinetic energy is trans-
ferred but potential energy serves as heat source or sink that
considerably influences the final temperature, the relaxation
time, and the shape of the temperature evolution.

For comparison, we show an ideal relaxation using the
CM rate and classical heat capacity again. When using the

correct quantum heat capacity for the electrons, the final tem-
perature is lowered by a factor of 2.7 and the relaxation time
is decreased by a factor of 3. LFCs in the CM rates increase
the speed of the relaxation slightly, but correlations in the
heat capacity of the ions further decrease the final tempera-
ture by a factor of 1.5. There is only a marginal change in the
relaxation time due to the inclusion of potential-energy con-
tributions to the heat capacity, but the latter strongly influ-
ence the course of the relaxation.

It is also interesting to study the time-dependent heat ca-
pacities of electrons and ions as they drive or delay the re-
laxation. The upper panel of Fig. 3 provides those quantities.
Compared to a classical ideal gas, the ideal quantum heat
capacity of the electrons is reduced by more than a factor of
3. In the course of relaxation, the ideal electron heat capacity
further decreases with electron temperature as the electrons
become more degenerate. Correlation contributions to the
electron heat capacity are of the order of −10−7 ryd / �KN�.
This means that they tend to decrease the electron heat ca-
pacity but they are negligible here. The heat capacity of the
ions comprises the ideal part �1.5kB� and the correlation con-
tribution which is of the same order. This leads to an ion heat
capacity that is almost an order of magnitude larger than the
electron heat capacity. Similar to the electron heat capacity,
the ion heat capacity becomes smaller with time. However,
this is due to reduced coupling strength and, thus, a reduced
nonideality contribution as the ion temperature increases.

We now turn to heavier elements which allow higher
charge states. As the first example, we choose beryllium un-
der laser-heated conditions. Figure 4 contains results of our
calculations for the nonideal relaxation. In this case, there is
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only a difference of 0.6% between calculations using a quan-
tum or a classical heat capacity. Different from hydrogen, the
final temperature is very close to the initial electron tempera-
ture as the electron density is four times higher than the ion
density. Ionic correlations lower the final temperature by 7%.
The most important effect of the ionic correlations in the heat
capacity is the evolution of the ion temperature. It takes con-
siderably longer to heat up correlated ions �0.2 ps difference
between cases with and without ionic correlations�. The final
relaxation time is thus longer if correlations are included
�here, by a factor of 1.4�. Interestingly, the fact that the CM
energy-transfer rates are lower than FGR and T-matrix rates
during the initial phase does not lead to considerably longer
relaxation times. CM and FGR rates merge when the tem-
perature difference is too small for ion acoustic modes to
exist �40�. Since the FGR rates are higher than the T-matrix
rates for all times �FGR is a first Born approximation only�,
the T-matrix calculation displays the longest relaxation time
of all quantum approaches. Still, the LS approach predicts a
relaxation that lasts at least a factor of 3 longer.

Finally, we analyze a shock-produced two-temperature
plasma. The experimental conditions of Ng et al. �20� pro-
vide an interesting case as the measured relaxation times
were orders of magnitude larger than expected. In this case,
the electrons are highly degenerate and the usual LS ap-
proach completely breaks. Instead, we show results of the
Brysk energy-transfer rate �53� with a clamped Coulomb
logarithm in Fig. 5. This approach has the shortest relaxation
time. FGR rates give slightly longer equilibration times. The
relaxation times from the CM+LFC and T-matrix ap-
proaches are similar around 1 ps. It should be however
stressed that the fit to the T-matrix calculation is here over-
stretched.

The deviation in the final temperature from an ideal clas-
sical case, which yields T=12 625 K, is largely due to the

low heat capacity of the degenerate electrons. Ionic correla-
tions in the heat capacity account for a 15% deviation from
ideal behavior. This is also the reason why the full calcula-
tions in Fig. 5 show shorter relaxation times than the ideal or
classical results. Correlations in the ionic subsystem increase
the ion heat capacity and slow the relaxation down. How-
ever, the quantum effects of the electrons dominate and the
decrease in the electron heat capacity accelerates the relax-
ation.

Recently Glosli et al. published MD results for the tem-
perature equilibration process �41�. Figure 6 contains the re-
laxation of the electron and ion temperatures as seen in their
MD simulation and as it was calculated with the theory pre-
sented here. The agreement between an ideal classical relax-
ation with CM+LFC rates and the MD simulation is rather
good. It is in fact better than using any other approach for the
energy-transfer rate at our disposal. If we apply the LS for-
mula with hyperbolic orbits �22�, we find relaxation times
that are a factor of 2 longer than the MD shows. This fact
together with the observation of Glosli et al., that their LS
rates predict a relaxation two times faster than MD, clearly
prohibit the application of any LS approach.

