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Instantons re-examined: Dynamical tunneling and resonant tunneling
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Starting from trace formulas for the tunneling splittings (or decay rates) analytically continued in the
complex time domain, we obtain explicit semiclassical expansions in terms of complex trajectories that are
selected with appropriate complex-time paths. We show how this instantonlike approach, which takes advan-
tage of an incomplete Wick rotation, accurately reproduces tunneling effects not only in the usual double-well
potential but also in situations where a pure Wick rotation is insufficient, for instance dynamical tunneling or
resonant tunneling. Even though only one-dimensional autonomous Hamiltonian systems are quantitatively
studied, we discuss the relevance of our method for multidimensional and/or chaotic tunneling.
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I. INTRODUCTION: EVENTS OCCUR
IN COMPLEX TIME

Instantons generally refer to solutions of classical equa-
tions in the Euclidean space-time, i.e., once a Wick rotation
t——it has been performed on time ¢ in the Minkowskian
space-time. Since the mid-seventies, they have been exten-
sively used in gauge field theories to describe tunneling be-
tween degenerate vacua [1]. In introductory texts [[2,3], for
instance], they are first presented within the framework of
quantum mechanics: when the classical Hamiltonian of a
system with one degree of freedom has the usual form

1
H(p.q) = 5p2+ V(g) (1)

(p and ¢ denote the canonically conjugate variables), the
Wick rotation induces an inversion of the potential and, then,
some classical real solutions driven by the transformed
Hamiltonian p?/2-V(g) can be exploited to quantitatively
describe a tunneling transition. As far as we know, in this
context, only the simplest situations have been considered,
namely the tunneling decay from an isolated minimum of V
to a continuum and the tunneling oscillations between N de-
generated minima of V that are related by an N-fold symme-
try. In those cases, what can be captured is tunneling at the
lowest energy only. However, not to speak of the highly non-
trivial cases of tunneling in nonautonomous and/or nonsepa-
rable multidimensional systems, there are many situations
that cannot be straightforwardly treated with a simple inver-
sion of the one-dimensional, time-independent, potential.
First, tunneling—i.e., any quantum phenomenon that can-
not be described by real classical solutions of the original
(non Wick-rotated) Hamilton’s equations—may manifest it-
self through a transition that is not necessarily a classically
forbidden jump in position [4]. For instance, the reflection
above an energy barrier, as a forbidden jump in momentum,
is indeed a tunneling process [3,6]. In the following, we will
consider the case of a simple pendulum whose dynamics is
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governed by the potential V(g)=1 cos g; for energies larger
than the strength y>0 of the potential, one can observe a
quantum transition between states rotating in opposite direc-
tion while two distinct rotational classical solutions, obtained
one from each other by the reflection symmetry, are always
disconnected in real phase-space.

A second example is provided by a typical situation of
resonant tunneling: when, for instance, V has a third, deeper,
well which lies in between two symmetric wells [see Fig.
6(a)], the oscillation frequency between the latter can be af-
fected by several orders of magnitude, when two eigenener-
gies get nearly degenerate with a third one, corresponding to
a state localized in the central well. Then, we lose the cus-
tomary exponential weakness of tunneling and it is worth
stressing, coming back for a second to quantum field theory,
that having a nearly full tunneling transmission through a
double barrier may have drastic consequences in some cos-
mological models. In this example, one can immediately see
[Fig. 6(b)] that —V also has an energy barrier and working
with a complete Wick rotation only remains insufficient in
that case.

In order to describe the tunneling transmission at an en-
ergy E below the top of an energy barrier, which may be
crucial in some chemical reactions, the pioneer works by
Freed [7] and George and Miller [8,9] have shown that the

computation of a Green’s function 6(qf,qi;E) (or a scatter-
ing matrix element) requires taking into consideration clas-
sical trajectories with a complex time. These complex times
come out when looking for the saddle-point main contribu-
tions to the Fourier transform of the time propagator,

~ 1 * .
G( ] 19E) = —f G( s i;t)elEt/hdt’ (2)
4549 \/ﬁ . 4549

which is, up to now, the common step shared by all the
approaches involving complex time [[10-14], for instance].
Though well suited for the study of scattering, indirect com-
putations are required to extract from the poles of the energy
Green’s function (2) some spectral signatures of tunneling in
bounded systems. Generically, these signatures appear as
small splittings between two quasidegenerate energy levels
and can be seen as a narrow-avoided crossing of the two
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levels when a classical parameter is varied [15-18]. In the
present article, we propose a unified treatment that provides
a direct computation of these splittings [formulas (9) or
(10)]; as shown in Sec. II, it takes full advantage of the
possibility of working not necessarily with purely imaginary
time, but with a general parametrization of complex time as
first suggested in [19]. The semiclassical approach naturally
follows (Sec. III) and some general asymptotic expansions
can be written [Egs. (C6) and (40)] and simplified [Eq. (73)];
they constitute the main results of this paper. To understand
where these formulas come from and how they work, we will
start with the paradigmatic case of the double-well potential
(Sec. IV) and the simple pendulum (Sec. V); we defer some
general and technical justifications in the appendices. Then
we will treat the resonant case in detail in Sec. VI, where an
appropriate incomplete Wick rotation ¢+ e~% provides the
key to showing how interference effects a la Fabry-Pérot
between several complex trajectories reproduce the nonexpo-
nential behavior of resonant tunneling, already at work in
open systems with a double barrier [20,21]. After having
shown how to adapt our method to the computations of es-
cape rates from a stable island in phase-space (Sec. VII), we
will conclude with more long-term considerations by ex-
plaining how our approach provides a natural and new start-
ing point for studying tunneling in multidimensional sys-
tems.

