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Stochastic Turing patterns in the Brusselator model
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A stochastic version of the Brusselator model is proposed and studied via the system size expansion. The
mean-field equations are derived and shown to yield to organized Turing patterns within a specific parameters
region. When determining the Turing condition for instability, we pay particular attention to the role of
cross-diffusive terms, often neglected in the heuristic derivation of reaction-diffusion schemes. Stochastic
fluctuations are shown to give rise to spatially ordered solutions, sharing the same quantitative characteristic of
the mean-field based Turing scenario, in term of excited wavelengths. Interestingly, the region of parameter
yielding to the stochastic self-organization is wider than that determined via the conventional Turing approach,
suggesting that the condition for spatial order to appear can be less stringent than customarily believed.
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I. INTRODUCTION

Turing instability constitutes a universal paradigm for the
spontaneous generation of spatially organized patterns [1]. It
formally applies to a wide category of phenomena, which
can be modeled via the so called reaction-diffusion schemes.
These are mathematical models that describe the coupled
evolution of spatially distributed species, as driven by micro-
scopic reactions and freely diffusing in the embedding me-
dium. Diffusion can potentially seed the instability by per-
turbing the mean-field homogeneous state, through an
activator-inhibitor mechanism, and so yielding to the emer-
gence of patched, spatially inhomogeneous, density distribu-
tion [2]. The realm of application of the Turing ideas encom-
passes different fields, ranging from chemistry to biology,
from ecology to physics. The most astonishing examples, as
already evidenced in Turing original paper, are perhaps en-
countered in the context of morphogenesis, the branch of
embryology devoted to investigating the development of pat-
terns and forms in biology [3].

Beyond the qualitative agreement, one difficulty in estab-
lishing a quantitative link between theory and empirical ob-
servations has to do with the strict conditions for which the
organized Turing patterns are predicted to occur. In particu-
lar, and with reference to simple predator-prey competing
populations, the relative degree of diffusivity of the interact-
ing species has to be large according to the theory prescrip-
tions, and at variance with the direct experimental evidence.
Moreover, patterns formation appears to be rather robust in
nature, as opposed to the Turing predictive scenario, where a
fine tuning of the parameters is often necessary.

In [4] it was demonstrated that collective temporal oscil-
lations can spontaneously emerge in a model of population
dynamics, as due to a resonance mechanism that amplifies
the unavoidable intrinsic noise, originating from the discrete-
ness of the system. Later on an extension of the model was
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proposed [5] so to explicitly account for the notion of space.
It was in particularly shown that the number density of the
interacting species oscillates both in time and space, a mac-
roscopic effect resulting from the amplification of the sto-
chastic fluctuations about the time independent solution of
the deterministic equations. More recently, Butler and Gold-
enfeld [6] proved that persistent spatial patterns and temporal
oscillations induced by demographic noise, can develop in a
simple predator-prey model of plankton-herbivore dynamics.
The model considered by the authors of [6] exhibits a Turing
order in the mean field theory. The effect of intrinsic noise
translates however into an enlargement of the parameter re-
gion yielding to the Turing mechanism, when compared to
its homologous domain predicted within the conventional
linear stability analysis. This is an individual based effect,
which has to be accommodated for in any sensible model of
natural phenomena, and which lacks in the Turing interpre-
tative scenario, that formally applies to the idealized con-
tinuum limit. Interestingly, as reported in [7], the discrete-
ness of the scrutinized medium can yield to robust spatio-
temporal structures, also when the system does not undergo
Turing order in its mean-field, deterministic version.
Starting from this setting, we present the results of our
investigations carried out for a spatial version of the Bruss-
elator model, which we shall be introducing in the forthcom-
ing section. As opposed to the analysis in [6], we will operate
within the so called urn protocol, where individual elements
belonging to the inspected species are assumed to populate
an assigned container. The proposed formulation of the Brus-
selator differs from the one customarily reported in the lit-
erature. Additional terms are in fact obtained building on the
underlying microscopic picture. These latter contributions
are generally omitted, an assumption that we interpret as
working in a diluted limit. Interestingly, the phase diagram of
the homogeneous (aspatial) version of the model, is remark-
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ably different from its diluted analogue, a fact we will sub-
stantiate in the following.