Still, we can clearly distinguish between a classical ideal
relaxation and a more realistic nonideal case with the elec-
trons being described quantum statistically. The resulting re-
laxation time does not change significantly as electron quan-
tum effects and ionic correlations have an opposite influence.
However, the final temperature is lowered by 3% due to
quantum electrons. Of course, this cannot be picked up by
classical MD simulations.

V. CONCLUSION

Based on a quantum statistical theory of plasmas, we have
presented a rigorous derivation of balance equations for the
energy relaxation in two-temperature plasmas. Within this
approach, quantum exchange and potential-energy contribu-
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tions to the internal energy are included naturally. Moreover,
the division problem of cross species correlations is solved.
Our approach yields a very general expression for the
energy-transfer rate that is consistent with the internal energy
used. The well-known FGR and CM energy-transfer rates
follow from this general form as approximations. The
present CM scheme generalizes the expression obtained from
kinetic theory based on the Lenard-Balescu equation �40� as
it also contains strong-coupling effects. Moreover, our deri-
vation highlights the approximations that are inherent to the
present CM description: the cross terms in the polarization
function are neglected and the gradient expansion with re-
spect to the macroscopic time t is considered in lowest order.

The numerical evaluation of the FGR and CM rates re-
veals the importance of electron degeneracy and strong cou-
pling. Both influence the occurrence of ion acoustic modes
and thus can trigger large differences between the FGR and
CM rates. Strong correlations, described by static LFCs, can
further change the dispersion relation and the width of these
modes which leads to significant changes for plasmas with
strongly coupled ions. The rates normalized by the tempera-
ture difference, Te−Ti, �known as energy coupling constants�
are indeed almost constant if described within the LS, FGR,
or T-matrix approach while the CM energy coupling con-
stants may change considerably during the relaxation.

The equilibration process is also strongly influenced by
potential-energy contributions. Our approach allows for a
consistent description of the heat capacities and energy-
transfer rates including strong correlations and exchange.
Ionic properties have been described via classical integral
equation techniques. Contributions of the electrons have
been calculated using a quantum perturbation approach. The
relaxation times in highly degenerate plasmas are signifi-
cantly shorter than a classical description predicts. Contribu-
tions of ionic correlations in the internal energy tend to in-
crease the relaxation times, but they mainly affect the final
temperature and the evolution of the ion temperature. Our
comparison with recent classical MD simulations shows rea-
sonable agreement if the CM energy-transfer rates are used.

For future applications and comparisons, we favor CM
rates including LFC combined with a consistent set of heat
capacities. However, strong electron-ion scattering
�T-matrix� effects should be included in addition to yield a
more realistic and truly superior description.
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APPENDIX: GENERAL EXPRESSIONS
FOR THE ENERGY-TRANSFER RATE

We start with the expression for energy-transfer rate �11�
and insert relation �13� to obtain

Zab =
1

2i�
Tr
1,2

��Ĥa − Ĥb��V̂ab, �̂a�̂b + i�Lab
� �� . �A1�

By applying the equations of motion for the creation and
annihilation operators �44�, one can derive the following
equations of motion for the function Lab

� �t1 , t2�:

i�
�

�t1
Lab

� �t1,t2� = �Ĥa,Lab
� �t1,t2�� + i�	

c

Tr
3

�V̂ac,L�ac�b
� �t1,t2�� ,

i�
�

�t2
Lab

� �t1,t2� = �Ĥb,Lab
� �t1,t2�� + i�	

c

Tr
3

�V̂bc,La�bc�
� �t1,t2�� ,

�A2�

where the special three-particle correlation functions are
given by

�i��2L�ac�b
� �t1,t2� = ��b

†�t2��b�t2��a
†�t1��c

†�t1��c�t1��a�t1��

− ��b
†�t2��b�t2����a

†�t1��c
†�t1��c�t1��a�t1��

�A3�

and

�i��2La�bc�
� �t1,t2� = ��b

†�t2��c
†�t2��c�t2��b�t2��a

†�t1��a�t1��

− ��b
†�t2��c

†�t2��c�t2��b�t2����a
†�t1��a�t1�� .