II. TUNNELING SPLITTINGS

A particularly simple signature of tunneling can be iden-
tified when the Hamiltonian has a two fold symmetry and,
therefore, we will consider quantum systems whose time-

independent Hamiltonian H=H(p,§) commute with an op-

erator S such that $2=1 (the ~ allows to distinguish the
quantum operators from the classical phase-space functions

or maps). In most cases, S stands for the parity operator
H(-p.,-q)=H(p.q). (3)

The spectrum of H can be classified according to S and, for
simplicity, we will always consider a bounded system whose
discrete energy spectrum and the associated orthonormal
eigenbasis are defined by

A =Ef|ldr), Slor)= = |b0), (4)

where n is a natural integer. When the Planck constant # is
small compared to the typical classical actions, standard
semiclassical analysis [[22-24]] shows that one can associate
some classical regions in phase-space to each eigenstate
|, ). This can be done by constructing a phase-space repre-
sentation of |¢f), typically the Wigner or the Husimi repre-
sentation, and look where the corresponding phase-space
function ¢ (p,q) is mainly localized (all the more sharply
than % is small). For a Hamiltonian of the form (1) where V
has local minima, some of the eigenstates remain localized in
the neighborhood of the stable equilibrium points. For in-
stance, for a double-well potential whose shape is shown in
Fig. 1(a), the symmetric state |¢;) and the antisymmetric
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state |¢,) at energies below the local maximum of the barrier
have their Husimi representation localized around both stable
equilibrium points (p,q)=(0, * a), more precisely along the
lines H(p,q)=E (1d tori) at energy E=E' =E . Because of
the nonexact degeneracy of E' and E;, any linear combina-
tion of |¢') and |¢,) constructed in order to be localized in
one well only will not be stationary anymore and will oscil-
late back and forth between —a and a at a tunneling fre-
quency |E,—E}|/(2mh). At low energy this process is classi-
cally forbidden by the energy barrier. This is very general,
even for multidimensional nonintegrable systems: the split-
ting AE,=|E,—E}| between some nearly degenerated dou-
blets provides a quantitative manifestation of the tunneling
between the phase-space regions where the corresponding
eigenstates are localized.

Rather than computing the poles of E—>G(a,-a,E), an-
other systematic strategy to obtain one individual splitting
[49] is to start with Herring’s formula [26-28] that relies on
the knowledge of the eigenfunctions outside the classically
allowed regions in phase-space. Here, we will propose alter-
native formulas [29] that involve traces of a product of op-
erators, among them the evolution operator,

def

U(1) = miHTIh — > (6] e iEnTIh | | o) e EaTh),
n=0
(5)

analytically continued in some sector of the complex time
domain. This approach, which privileges the time domain,
provides, of course, a natural starting point for a semiclassi-
cal analysis in terms of classical complex orbits.

The simplest situation occurs when the tunneling doublet
is made of the two lowest energies Ej < E;=E{+AE, of the
spectrum. If Zw denotes the energy difference between the
nearest excited states and E, (for the double well potential
E]i 2E(;:+ﬁcu, where o is the classical frequency around the
stable equilibrium points), by giving a sufficiently large
imaginary part to -7,

—oIm(T)>1, (6)

we can safely retain the n=0 terms only, which exponentially
dominate the trace of (5). To be valid, this approximation
requires that we remain away from a quantum resonance
where the definition of the tunneling doublet is made am-
biguous by the presence of a third energy level in the neigh-
borhood of Ej and E;. Then we have immediately

tan( TAE0> _ itr(SU(T)) o

2h w(0(T))

When the tunneling splitting is smaller than Zw by several
orders of magnitude, we can work with a complex time such
that

[TIAE,

<1 8
% (8)

remains compatible with condition (6) and, therefore,
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< tr(SU(T))

AEO = Ao(T) =" R (9)
iT w(U(T))

will provide a good approximation of the tunneling splitting
for a wide range of T. Though condition (8) is widely ful-
filled in many situations this is not an essential condition
since one can keep working with tan~!. Numerically, the es-
timation (9) has also the advantage of obviating a diagonal-
ization.

When we want to compute a splitting, due to tunneling,
between an arbitrary doublet, the selection of the correspond-
ing terms in the right-hand side of (5) can be made with an

operator f[,, that will mimic the (a priori unknown) projector
|y (pF]+|¢) (#]. It will be chosen such that its matrix
elements are localized in the regions of phase-space where

¢, (p.q) are dominant. Under the soft condition
|T|AE,/(2h) <1, we will therefore take
20 w(SI1,U(T
AEHZAH(T)=—M. (10)

iT «(11,0(T))

The localization condition on the matrix elements of f[,, is a
selection tool that replaces Egs. (6). In that case, there is a
battle of exponentials between the exponentially small ma-

trix elements (| II, |¢>) and the time dependent terms
e~ "En~E)T The Jast term would eventually dominate for the
lower energy states (E,,<E,) if -Im T could be increased
arbitrarily. But once a Im 7<<0 is given, one expects to re-
cover a good approximation of the excited splitting by in-
creasing Re 7 since, when Re 7> |Im T|, we actually recover
the real time case.