Furthermore, when constructing the mean-field dynamics
from the assigned microscopic rules, one recovers nontrivial
cross-diffusive terms, as previously remarked in [5]. These
are derived within a self-consistent analysis and ultimately
stands from assuming a finite carrying capacity in a given
spatial patch. As such, they potentially bear an important
physical meaning, which deserves to be further elucidated.
This scheme, alternative to conventional reaction-diffusion
models, calls for an extension of the original Turing condi-
tion, that we will derive in the following. This is the second
result of the paper.

Finally, by making use of the van Kampen system size
expansion, we are able to estimate the power spectrum of
fluctuations analytically and so delineate the boundaries of
the spatially ordered domain in the relevant parameters’
space. As already remarked in [6], the role played by the
intimate graininess can impact dramatically the Turing vi-
sion, returning a generalized scenario that holds promise to
bridge the gap with observations.

II. SPATTAL VERSION OF THE BRUSSELATOR MODEL

The Brusselator model represents a paradigmatic example
of an autocatalytic chemical reaction. This scheme was origi-
nally devised in 1971 by Prigogine and Glandsdorff [8] and
quickly gained its reputation as the prototype model for os-
cillating chemical reaction of the Belosouv-Zhabotinsky
[9,10] type. In the following we shall consider a slightly
modified version of the original formulation, where the num-
ber of reactants X and Y is conserved and totals in N, includ-
ing the empties, here called E [4]. Moreover we will consider
a spatially extended system composed of () cells, each of
size I, where reactions are supposed to occur [ 13]. Practically
each cell hosts a replica of the Brusselator system: the mol-
ecules are however allowed to migrate between adjacent
cells, which in turn implies an effective spatial coupling im-
puted to the microscopic molecular diffusion. A periodic ge-
ometry is also assumed so to restore the translational invari-
ance. Although the calculation can be carried out in any
space dimension D (see [5,7]) we shall here mainly refer to
the D=1 case study, so to privilege the clarity of the message
over technical complications. It should be however remarked
that our conclusions are general and remain unchanged in
extended spatial settings. Mathematically, the model can be
cast in the form

a

A+E—A+X;,

b
Xi+B—>Yl'+B,

c

2Xi + Yi_> 3Xi?

d
Xi*)El',

where the index i runs from 1 to () and identifies the cell
where the molecules are located. The autocatalytic species of

PHYSICAL REVIEW E 81, 046215 (2010)

interest to us are X; and Y;. The elements A and B work as
enzymatic activators, and keep constant in number. As such,
they can be straightforwardly absorbed into the definition of
the reaction rates. Let us label with n; (respectively, m; and
0,) the number of element of type X; (respectively, Y; and E))
populating cell i. Then, assuming N to identify the maximum
number of available cases within each cell, one gets N=n;
+m;+o0; a condition, which can be exploited to reduce the
actual number of dynamical variables to two. The dynamics
of the model is ultimately related to studying the coupled
interaction between the discrete species n; and m;. The mi-
gration between neighbors cells is specified through

"
Xl+Ej_)EL+X_]’

5
Yi + Ej_>El + Yj’

Assuming a perfect mixing in each individual cell i, the tran-
sition probabilities 7(-|-) read [4]

N—ni—mi

T(n;+ 1,mln;;m;) =a NO

( 1 1| )——b—i
I'(n.— ,m;+ M ,
n; m n;,m N

2

n;m;
T(n;+ 1,m;— 1in;, d—
(n; m;—1|n;,m;) = o

n;
T ‘—1, ilMis =C___ l
(n; = Lmyfn;,m;) = CNQ (1)

where according to the standard convention, the rightmost
input specifies the original state and the other entry stems for
the final one. In addition, the migration mechanism between
neighbors cell is controlled by

nN—n;

— _l_‘;l
T(n; - Ln;+ 1|nisnj) = MN Nz
T(m; = 1,m; + 1|mym,) = gl =n—m )
) i+ i . 5
m; m; m;,m; N NO:

where the positive constants u and & quantify the diffusion
ability of the two species and z stands for the number of first
neighbors. To complete the notation setting, we introduce the
Q-dimensional vectors n and m to identify the state of the
system. Their i-th components, respectively, read n; and m;.