�A4�

The expression on the right-hand side of Eq. �A1� can be
transformed with help of Eq. �13� and the equations of mo-
tion �Eq. �A2�� into the form

Zab =
1

2
Tr
1,2

1

i�
��Ĥa − Ĥb��V̂ab, �̂a�̂b��

+
1

2
Tr
1,2

i�V̂ab��� �

�t2
−

�

�t1
�Lab

� �t1,t2���
t1=t2

−
1

2	
c

Tr
1,2,3

i�V̂ab��V̂ac,La�bc�
� �t1,t1��

− �V̂bc,L�ac�b
� �t1,t1��� . �A5�

Using the equal-time commutation relations for the field op-
erators and accounting for b�a, we have

�i��2La�bc�
� �t1,t1� = �ac��3 − 1����a

†�1���b
†�2���c�3��a�1��

+ �̂abc�t1� − �̂a�t1��̂bc�t1� , �A6�

where �̂abc, �̂bc, and �̂a denote three-, two-, and one-particle
density matrices, respectively. By inserting this relation and a
similar one for L�ac�b

� �t1 , t1� into Eq. �A5�, one can see easily
that some terms vanish or cancel each other. Then we find
using the equation of motion for the one-particle density op-
erator
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Zab =
1

2
Tr
1,2

i�Vab��� �

�t2
−

�

�t1
�Lab

� �t1,t2���
t1=t2

+
1

2
Tr
1,2

Vab��a� �

�t1
�b� − � �

�t1
�a��b� . �A7�

The second term on the rhs vanishes for spatially homoge-
neous systems. In the first term, we can introduce the Fourier
transform of the correlation function of density fluctuations

Lab
� �t1 , t2� with respect to the time difference �= t1− t2 defined

by

Lab
� ��,t� =� d�

2�
e−i��Lab

� ��,t� , �A8�

where t= 1
2 �t1+ t2� is the macroscopic time. Then we get for

the energy-transfer rate

Zab = − Tr1,2�
−�

� d�

2�
��V̂abLab

� ��,t� . �A9�

�1� A. Ravasio et al., Phys. Rev. Lett. 99, 135006 �2007�.
�2� S. H. Glenzer et al., Phys. Rev. Lett. 98, 065002 �2007�.
�3� E. García Saiz et al., Nat. Phys. 4, 940 �2008�.
�4� A. L. Kritcher et al., Science 322, 69 �2008�.
�5� B. Barbrel et al., Phys. Rev. Lett. 102, 165004 �2009�.
�6� G. W. Collins et al., Science 281, 1178 �1998�.
�7� M. D. Knudson, D. L. Hanson, J. E. Bailey, C. A. Hall, J. R.

Asay, and W. W. Anderson, Phys. Rev. Lett. 87, 225501
�2001�.

�8� R. F. Smith, J. H. Eggert, M. D. Saculla, A. F. Jankowski, M.
Bastea, D. G. Hicks, and G. W. Collins, Phys. Rev. Lett. 101,
065701 �2008�.

�9� A. Grinenko, D. O. Gericke, and D. Varensov, Laser and Part.
Beams 27, 595 �2009�.

�10� J. D. Lindl et al., Phys. Plasmas 11, 339 �2004�.
�11� B. Militzer, W. B. Hubbard, J. Vorberger, I. Tamblyn, and S. A.

Bonev, Astrophys. J. Lett. 688, L45 �2008�.
�12� N. Nettelmann et al., Astrophys. J. 683, 1217 �2008�.
�13� A. L. Kritcher et al., Phys. Rev. Lett. 103, 245004 �2009�.
�14� M. W. C. Dharma-wardana and F. Perrot, Phys. Rev. E 58,

3705 �1998�.
�15� L. D. Landau, Phys. Z. Sowjetunion 10, 154 �1936�.
�16� L. Spitzer, Physics of Fully Ionized Gases �Interscience, New

York, 1962�.
�17� J. P. Hansen and I. R. McDonald, Phys. Lett. A 97, 42 �1983�.
�18� U. Reimann and C. Toepffer, Laser Part. Beams 8, 763 �1990�.
�19� P. Celliers, A. Ng, G. Xu, and A. Forsman, Phys. Rev. Lett.

68, 2305 �1992�.
�20� A. Ng, P. Celliers, G. Xu, and A. Forsman, Phys. Rev. E 52,

4299 �1995�.
�21� D. Riley, N. C. Woolsey, D. McSherry, I. Weaver, A. Djaoui,

and E. Nardi, Phys. Rev. Lett. 84, 1704 �2000�.
�22� D. O. Gericke, M. S. Murillo, and M. Schlanges, Phys. Rev. E

65, 036418 �2002�.
�23� D. O. Gericke, M. S. Murillo, and M. Schlanges, Laser Part.