The next step consists in computing A,(7) by semiclassi-
cal techniques and, then, we will add some more specific
prescriptions on the choice of 7, in order to improve the
accuracy of AE,. We will illustrate how this works in the
examples of Secs. IV-VL

Let us mention another way to select excited states that
we did not exploit further. With the help of a positive smooth
function F(u) that has a deep, isolated minimum at u=0, say
F(u)=u®" with N strictly positive, we can freeze the dynam-
ics around any energy E by considering a new Hamiltonian

def
H'(p,q)=F(H(p,q)—E). Classically, the phase-space por-
trait is the same as the original one obtained with Hamil-
tonian H except that the set of points H(p,q)=FE now con-

sists of equilibrium points. The quantum Hamiltonian H
def

=F(H-E) has the same eigenfunctions as H but the corre-
sponding spectrum is now F(E, —E). By choosing E=E],
the doublet E,f yields to the ground-state doublet AE,
=F(AE,) and we can use the approximation (9) with U’

=exp(=iH'T). With the F given above, we have

def 3 34 1/(2N)
AE, = [AL(1)]/OY = [%M] A
iT w(U'(T))
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II1I. SEMICLASSICAL EXPRESSIONS
A. Hamiltonian dynamics with complex time

Formally, the numerator and the denominator of the right-
hand side of Eq. (9) can be written as a phase-space path
integral of the form

j eSlrap 1D 4], (12)
P

where the continuous action is the functional

def sy

Slp.q:r]= (p<s)fl—§’<s)—H(p<s>,q(s))£(s))ds.

(13)

Si

The subset P of phase-space paths, the measure D[p|D[q]
and the action (13) appear as a continuous limit (7—0) of a
discretized expression whose precise definition depends on
the choice of the basis for computing the traces but, in any
cases, involves a typical, finite, complex time step 7 (see also
Appendix A). The complex continuous time path s—1(s) is
given with fixed ends #(s;)=1,=0, t(sy)=t;=T. Because the
slicing of T in small complex time steps of modulus of order
7 is arbitrary, the integrals of the form (12) remain indepen-
dent of the choice of #(s) for s;<<s<s; as long as Im #(s) is
nonincreasing in order to keep the evolution operators well
defined for any slice of time [19]. In the following we will
denote by [7] such an admissible time-path. In a semiclassi-
cal limit (keeping the order limy_,glim,_ [50]), the domi-
nant contributions to integrals (12) come from some paths in
P that extremise S, i.e., from some solutions of Hamilton’s
equations

d JH dt
==, (14a)
ds dq ds

dqg OJHdt

4_Z= (14b)
ds dpds

with appropriate boundary conditions imposed on some ca-
nonical variables at s; and/or s When H is an analytic func-
tion of the phase-space coordinates (p,q), we can take the
real and imaginary parts of equations (14), use the Cauchy-
Riemann equations that render explicit the entanglement be-
tween the real part and the imaginary part of any analytic
function f(z): Re(df/dz)=dRe f)/d(Re z)=d(Im f)/d(Im z)
and Im(df/dz)=d(Im f)/ d(Re z)=—d(Re f)/d(Im z), and then
obtain

dRep 1% dt
— == RelH— ]|, (15a)

ds dRe g ds

d(—TIm p) d dt
=— RelH— |, (15b)

ds dImgqg ds

dR d dt
oo [l o

ds dRep ds
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dImq d {R (Hﬁﬂ
ds d(—Im p) ds) |

Therefore, the dynamics described in terms of complex ca-
nonical variables is equivalent to a dynamics that remains
Hamiltonian—though not autonomous with respect to the pa-
rametrization s whenever dt/ds varies with s—involving
twice as many degrees of freedom as the original system,
namely (Re ¢,Im ¢g) and their respectively conjugated mo-
menta (Re p,—Im p). The new Hamiltonian function is then
Re(Hdt/ds) but it would have been equivalent (though not
canonically equivalent) to choose the other constant of mo-
tion Im(Hdt/ds) as a Hamiltonian.

What will be important in what follows is that [7] will not
be given a priori. Unlike in the standard instanton approach
where 7 is forced to remain on the imaginary axis, we will
see that for describing tunneling it is a more efficient strategy
to look for some complex paths (p(s),g(s)) that naturally
connect two phase-space regions and then deduce [7] from
one of the equations (14). It happens that in the two usual
textbook examples that we mentioned in the first paragraph
of Sec. I, the complex time [#] has a vanishing real part, but
in more general cases where tunneling between excited states
is studied, this is no longer true.

(15d)

B. Trace formulas

Let us privilege the g-representation and consider the ana-
Iytic continuation for complex time 7 of the well-known Van
Vleck approximation for the propagator

PS, )eiso/h_

G(qpqi;T) ~ —1)% det(
(4rd )hao%:( ) 27h dq,9q;

(16)

The sum involves (complex) classical trajectories o in phase-
space, i.e., solutions of equations (15) with g(s;)=g;, q(s))
=¢q, for a given [¢] such that #(s;)=0, #(s;)=T. The action S,
is computed along o with definition (13) and is considered as
a function of (g;,q;;T). The integer «, encapsulates the
choice of the Riemann sheet where the square root is com-
puted; it keeps a record of the number of points on o where
the semiclassical approximation (16) fails. As far as we do
not cross a bifurcation of classical trajectories when
smoothly deforming [7], the number of o’s, the value of S,
and «, do not depend of the choice of [¢]. The numerator
(respectively, denominator) of Ay(7) are given by the inte-
gral [G(nq,q;T)dg where m=-1 (respectively, n=+1).
Within the semiclassical approximation, when o contributes
to the propagator G(7q,q;T), we have to evaluate

i
o | d det
b J q\/e<2wﬁ(9q,(9qf
(17)

The steepest descent method requires the determination of
the critical points of S,(7¢,q,T). Since the momenta at the
end points of o are given by

pPi= p(si) =- aqiSu(qfsqi; T) 5

)eiSo(ﬂq,q,T)/ﬁ_
(n9.4:T)

(18a)