The aforementioned system is intrinsically stochastic. At
time ¢ there exists a finite probability to observe the system
in the state characterized by n and m. Let us label P(n,m,?)
such a probability. One can then write down the so-called
master equation, a differential equation, which governs the
dynamical evolution of the quantity P(n,m,z). The master
equation for the case at hand takes the form
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Q
J
a—tP(n,m,t) = 2 [(&x.— DT(n; + 1,m]n;,m,)

+ (6;—(_ 1)T(nl_ 1ami7

nhmi)
+ (&g €y, — DT(n;— 1,m; + 1|n;,m;)

+ (6)_(.6;— DT(n;+ 1,m; - ]|ni’mi)

+ 2 [(6}[6;(1.— ])T(l’ll_ l,nj+ 1|n,,n])

Jjei
L
X P(n,m,7), (3)

where use has been made of the definition of the step opera-
tors

e?f(...,ni, om)=f(..n 1, ...

e;f(n,...,m,-,...):f(n,...,m,-i1,...), (4)

and where the second sum in Eq. (3) runs on first neighbors
J €i. Equation (3) is exact, the underlying dynamics being a
Markov process. The master equation (3) contains informa-
tion on both the ideal mean-field dynamics (formally recov-
ered in the limit of diverging system size) and the finite N
corrections. To bring into evidence those two components,
one can proceed according to the prescriptions of van Ka-
mpen [11], and write the normalized concentration relative to
the interacting species as

&

n; m; i

N - ¢l(t) + \”W’ N - lzbt(t) + \”%’ (5)
where &; and 7, stand for the stochastic contribution. The
ansatz (5) is motivated by the central limit theorem and holds
provided the dynamics evolve far from the absorbing bound-
aries (extinction condition). Here 1/\N plays the role of a
small parameter and paves the way to a perturbative analysis
of the master equation. At the leading order one recovers the
mean-field equations, while the fluctuations are characterized
as next to leading corrections. The following section is de-
voted to discussing the system dynamics, according to its
mean-field approximation.

III. MEAN-FIELD APPROXIMATION
AND THE TURING INSTABILITY

Performing the perturbative calculation one ends up with
the following system of partial differential equations for the
¢(1) and (1) in cell i:

0.pi=—bi—de;+a(l — ;. — ) + c T,
+ u[Ad; + Ay — i Ad],

O =bdi— i+ AP+ YA p— bAY],  (6)

where 7=1/(N()). In Eq. (6) we have introduced the discrete
Laplacian operator A acting on a generic function f; as
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FIG. 1. The nature of the fixed point (¢, s3) as a function of
the parameters (b,c): in region I the fixed point is a stable node,
while in II it is a stable spiral. The dashed line ¢=8b delineates
region III where the fixed point disappears, following a saddle-node
bifurcation.

A=23 (1. )

Zjei

The above sum runs on the first neighbors, which we assume
to total in z. The limit {}— o corresponds to shrinking the
lattice spacing [ to zero and so obtaining the continuum
mean-field description. In this limit the system (6) converges
to

dp==bp—dp+a(l - d— i) +cd*y;
+u[V:h+ oV2y— yV2 4],

Ip=b—cdY+ AV Y+ V- ¢Vl (8)

where the population fractions go over the population densi-
ties and the rescaling u— ul> and 5— &> have been per-
formed [14]. As also remarked in [5], cross-diffusive terms
of the type ¢V2i—V?¢ appear in the mean-field equations,
as a relic of the microscopic rules of interaction. More pre-
cisely, they arise as a direct consequence of the finite carry-
ing capacity hypothesis. This observation materializes in a
crucial difference with respect to the heuristically proposed
reaction-diffusion schemes and points to the need for an ex-
tended Turing analysis, i.e., derive the generalized conditions
yielding to organized spatial structures. Before addressing
this specific issue, we start by discussing the homogeneous
fixed point of Eq. (8). From hereon we will set a=d=1, a
choice already made in [12] for the original Brusselator
model and which will make possible to visualize our conclu-
sion in the reference plan (b,c) for any fixed ratio of the
diffusivity amount & and pu.

A. Homogeneous fixed points

Plugging a=d=1 into Egs. (8) and looking for homoge-
neous solutions implies
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d=(1-¢=-)-(1+b)d+cd’y,
J=bd-cd’y.