Beams 20, 543 �2002�.
�24� Note that a classical collision theory yields for dense plasmas

too low and with further increasing density �or decreasing tem-
perature� negative Coulomb logarithms which translates into
too low or negative energy-transfer rates in the Landau-Spitzer
theory. The consideration of hyperbolic orbits �22� avoids the
total break down of the theory for high densities �low tempera-
tures�, but it still underestimates the cross sections.

�25� G. Hazak, Z. Zinamon, Y. Rosenfeld, and M. W. C. Dharma-
wardana, Phys. Rev. E 64, 066411 �2001�.

�26� D. O. Gericke, J. Phys.: Conf. Ser. 11, 111 �2005�.
�27� M. E. Kim, A. Das, and S. D. Senturia, Phys. Rev. B 18, 6890

�1978�.
�28� M. W. C. Dharma-wardana, Phys. Rev. Lett. 66, 197 �1991�.
�29� D. O. Gericke and M. S. Murillo, Proceedings of the Interna-

tional Conference. on Inertial Fusion Science and Applications
Monterey, edited by W. J. Hogan �American Nuclear Society,
La Grange Park, IL, 2004�.

�30� D. O. Gericke, M. S. Murillo, D. Semkat, M. Bonitz, and D.
Kremp, J. Phys. A 36, 6087 �2003�.

�31� D. O. Gericke, Th. Bornath, and M. Schlanges, J. Phys. A 39,
4739 �2006�.

�32� J. Daligault and G. Dimonte, Phys. Rev. E 79, 056403 �2009�.
�33� Th. Ohde, M. Bonitz, Th. Bornath, D. Kremp, and M.

Schlanges, Phys. Plasmas 3, 1241 �1996�.
�34� Th. Bornath, M. Schlanges, and R. Prenzel, Phys. Plasmas 5,

1485 �1998�.
�35� D. O. Gericke, G. K. Grubert, Th. Bornath, and M. Schlanges,

J. Phys. A 39, 4727 �2006�.
�36� M. W. C. Dharma-wardana, Phys. Rev. E 64, 035401�R�

�2001�.
�37� J. Daligault and D. Mozyrsky, Phys. Rev. E 75, 026402

�2007�.
�38� J. Daligault and D. Mozyrsky, High Energy Density Phys. 4,

58 �2008�.
�39� G. Gregori and D. O. Gericke, EPL 83, 15002 �2008�.
�40� J. Vorberger and D. O. Gericke, Phys. Plasmas 16, 082702

�2009�.
�41� J. N. Glosli, F. R. Graziani, R. M. More, M. S. Murillo, F. H.

Streitz, M. P. Surh, L. X. Benedict, S. Hau-Riege, A. B. Lang-
don, and R. A. London, Phys. Rev. E 78, 025401�R� �2008�.

�42� W.-D. Kraeft, D. Kremp, W. Ebeling, and G. Röpke, Quantum
Statistics of Charged Particle Systems �Akademie-Verlag, Ber-
lin, 1986�.

�43� V. L. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 �1964� �Sov.
Phys. JETP 20, 235 �1965��.

�44� D. Kremp, M. Schlanges, and W.-D. Kraeft, Quantum Statis-
tics of Nonideal Plasmas �Springer-Verlag, Berlin, Heidelberg,
2005�.

�45� D. C. Langreth and J. W. Wilkins, Phys. Rev. B 6, 3189
�1972�.

�46� S. Ichimaru, Rev. Mod. Phys. 54, 1017 �1982�.
�47� K. Wünsch, P. Hilse, M. Schlanges, and D. O. Gericke, Phys.

Rev. E 77, 056404 �2008�.
�48� K. Wünsch, J. Vorberger, and D. O. Gericke, Phys. Rev. E 79,