PHYSICAL REVIEW E 81, 046205 (2010)

pr=plsy) =0, S(qpqi3T), (18b)
the dominant contributions to tr(U(T)) come from periodic

orbits, i.e., when (py,qy)=(p;,q;), whereas the dominant con-

tributions to t(SU(T)) come from half symmetric periodic
orbits, i.e., when (p/,q,)=(~p;,—q;). As explained in detail in
the Appendix A, one must distinguish the contributions of
the zero length orbits e (the equilibrium points) from the
non-zero-length periodic orbits o. For one degree of free-
dom, their respective contributions are given, up to sign, by

o iH(Pea) T

N2 T2

with £\, the two Lyapunov exponents of the equilibrium
point e=(p,,q,), and

(19a)

> Ty
B dE

( 1),1/.0 e zS/ﬁ
\=2nimh

(19b)

where o is a periodic orbit of period T,=T if n=+1 and half
a symmetric periodic orbit of half period 7,=T if 7=—1. The
sum runs over all the branches S that compose the geometri-
cal set of points belonging to o. T is the characteristic time
(A12) on the branch B. The energy E, is implicitly defined
by Eq. (A10) and u, essentially counts the number of turning
points on o.

Expressions (19a) and (19b) are purely geometric; their
classical ingredients do not rely on a specific choice of ca-
nonical coordinates and they are independent of the choice of
the basis to evaluate the traces.

In the general case, the most difficult part consists in de-
termining which periodic orbits contribute to the semiclassi-
cal approximation of the traces. Condition 7,=T is necessary
but far from being sufficient; the structure of the complex
paths (keeping a real time) may appear to be very subtle [30]
and have been the subject of many recent delicate works
[31]. Even for a simple oscillating integral, the determination
of the complex critical points of the phase that do contribute
is a highly nontrivial problem because it requires a global
analysis: one must know how to deform the whole initial
contour of integration to reach a steepest descent paths.

Our strategy consists in retaining the terms (19b) for
which we can choose the complex time [7] to constrain the
(half) periodic orbit o to keep one of the canonical coordi-
nate (say ¢) real. This o surely contributes because we do not
have to deform the ¢ part of the integration domain of Eq.
(12) in the complex plane. But we will see in the next section
that two different periodic orbits with real g correspond to
two different choices of [f]: For a chosen [f], only some
isolated points, if any, in phase space, will provide a starting
point (p;,q;) of a trajectory with ¢(s) real all along 0. When
sliding slightly the initial real coordinate g; in the integral
(17), it requires to change [¢] as well to maintain g(s) real on
the whole o. This is not a problem since all the quantities
involved in expression (17) are [¢] independent if the defor-
mation of [7] is small enough not to provoke a bifurcation of
0, that is, whenever the initial point does dot cross one of the
turning points, which are the boundaries of the branches f.
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The integral (17) may be computed with a fixed time-path or
an adaptive one for each separated branch. This computation,
presented in the Appendix A, generates the sum over all
branches that appears in formula (19b). To sum up, to keep a
contribution to the traces, we must know if we can choose a
shape of [7] in order to pick a real-¢ periodic orbit with a
specific g;.

This construction is certainly not unique (one may choose
other constraints) so we will use the intuitive principle that
the periodic orbits we choose will connect the two regions of
phase-space that are concerned by tunneling, i.e., where ¢nt
are dominant; this is justified by the presence of the operator

fIn in the right-hand side of Eq. (10). The prefactor

def
I1,(q.q")={q|IL,|q") will select in the integral

fdqdq’Hn(q,q’)G(nq’,q;T), (20)

a domain around the projection onto the g space of the ap-
propriate tori. In the specific case of the ground-state split-

ting, condition (6) does the job of I1y: the large value of Im T
requires that the orbit approach at least one equilibrium point
and then follow a separatrix line. In general we will not be
able to prove that other complex periodic orbits give sub-
dominant contributions but the examples given in the follow-
ing sections are rather convincing. Moreover, our criterion of
selection allows us to justify the four rules presented in [[32],
Sec. ITA] for computing the contributions of complex orbits
to the semiclassical expansions of the energy Green’s func-
tion.

IV. APPLICATION TO THE DOUBLE-WELL POTENTIAL

Let us show first that our strategy leads to the usual in-
stanton results for a Hamiltonian of the form (1) with an
even V having two stable symmetric equilibrium points at
q=*a [Fig. 1(a)]; in their neighborhood, the frequency of
the small vibrations is w. We are interested in the ground-
state splitting AE, for A small enough in order to have
AE,<ho.

Before we make any semiclassical approximations, we
check in Fig. 2 the validity of the estimation (9) on the quar-
tic potential by (a) verifying that Ay(7) is almost real and
independent of the choice of the complex T provided that
conditions (6) and (8) are fulfilled, and (b) by checking that
this constant gives a good approximation of the “exact” AE|,
computed by direct numerical diagonalization of the Hamil-
tonian [33].

As explained at the end of section Sec. III, in phase-space
we will try to find some time-path [#] that allows the exis-
tence a (half) symmetric periodic orbit o that connects two
tori at (real) energy E=0 in the neighborhood of (p,q)
=(0, *a) while ¢ remains real. If we impose #(s;)=0 and
t(sp)=T, then E=E,(q;,q;,T) is implicitly given by relation
(A10). We will denote by ¢,(E) [respectively, g.(E)] the po-
sition of the turning point at energy £ >0 that lies in between
g=0 and g=a (respectively, that is larger that a). The two
branches p.(q,E)=*=\2[E-V(q)] are either purely real

PHYSICAL REVIEW E 81, 046205 (2010)

g aq 4

FIG. 1. (Color online) In the case of a double well potential
shown in (a), tunneling can be described by a solution of Eq. (14)
with a purely real ¢ evolving from one well to the other. In phase-
space, this trajectory appears to be a concatenation of two types of
curves that join on the (Re ¢) axis: (1) a trajectory that lies in the
phase-space plane (Re ¢,Re p) with real variations of 7 at energy E
with the potential V and (2) a trajectory that lies in the phase-space
plane (Re g,Im p) with imaginary variations of ¢ at energy —E with
the potential =V shown in (b). In (c) a family of constant energy
curves is shown (horizontal green (light gray) for the first type,
vertical red (dark gray) for the second type). In (d) for a given
energy, we show how the three curves [, ¢, v glue together at the
turning points (0, *+¢,). & denotes the separatrix Im p= = y2V(q).

when V(g)=E or purely imaginary when V(¢)<E. Then,
from Eq. (14b),

—=- (21)

is purely real in the classically allowed region, while purely
imaginary in the forbidden region. Therefore the complex
time path [7] must have the shape of a descending staircase
whose steps are made of pure real or pure imaginary varia-
tions of time (see Fig. 3).