As an important remark we notice that in the diluted limit
¢, <1, the system tends to the mean-field of the original
Brusselator model, as, e.g., reported in [12]. For a proper
tuning of the chemical parameters (assigning significantly
different strength) one can prove that, if initialized so to
verify the diluted limit, the system stays diluted all along its

)

. c—\-8bc+c?
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subsequent evolution. As a corollary, the diluted solution is
contained in the formulation of the Brusselator here consid-
ered, this latter being therefore regarded as a sound generali-
zation of the former. Notice that when operating under di-
luted conditions, the cross-diffusive terms appearing in the
spatial equations (8) can be neglected and the standard
reaction-diffusion scheme recovered. Again, let us emphasize
that it is the finite carrying capacity assumption that modifies
the mean-field description.
System (9) admits three fixed points, namely,

c+\-8bc+c?

$1=0, e PR w0
fpl=1, l}_l+\r—8bc+cz A _1 V= 8bc + c?
270 2¢O T2 2¢

The first of the above corresponds to the extinction of the
species X: it exists for any choice of the freely changing
parameters b,c and corresponds to a stable attractor for the
dynamics. This solution is not present in the original Bruss-
elator mean-field equations and its origin can be traced back
to the role played by the limited capacity of the container.

The remaining two fixed points are, respectively, a saddle
point and a (nontrivial) stable attractor. They both manifest
when the condition —8b+¢ >0 is fulfilled. The saddle point
partitions the available phase space into two domains, each
defining the basin of attraction of the stable points. When ¢
=8b a saddle-node bifurcation occurs: the fixed points

(¢, 1) and (¢, ¢) collide to eventually disappear. The fi-
nite carrying capacity that follows the “urn representation” of
the Brusselator dynamics destroys the limit cycle solution,
which is instead found in its celebrated classical analogue
[12]: no periodic solutions are found in the mean-field ap-
proximation, unless the diluted limit is considered. The spe-

cific nature of fixed point (s, ¢;) changes as a function of
the parameters (b,c), as illustrated in Fig. 1. In region I, it is
a stable node, while in II it is a stable spiral. Region III
identifies the parameters values for which it disappears. We
are here concerned with the stability of the homogeneous

fixed point (¢, ;) to inhomogeneous perturbation: can an
instability develop and yield to organized Turing-like spatial
patterns?

B. Extending the Turing instability mechanism:
The effect of cross-diffusion

To answer the previous question one has to perform a
linear stability analysis around the selected homogeneous so-

lution ((%3,12/3), hereafter termed ((%,12/), accounting for the
effect of nonhomogeneous perturbation. The formal develop-
ment is closely inspired by the original Turing calculation,
but now the effects of cross-diffusive terms need to be ac-

commodated for. The technical details of the derivation are
enclosed in the annexed Appendix, where the most general
problem is defined and inspected. We will here take advan-
tage from the conclusion therein reached and present the re-
sults relative to the Brusselator model. In this specific case
a=d=1, the dispersion relation (A7) reads in particular

1
NE) = A+ KB+ g[C+Dk2+8k4]”2, (11)
C

where
3b ¢ 1
1+ — ——\e(=8b
A + 1 16 16\6‘( 8b+c),
B 35+Vc(—8b+c)5 M Ve(=8b+c)u

b}

8 8c 4 4c

C=256¢% + 128bc? + 144b*c? = 32¢3 = 32b3 + 2¢*
+\e(=8b + ¢)(—32¢% = 24bc* + 2¢%),

D =—64c>5+ 16bc* 5+ 8¢5+ 128¢u + 96bc?
- 16w+ e(=8b +¢) - (— 64c5—80bcd
+8c28+ 128cu+ 32bcp — 16¢% 1),

E==32bc& +40c2 8 + 128bc S — 32> S — 128bcu®

+3262 6% + V(= 8b + ¢)(— 24¢ 8 — 32¢ 8 + 32c ).
(12)

The perturbation gets amplified if N(k?)>0 over a finite in-
terval of k values. The edges, k; and k,, of the interval are
identified by imposing \(k*)=0, which returns the following
results:
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FIG. 2. Upper panel: the domain corresponding to the Turing
instability are displayed in the (b,c) plan for =15 and u=1. The
solid line (zone 2) delineates the region calculated when accounting
for the cross-diffusive contribution, the dashed one (zone 1) stands
for the conventional Turing analysis where diffusion is modeled via
Laplacian operators (i.e., disregarding cross-diffusion). Lower
panel: dispersion relation \(k) vs k. Here ¢=70 and b=3,5,6,7
(starting from the dotted bottom curve).