ENERGY RELAXATION IN DENSE, STRONGLY COUPLED … PHYSICAL REVIEW E 81, 046404 �2010�

046404-11

http://dx.doi.org/10.1103/PhysRevLett.99.135006
http://dx.doi.org/10.1103/PhysRevLett.98.065002
http://dx.doi.org/10.1038/nphys1103
http://dx.doi.org/10.1126/science.1161466
http://dx.doi.org/10.1103/PhysRevLett.102.165004
http://dx.doi.org/10.1126/science.281.5380.1178
http://dx.doi.org/10.1103/PhysRevLett.87.225501
http://dx.doi.org/10.1103/PhysRevLett.87.225501
http://dx.doi.org/10.1103/PhysRevLett.101.065701
http://dx.doi.org/10.1103/PhysRevLett.101.065701
http://dx.doi.org/10.1017/S0263034609990310
http://dx.doi.org/10.1017/S0263034609990310
http://dx.doi.org/10.1063/1.1578638
http://dx.doi.org/10.1086/594364
http://dx.doi.org/10.1086/589806
http://dx.doi.org/10.1103/PhysRevLett.103.245004
http://dx.doi.org/10.1103/PhysRevE.58.3705
http://dx.doi.org/10.1103/PhysRevE.58.3705
http://dx.doi.org/10.1016/0375-9601(83)90097-X
http://dx.doi.org/10.1017/S0263034600009150
http://dx.doi.org/10.1103/PhysRevLett.68.2305
http://dx.doi.org/10.1103/PhysRevLett.68.2305
http://dx.doi.org/10.1103/PhysRevE.52.4299
http://dx.doi.org/10.1103/PhysRevE.52.4299
http://dx.doi.org/10.1103/PhysRevLett.84.1704
http://dx.doi.org/10.1103/PhysRevE.65.036418
http://dx.doi.org/10.1103/PhysRevE.65.036418
http://dx.doi.org/10.1017/S0263034602204012
http://dx.doi.org/10.1017/S0263034602204012
http://dx.doi.org/10.1103/PhysRevE.64.066411
http://dx.doi.org/10.1088/1742-6596/11/1/011
http://dx.doi.org/10.1103/PhysRevB.18.6890
http://dx.doi.org/10.1103/PhysRevB.18.6890
http://dx.doi.org/10.1103/PhysRevLett.66.197
http://dx.doi.org/10.1088/0305-4470/36/22/334
http://dx.doi.org/10.1088/0305-4470/39/17/S67
http://dx.doi.org/10.1088/0305-4470/39/17/S67
http://dx.doi.org/10.1103/PhysRevE.79.056403
http://dx.doi.org/10.1063/1.871748
http://dx.doi.org/10.1063/1.872807
http://dx.doi.org/10.1063/1.872807
http://dx.doi.org/10.1088/0305-4470/39/17/S65
http://dx.doi.org/10.1103/PhysRevE.64.035401
http://dx.doi.org/10.1103/PhysRevE.64.035401
http://dx.doi.org/10.1103/PhysRevE.75.026402
http://dx.doi.org/10.1103/PhysRevE.75.026402
http://dx.doi.org/10.1016/j.hedp.2008.01.001
http://dx.doi.org/10.1016/j.hedp.2008.01.001
http://dx.doi.org/10.1209/0295-5075/83/15002
http://dx.doi.org/10.1063/1.3197136
http://dx.doi.org/10.1063/1.3197136
http://dx.doi.org/10.1103/PhysRevE.78.025401
http://dx.doi.org/10.1103/PhysRevB.6.3189
http://dx.doi.org/10.1103/PhysRevB.6.3189
http://dx.doi.org/10.1103/RevModPhys.54.1017
http://dx.doi.org/10.1103/PhysRevE.77.056404
http://dx.doi.org/10.1103/PhysRevE.77.056404
http://dx.doi.org/10.1103/PhysRevE.79.010201


010201�R� �2009�.
�49� N. W. Ashcroft and N. D. Mermin, Solid State Physics �Holt,

Rinehart, Winston, New York, 1976�.
�50� J. Vorberger, M. Schlanges, and W.-D. Kraeft, Phys. Rev. E

69, 046407 �2004�.

�51� W.-D. Kraeft, M. Schlanges, J. Vorberger, and H. E. DeWitt,
Phys. Rev. E 66, 046405 �2002�.

�52� J. F. Springer, M. A. Pokrant, and F. A. Stevens, Jr., J. Chem.
Phys. 58, 4863 �1973�.

�53� H. Brysk, Plasma Phys. 16, 927 �1974�.

VORBERGER et al. PHYSICAL REVIEW E 81, 046404 �2010�

046404-12

http://dx.doi.org/10.1103/PhysRevE.79.010201
http://dx.doi.org/10.1103/PhysRevE.69.046407
http://dx.doi.org/10.1103/PhysRevE.69.046407
http://dx.doi.org/10.1103/PhysRevE.66.046405
http://dx.doi.org/10.1063/1.1679070
http://dx.doi.org/10.1063/1.1679070
http://dx.doi.org/10.1088/0032-1028/16/10/005