The complex orbit with real g can be represented in
phase-space as a continuous concatenation of paths, follow-
ing the lines E=(Re p)?/2+V(q) in the allowed region and
—E=(Im p)?/2-V(q) in the forbidden region. It is natural to
represent o in the three dimensional section Im g=0 of the
complex phase-space with axes given by (Re g,Re p,Im p):
the junctions at the turning points lie necessarily on the
(Re p=0, Im p=0) axis [see Figs. 1(c) and 1(d)]. A periodic
orbit is made of a succession of repetitions of

(i) primitive real periodic orbits v with energy E in the
right region, that is, such that ¢.(E)<g(s)<gq, (E) and
Im p(s)=0;

046205-5



JEREMY LE DEUNFF AND AMAURY MOUCHET

10°

._.
S
S

107

10

|Re A

._.
S
3

107

=
]
]
]

10—12‘

5345 6 7 8 9101112131415
1/h

FIG. 2. (Color online) For V(q)=(¢*-a%)?* with a=1 and %
=1/12, we have plotted in the upper graph (a) the real part of A
defined by Eq. (9) as a function of the complex 7. It becomes
constant for Im7 large enough for having Eq. (6) [1/w
=1/(2y2a)=0.35] regardless of Re7. In the same range,
Im(A (7)) is negligible compared to AE,~4.4X 107'° and condi-
tion (8) is largely fulfilled. In the lower graph (b), we have com-
puted the “exact” value AE, by direct diagonalization. The black
thick solid line corresponds to In(AE;) from which we have sub-

def

stracted A(%) = —gc(ﬁw/Z)/(Zﬁ)Hn(ﬁw/ 7) in order to emphasize
the contribution of the prefactor. The blue solid line corresponds to
In|Ag|=A (%) for T=-4i and become indistinguishable from the
previous one for 1/%=3. With the same substraction, our first pro-
posal (39) gives the constant (In v7r) = 0.6 and our second one (44),
which is the same as the formula in Landau and Lifshitz [[34], Sec.
50, problem 3], corresponds to 0 (dotted line). Garg’s formula [[28],
Eq. 1.1] gives the constant (In \s‘T/ezo.m) (dash-dotted line).

(ii) primitive complex periodic orbits ¢ in the central re-
gion with purely imaginary p and real ¢, that is, such that
-q(E)<q(s)<q,(E) and Re p(s)=0;

(iii) primitive real periodic orbits [ with energy E in the
left region. They are obtained from the periodic orbits t by
the symmetry S.

By denoting T.(E) and T,(E) the (real, positive) periods of
the primitive periodic orbits v and ¢ at energy E respectively,
we have
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l-7n
4

T(E) =w.T(E) —iw T (E) —i T(E) (22)

with the winding numbers w, and w_ being non-negative in-
tegers. The trajectory o may contribute to the denominator
(mp=+1) or to the numerator (7=-1) of the right hand side of
Eq. (9) provided that T,=T. For n=+1, o is periodic
whereas, for »=-1, o is half a symmetric periodic orbit. We
will keep the contributions of all orbits for which a staircase
[] can be constructed. We can understand from Fig. 3 that
orbits differing by a small sliding of their initial ¢; can be
obtained by a small modification of the length or height of
the first step. All these contributions are summed up when
performing the integral (17) on one branch 8 and correspond
to one term in the sum Xz in formula (19b). When at least
one of the winding number is strictly larger than one, several
staircase time-paths can be constructed while keeping rela-
tion (22): they differ one from each other by a different par-
tition into steps of the length and/or heights of the staircase.
The corresponding orbits o can be obtained one from each
other by a continuous smooth sliding of the steps of the
staircase but during this process one cannot avoid an orbit
starting at a turning point where a bifurcation occurs.

In the right-hand side of Eq. (16), the sum involves sev-
eral trajectories differing one from each other by the se-
quence of turning points that are successively encountered
along o. Therefore, to compute the dominant contribution of
the non-zero-length orbits to the numerator and to the de-
nominator of Eq. (9), we will add all the contributions of the
topological classes of orbits, each of them uniquely charac-
terized by an ordered sequence of turning points [p;,ps, ... ],
in other words by a partition of w, and w, into integers and
by the branch 8 where its starting point lies. We can there-
fore express our result in a way that can be applied to cases
more general than the double well: the total contribution of
the non-zero-length paths to the numerator (7=-1) and to
the denominator (z=+1) of Eq. (9) is

Ty dE, .
2 E (= 1)t — 0 il (23)
5 [p1pos-.] \N=2nimh V¥ dT

s denotes a section of an energy surface in complex phase
space corresponding to one purely real canonical variable.
[p1,P2,...] is an ordered sequence of (not necessarily dis-
tinct) turning points that belong to a section s. The sum
concerns all s (different energies may be possible) and
[p1>p2,-..] such that we can construct on s, with an appro-
priate choice of [#], a periodic orbit o if 7=+1 (a half sym-
metric periodic orbit o if 7=-1) of period T,=T. The branch
[ is the one where o starts, the sequence of turning points
that are successively crossed by o is exactly [p;,p,,...].