I

1
kyy=——=[2c8b-1)+8b*(u— &) —bcu+ Vc(-8b +c¢)
T 2V2bou

X (28-2b5—bu) + (F+c(=8b+0)G)]'"2,  (13)
where
F=2{4c*8 - 8bc(2 + ¢) & + 32b*(5— w)?
—4b3c(88 =28+ 3u>) + b>c[4(12 + ¢) 8 + c 2]},

G=2{-4c8 +8bcS + 8’28 — S — u?)
+b[-4(4+¢)8 - 166u + cu]}. (14)

By making use of conditions Eq. (A9) as derived in the
Appendix, the predicted region for the Turing instability is
traced in the (b,c) parameter space for an assigned ratio of
mutual diffusivity, see Fig. 2. When compared to the conven-
tional Turing analysis, based on the heuristically hypoth-
esized reaction-diffusion scheme [i.e., removing the cross
terms in Eq. (8)], the region of inhomogeneous instability
shrinks, the condition for spatial self-organization becoming
even more peculiar than so far believed.

Up to now we have carried out the analysis in the con-
tinuous mean-field scenario neglecting the role of finite size
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corrections. Stochastic fluctuations can however amplify due
to an inherent resonant mechanism and consequently give
rise to a large scale spatial order, similar to that predicted
within the Turing interpretative picture [6]. The following
section is entirely devoted to clarifying this important point.

IV. ROLE OF STOCHASTIC NOISE AND THE POWER
SPECTRUM OF FLUCTUATIONS

At the next to leading order in the van Kampen perturba-
tive development one ends up with a Fokker-Planck equation
for the probability distribution of the fluctuations I1(£, »,1)
=P(n,m, ) where the vectors & and » have dimensions ()
and respective components ¢ and 7;. The derivation is
lengthy but straightforward and the reader can refer to, e.g.,
[5,7]. for a detailed account on the mathematical technicali-
ties. We will here report on the outcome of the calculation in
terms of the predicted power spectra of the fluctuations close
to equilibrium. In complete analogy with, e.g., Egs. (36) and
(37) of [5] the latter can be written as

Pix() = (|E(w)P,

Piy(w) = (| m(o)]?),

where the w and k stand, respectively, for Fourier temporal
and spatial frequencies [15]. Exploiting the formal analogy
between the governing Fokker-Planck equation and the
equivalent Langevin equation one eventually obtains (see
Egs. (38) and (39) in [5])

C[ + Bk ”wz
P x(w) = : ,
(@) (0? - Qio)z +T0?
C2 + Bk 22(1)2
Py y(w) = :

2 2 \2 2 .22
(0" = Q) +Tw
where

Cyx(@) =By 1Mi,22 = 2By oM oMy 00 + Bk,ZZMI%,IZ’
(15)

Cry(w) = Bk,zzMz,n = 2By oMy 21 My 11 + By 1Mz,21 .
(16)

The 2 X2 matrix M, of elements M, ;; reads

M (—2—b+2c<2>¢+ﬂ(1—(p)Ak —1+cd?+ udh, )
k= s

b=2cdir+ A, —cd?+ 1 - P,
(17)

and the elements By ;, respectively, are

By =1+bd— P+ cdP—2udA+2ud? A+ 2udPh,,
(18)

Bk,12=—b$—c$2fﬁ, (19)
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FIG. 3. (Color online) Upper panels: the power spectra Py x(w)
for ¢=70 and b=3,6 (going from left to right). Here 6=15 and u
=1. The selected values of b and c fall outside the region of Turing
instability, as follows the mean-field linear stability calculation (see
Fig. 2). Lower panels: the power spectra Py x(0) plotted vs k so to
enable one to appreciating the range of excited spatial wavelengths.
This latter approximately matches that found in the realm of the
Turing mean-field calculation (see Fig. 2), implying similar charac-
teristic of the spatially ordered structures.

By = b+ cdPP— 2800+ 28hPA, + 28077, (20)

with the additional condition B ,=B;,;. Finally, Qi,o
=det My, I'y=—tr M, and the Fourier transform of the La-
placian A,=2[cos(kl)—1]. In the continuum limit, the cell
size goes to zero and A, scales as A, ~ k> [5].