In the case of the double-well, for an energy below V.,
a section s for real ¢ has four turning points (0, *¢,) and
(0, *g,). Only the points on s such that —q, <g<g, can
provide starting points of a periodic orbit. They belong to
one of the three closed loops t, ¢, | that connect on the axis
(p=0, Im g=0) at the turning points (0, £¢,). Once T is
given, the condition 7,=T7 will select a finite set of energies
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FIG. 3. (Color online) For the double well in Fig. 1, at a given energy 0<E<V,,,, when T=2T(E)—iT.(E)/2, for each one-step time
path, there exists a unique half symmetric periodic orbit with energy E keeping Im ¢=0 starting from the left allowed region. Its initial point
is uniquely defined: For the time-path depicted in the left column, (p;,q;) is such that it takes exactly the real time 7 to reach the turning point
(0,-g,) following the primitive orbit [. Then it follows half of the orbit ¢ and ends in the right well winding once along v (a). When starting
at g; <g;, there still exists a half periodic orbit joining (p;,q/) to (-p;,—¢;) in time T for some p; but unlike the previous one it gets outside
the three dimensional section Im ¢=0 (its projection is schematically represented by the dashed line in (a’). However an appropriate shift of
the time step to 7 > 7 (central column) turns the latter smoothly into a trajectory with Im g=0 (b’). During this process, the first trajectory
starting at g; cannot keep a purely real g anymore (b). If we shift the step by exactly 7, (right column), we recover a trajectory starting at
g; with purely real ¢ (c) but with a different topology since it is now winding once along [. The change of topology occurs when the initial

position reaches a turning point while sliding the step.

for which we have Eq. (22) with integers w, and w.. Any o
with winding numbers w, and w,. will have an action given
by

-7

1
So=wS +iwS. +i S. (24)

and an index

l-7
,u,a:wt+wc+—2

(25)
(in the real case, 2u, is computed in the same way as the
Maslov index: it counts the number of turning points encoun-
tered along o). These quantities are independent on the
choice of the six possible starting branch 8 (each t, ¢, [ is
made of two branches). When the orbit o starts on t or on [,
we will have Tp=T,/2 and when o starts on ¢, we have Tg
=—iT./2.

For —Im T larger than the oscillation period in the central
well of =V, w.=1 is the minimum value of the winding num-
ber when 7=+1 (just one back and forth trip around ¢) while
it is w.=0 when z=-1 (just one half of ¢ is concerned). For
these orbits, condition (6) forces ¢ to stay near the separatrix
S defined by Im p=*+2V(g) and, thus, v must lie in the
immediate neighborhood of the equilibrium point (p,q)
=(0,a). These orbits will give the dominant contribution be-
cause they have the smallest Im S, among all the other pos-
sible orbits involving repetitions of ¢. Indeed, for a fixed 7,

all the orbits o that may contribute semiclassically are such

that Im S,=-2 Im(7)S./ T, and S./T. is a decreasing function
def

of the energy E=—FE when c is inside the separatrix since

i(@) - %(%Jq"(_a 2(E + V(q)]dq—ﬁ)
T.(E)Jo

dE\TJE)) dE

4 dr(E) [+*
=—— lp(q.E)|dg < 0.
T.(E)* dE Jo
(26)

Therefore Im S, reaches its minimum when E is at its maxi-
mum, that is E— 0%. The only possible equilibrium point
contributing to tr(élA](T)) is the origin (pr.q)=(-p;.q;)
=(0,0); it is also subdominant because H(0,0)=V(0)=V,,,.
[which can be seen as the limit of SC(E)/ TC(E) when
E— =V, is strictly larger than S.(E)/T.(E) for E>=V,,..

Assuming that only orbits with real ¢ do contribute to
tr(é U (7)), we have proven that the dominant contribution is
given by the half symmetric orbits o at energy E such that
T(E)=-2Im T (w.=0). However, for such an orbit to exist
we cannot choose Re T arbitrarily since it must be an integer
multiple of T.(E). To put it in another way, for a given E, we
will choose T=w,T(E)—iT.(E)/2 such that an orbit o with a
real g exists. Condition (6) will be fulfilled if E is sufficiently
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small. We must now enumerate all the topological classes
concerned by the sum (23): When o starts on the upper
branch Imp>0 of ¢, it will reach the turning point p;
=(0,q,) then wind w, times around v alternatively crossing
(0,4)) and (0,q,) before turning back on the lower branch
Im p <O of c. Starting on the lower branch of ¢ corresponds
to the symmetric trajectory and provide the same contribu-
tion with Tp=—iT./2. When starting on the upper branch of
v, o crosses p;=(0,q,) first, then reaches p,=(0,¢,). Then it
may go on winding r times around v then take the lower
branch of ¢ up to the turning point (0,-¢,), wind w,—1-r
times around [ and eventually join the symmetric of its start-
ing point on the lower branch of [. There are exactly w, such
topological classes because we can take r=0,...,w,—1. If
we start from the lower branch of v or on one of the two
branches of [, we obtain the same contribution and exhaust
the possible topological classes. The sum of T4 on all £’s and
classes is then 2(—iT,/2)+4w.T,/2=2T and keeping only the
w.=0 solutions, the sum (23) reduces to