We are now in a position to represent the power spectrum
of the fluctuations as predicted by the system size expansion.
In Fig. 3 we display a selection of power spectra relative to
one population and for different values of the parameter b, at
fixed ¢ and diffusivity amount (see caption). The snapshots
refer to a region of the parameter space for which we do not
expect spatial order to appear, based on the Turing paradigm.
However, and beyond the simplified mean-field viewpoint, a
clear spatial peak is displayed, which gains in potency as the
boundary of the Turing domain is being approached. Physi-
cally, it seems plausible to assume that the demographic
noise can modify the dispersion relation. As a consequence,
the curve \(k), negative defined beyond the region of Turing
instability, can locally cross the zero line, taking positive
values in correspondence of specific k. These latter modes
get therefore destabilized, yielding to quasi-Turing struc-
tures. Clearly, the k candidate to drive the stochastic insta-
bilities are the ones close to k., the wave number that
identifies the position of the maximum of the dispersion re-
lation. If the above scenario is correct, k,,, should then be
reasonably similar to the k value that locates the peak posi-
tion in the power spectra P(k,-)(0). In Fig. 4 such compari-
son is drawn, for both species and over a window of b val-
ues, confirming the adequacy of the proposed interpretation.
Based on the above, we can convincingly argue that the spa-
tial modes here predicted represent an ideal continuation of
the Turing structures beyond the region of parameters de-
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FIG. 4. (Color online) Left panel: symbols refer to the values in
k that identify the maximum of the function P x(0), here plotted as
a function of b. The solid line stands for the position of the maxi-
mum of the mean-field dispersion relation \(k). Parameters are set
as in Fig. 3. Right panel: as in the left panel, but now the symbols
refer to species Y.

puted to the mean-field instability and, for this reason, we
suggest to refer to them as to stochastic Turing patterns.

The fact that spatial order appears for a wider range of the
control parameter is further confirmed by visual inspection
of Fig. 5, where the region of stochastic induced spatial or-
ganization, delineated from the power spectra calculated
above, is depicted and compared to the corresponding mean-
field prediction. Notice that the domains yielding to stochas-
tic Turing patterns structures are different depending on the
considered species. This observation marks yet another dif-
ference with respect to the standard mean-field theory. We
can in fact expect to observe spatially ordered structures for
just one of the two species, while the other is homogenously
distributed.

As an additional point, we consider the case d=u=1. This
choice cannot yield to the genuine Turing order, a pro-
nounced difference in the relative diffusivity rates being an
unavoidable prerequisite. As opposed to the classical picture,
stochastic Turing patterns can still emerge as demonstrated in
Fig. 6.

From the above expressions for the power spectra, one
can also show that for u=6=0 (the aspatial limit) quasiperi-
odic time oscillations manifest in the concentrations. This is
an effect of inner stochastic noise, which restores the oscil-

c
100+

80

60+

40

20r

FIG. 5. The extended domain of Turing-like instability predicted
by the stochastic based analysis: the dashed line refers to species X,
while the dot-dashed to species Y. The stochastic Turing region is
confronted to the corresponding mean-field solution (solid line, also
depicted in Fig. 3).
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FIG. 6. (Color online) Left panel: the power spectra Py x(w) for
a=d=1, ¢=70, and b=8. Spatial and temporal peaks appear now to
be decoupled. Right panel: the corresponding power spectra Py x(0)
plotted vs k. A clear peak is displayed.

lations destroyed by the introduction of the carrying capacity.
In general terms, self-oscillatory dynamics could be possibly
understood, as resulting from the discrete nature of the me-
dium, a scenario alternative to any ad hoc mean-field inter-
pretation.

V. CONCLUSION

Spatially organized patterns are reported to occur in a
large gallery of widespread applications and are currently
interpreted by resorting to the paradigmatic Turing picture.
This vision, though successful, relies on a mean-field de-
scription of the relevant reaction-diffusion schemes, often
guessed on purely heuristic basis. An alternative scenario
would require accounting for the intimate microscopic dy-
namics and so encapsulating the effect of the small scale
graininess. This latter translates into stochastic fluctuations
that, under specific conditions, can amplify and so give rise
to organized spatio-temporal patterns. In this paper we have
considered a microscopic model of Brusselator, and shown
that Turing-like patterns can indeed emerge beyond the pa-
rameter region predicted by the conventional Turing theory
and due to the role of finite size corrections to the mean-field
idealized dynamics. This result is obtained via a system size
expansion, which enables us to return closed analytical ex-
pressions for the power spectra of fluctuations. Our results
agree with the conclusion reached in [6] for another model
and employing different analytical tools. Organized patterns
can therefore occur more easily than expected, an observa-
tion that can potentially help reconciling theory and obser-
vations. In particular we find stochastic Turing patterns to
emerge for 6~ u, a condition for which Turing order is pre-
vented to occur.
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APPENDIX