I 2T(- )+ JdE, .
w(SU(T)) ~ ———=— 1/ 25" 27
Sum) ~ T 0T (27)

with o being one half symmetric orbit of energy E, defined
implicitly by

T=w.TJ(E) - iT.(E)/2 (28)
with
T(E)=2 f “® 44 (29a)
¢ = —’ a
B V2[E-V(g)]
qE) dq
T.(E)=4 _t 29b
o) o
We have S,(E)=w.S.(E)+iS.(E)/2 with
IR (A —
S{(E)+ET.(E)=S.(E)= Zf V2[E - V(g)ldq,
q/E)
(30a)
_def g, (E)
S(E) - ET(E)=S.(E)= 4[ V2[V(q) - Eldq.
0
(30b)

The dominant contributions to tr(l}(T)) comes from the two
stable equilibrium points e=(0, *a) for which \,=iw. The
contribution of (0, 0) is sub-dominant as well as the contri-
bution of any periodic orbit o0 which necessarily turns around
about e during Re 7' then follow an orbit ¢ near & during
—Im T before coming back to its initial point. Together with
Eq. (6), »=1, the two stable equilibrium points give two
identical contributions (19a) and we have
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t(U(T)) ~ 2e7i72, (31)
f—0

which of course could have been deduced directly from E;
=fiw/2. Collecting all these results in the right-hand side of
Eq. (9), we obtain

2ih (dT,\ V2
Mg~ | —|=2
fi—0 7T \ dE

X exp(— i[gc(E) +(E - ﬁw/Z)TC(E)])

X exp(i;:—t[gt(E) —(E-1hw/2)T(E) - fm]) .

(32)

When E— 0", we have the following asymptotic expan-
sions (see Appendix B)

4E ( \Ea) 2024+ 1)
2T ey
w

S(E)=5,0)+ — In| -—— o(E),
w 2aw
(33a)
S.(E) = 2mk +BE? + o(E?), (33b)
with
deffu( ® 1 )
A= —— dq: 34
0 \\2V(g) a-—g¢q 1 (34)
def aT
B=2, 5 [5V(a)* - 30’V (a)] (35)

(the superscript in parenthesis indicates the order of the de-
rivative of V). The differentiation of expressions (33) with
respect to E leads to the asymptotic expansions for -7, and
T.. From the first one we can extract the exponential sensi-
tivity of E on Im 7,

E =2d*w’e*e? ™ T, (36)

From relation (28) we can see that 2d7T,/dE=2w.dT,/dE
—idT./dE is dominated by the last term if E is small.

dr, __idl._ i
2dE wE’

dE (37)

Inserting all these asymptotic expansions in the right hand
side of Eq. (32), we get

2 3 _
Ay ~ /m AE/ ) ,=S0)/(2h) ¢ ,=iw BE(E-ho)/h
h—0 a

(38)
This expression can be turned into the usual JWKB expan-
sion exp(ag(E)/fi+a;(E)In i+ay(E)+0(1)): As soon as we
have condition (6), from expression (36) we see that E is

exponentially small and we obtain a(0)=-S.(0)/2 and
a,(0)=1/2. To obtain the correct value of a,, we must pro-
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ceed to fine-tune the choice of 7. A criterion is to impose on
A, to have a vanishing imaginary part at any order in #
consistent with the JWKB expansions used so far. From Eq.

(32), we will choose E such that S,(E) =i, which is exactly
the Einstein-Brillouin-Keller quantization condition for the
ground state in one well. This leads to E=fiw/2+0(#%). Then
T.=-21n(%/(4a’w))/ w+4A/ w+0(1) and

how /eﬁw
AO /_ —S (hw/2)/(2h) _ =2aw A S (0)/(2h) (39)
h—0\ T o

which differs from [[28], Egs. (1.1) and (1.4)] by a reason-
able factor \e=1.6. This discrepancy, already noticed in
[[35], Sec. V], which appears in the third order term in the
fi-expansion, comes from the different kind of approxima-
tions involved in our approach on the one hand and in Her-
ring’s formula on the other hand.

We are also able to obtain a formula for the splitting of
the excited states that is consistent with the result given in
[[28], Eq. (B1)]. Using a semiclassical approximation for the

matrix element of ﬂn, we explain in detail in appendix C
how to obtain A,(7). For one dimensional systems whose
energy surface E, is made of two branches (two Riemann
sheets in the complex plane), we can insert Eq. (C8) into
(C6) and get one of the main result of this paper,

AD~ LS

(= 1)Hot! iSobpr b ) (40)
H02T[Pl p2.---]

To see how formula (40) works in the case of the double-
well potential, we choose the quasimode |®,) localized on
the right torus v at energy E,. This torus is made of two
branches labeled by the sign of p and we can choose a com-
mon base point for these two branches, namely, b.=g¢,(E).
On the symmetric torus [, the two base points will be b.

=-¢,(E). Then §o(b5/,b5,E,,) and the index u, do not de-
pend on the choice of the initial and final branch. The orbits
o that go from t to [ must correspond to a T of the form

T=71+wTl(E,) - i(wc + %)TC(EH) (41)

for non-negative integer (w.,w,) and a fraction of time 7
strictly smaller that T,.(E,) that depends on the initial and
final conditions (those are not necessarily symmetric). Then
we have

So(bg,bgE,) = wS, E)+z<w +1)S(E) (42)

and we take
/J“0=Wt+wc+1' (43)

For the same reason as previously explained the dominant
contributions come from those orbits where w.=0. In order
to mimic a real 7, we will choose large winding numbers w,
such that Re T=w,T.(E,)>Im T=T.(E,)/2. Because of the

quantization condition in the right well S.(E,)=(n
+1/2)27h, the rapid oscillations exp(i Re S,/#A) disappear
(or inversely if we want to maintain A, real to first order, we
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recover the usual quantization condition). Then we obtain

2h
A, ~
i—0 Tt(En)

o~ SE,)ICh) (44)