Let us start by the generic set of partial differential equa-
tions

PHYSICAL REVIEW E 81, 046215 (2010)

Gp=1f(. )+ ulV:h+ $V2i— yV39],

dp=g(p. ) + AV i+ YV~ ¢V2y], (A1)

which explicitly allow for cross-diffusive contributions. We
choose to deal with zero flux boundary conditions.

Assume that in absence of diffusion (homogeneous set-
ting) the model tends towards a fixed point specified by
(g?), sz). In other words, (2), (2/, do not depend over space vari-
ables. Allowing for diffusion, and imposing u # &, can make
the system unstable to spatial perturbation. To clarify this
point, let us start by considering the Jacobian matrix for u

=5=O
fo f
()
8¢ 8y
The fixed point (¢, ) is linearly stable if J has positive
determinant and negative trace

det J=f48y—84fy> 0,
Assuming Eq. (A3) to hold one can proceed with a linear-

ization of Eq. (A1) (with w,8+#0) around (,#) and so
looking for the sought condition of instability. Define

x:(z:é), then Eq. (A1) becomes

(A2)

trJ=fy+g,<0. (A3)

L R

m( Al//) Md’A ) (Ad)
sy 1-4¢)

Define the eigenfunctions of the Laplacian operator as

(V2 + k)W, (r) =0,

dx=Jx+DVx, D= (

r e H,

and write the solution to Eq. (A4) in the form

x(t,r) = X, eNayW(r). (A5)
k

Assume p=1, or equivalently label with & the ratio of the
two diffusivities (after proper rescaling of the rate coeffi-
cients). Substituting ansatz (A5) into Eq. (A4) yields

MJI - k*D - \1]W, =0,

which implies that the system admits a solution iff the matrix
J—k’D -1 is singular, i.e.,

det(J - k’D —\1) =0. (A6)

Label the solutions of Eq. (A6) as \;(k?) and \,(k?): they can
be interpreted as dispersion relation, specifying the time
scale of departure (or convergence) of the k-th mode towards
the deputed fixed point. If at least one of the two solutions
displays a positive real part, the mode is unstable, and drives
the system dynamics towards a nonhomogeneous configura-
tion in response to the initial perturbation. Manipulating the

determinant, Eq. (A6) takes the form
N+ Nk + h(k*) =0, (A7)

where

G =2+ K281 = =)~ fs—- gy
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h(k2) = k6~ K* p6— K6 — K26 4 + K> PSf 4 + KPS,
+ kzg?ﬁgd,—f,/,g(/,— k2g¢+ kztzg¢,+f¢g¢,.

N (k?) and \,(k?) are obtained as roots of Eq. (A7). The
actual dispersion relation, (k%) in the main body of the pa-
per, is the one that displays the largest real part. We notice
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that (i) g(k?) is always positive as >0 by definition; (ii)
(1-d—1)>0 as ¢ and ¢ are concentrations; (iii) ~fo—8y
>0 due to Eq. (A3). Left-hand side of Eq. (A7) is hence a
parabola with the concavity pointing upward and the mini-
mum positioned in the half-plane of negative abscissa. In
conclusion a necessary and sufficient condition for the exis-
tence of real roots is #<<0 where

a=s1-¢-49),
h(k?) = ak* + bk + . 5:—5f¢—g¢+ &(5f¢+g¢)+@(5f¢+g¢)’ (A8)
c=det],

with @>0,¢>0. The condition for 7 <<0 corresponds to b<0 and b2-4ac>0. Summing up the condition for the generalized

Turing instability reads

(8f g+ 8y) = B(Sf 4+ 84) — WSy +g,) >0,

[(5f s+ ) — BSfy+8y) — WO y+8) > 481 — d— Pdet J,

together with Eq. (A3).

(A9)
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