The classical frequency 1/T,(E,) attached to t is essentially
of order w/(27). A,(T) becomes independent of T for large
w,: the behavior of 7 is mainly governed by w,T,, then the
1/T prefactor in Eq. (40) is compensated by the increasing
number of identical terms in the sum since we have seen that
the number of topological classes of orbits increases linearly
with 4w, (the factor 4 comes from the two possible initial
branches 8=z and the two possible final branches 8'==*; in
other words from the sequences of [p,,p,,...] beginning ei-
ther by ¢, or g, and ending either by —q, or —g,). The dis-
crepancy between (44) and Garg’s formula is just the factor
g, given by [[28], Eq. (B2)] (see also [[36], Eq. (3.41)]) that
tends to 1 when n increases: go=Vw/e=1.075, g,
=1.028,... There is also a ratio of order one, more precisely
2/ =0. 8 between estimations (39) and (44) taken for n
=0; the second is slightly better and coincides with the for-
mula given in Landau and Lifshitz [[34], Sec. 50, problem
3]. Again, these discrepancies come from the different nature
of the approximations that are involved.

Let us end this section by a short comment on the con-
nection with the usual instanton theory where Re 7=0 and
where Im 7— —oc. This regime, that allows to select the
ground-state doublet only, is included in our approach be-
cause the instanton trajectories appear to be the limit of ¢
getting closer to the separatrix & whereas the classical real
oscillations in the wells shrink to the equilibrium points. All
along this paper we emphasize that the phase-space represen-
tation is particularly appropriate and it is straightforward to
recover the usual picture of instantons [for instance ¢(it) ver-
sus it] from our Fig. 1(d).

V. DYNAMICAL TUNNELLING FOR THE SIMPLE
PENDULUM

The simple pendulum corresponds to V(g)=—7y cos g with
y>0 and strictly periodic boundary conditions that identify
g=-m and g=m. At energy E> v, the classical rotation with
p=v2[E=V(g)] can never switch to the inverse rotation with
-p=—V2[E-V(g)]. At the quantum level, the Schrodinger’s
equation for the stationary wave function ¢

h? d*
[— g s q}¢(q)=E¢(q) (45)
leads to the Mathieu equation [37],
¥'(x) +[a - 2g cos(2x)Jy(x) =0 (46)

with x=¢/2, y(x)= ¢(2x), a=8E/#* and g=—4y/h*. The 27
periodicity of ¢ forces y to be 7 periodic. The eigenfunc-
tions can be classified according to the parity operator: Even
ar-periodic solutions exist only for a countably infinite set of
characteristic values of a denoted by {a,,} with n=0,1,...
Odd solutions correspond to another set, {b,,}, with n
=1,2... (the {ay,+1,b2,+1} correspond to 7r-antiperiodic solu-
tions and will be rejected). The discrete energy spectrum

046205-9



JEREMY LE DEUNFF AND AMAURY MOUCHET

corresponding to even and odd solutions of Eq. (45) is then
{Ef=t’a,,/8,n=0,1...} and {E,=#%b,,/8,n=1,2...} re-
spectively. Any eigenstate |¢f) with energy E,f =F,> vy has
its Husimi distribution spread symmetrically between the
two half phase-space of positive and negative p, near the
lines +v2[E,—V(q)] that define two disconnected tori in the
cylindrical phase-space. If we prepare a wave-packet local-
ized on the line p=+v2[E,—V(q)], since it is no longer a
stationary state, its average momentum will oscillate be-
tween two opposite values, with a tunneling frequency equal
to AE,/h where

ﬁZ
AEn = E; - E; = E(aZn - b2n) (47)

is the splitting between the two quasidegenerate eigenener-
gies. To compute AE,, we will use Eq. (10) with the operator

11, very much like the exact projector | ) ¢'|+| )7 Tts

matrix element {p'[I1,|p) will vanish rapidly as soon as p or
p' lie outside the region of the two tori. The main contribu-

tion to the semiclassical expansion of tr(éf[nf] (7)) will
come from classical trajectories that connect two symmetric
tori. The trace will be semiclassically computed in the mo-
mentum basis and we will choose the complex time path to
maintain p real. To construct one trajectory at energy E> vy
connecting the two tori requires to have purely imaginary g
def

whenever —p,<p <p, with p,=v2(E—-7) being the classical
turning point in momentum. More precisely, ¢ is given by
cos g=-1 —(pz—pz)/(2y). From Eq. (14a)

a__ 1 dp

ds ysin g ds

we see immediately that sin(g(s)) and dt/ds will be real
when p(s) > p, or p(s) <—p, and purely imaginary otherwise.
def
In the latter case, since we keep p,(s)=Im p(s)=0, Egs.
(15b) and (15¢) lead to two possible families of solutions (i)
def def
q,(s)=Re g(s)=0 and (ii) ¢,(s)= = 7. Then, with p,=Re p
def
and ¢,=-Im ¢, Egs. (15a) and (15d) become

dp dt

d_slz * ysh q2<z£>, (49a)
dq, (,d;)
—= = — 1, 49b
ds P lds (490)

and are associated with a real time dynamics governed by the
Hamiltonian

H(py.q2) =pi/2 ¥ ychq,, (50)

with “—"" corresponding to case (i) and “+” corresponding to

case (ii). Then, instantons correspond to trajectories evolving
def

in the transformed potential V(g) = F ych g rather than the

usual inverted potential —V(g). We will choose a one step

complex time path as in Fig. 3 and we will represent the
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FIG. 4. (Color online) With the choice of a complex-time path
given in Eq. (3) (one-step path), the contributions to tr(éﬁ,,f](T))
come from one half symmetric periodic orbits o (b) that are a com-
posite of Eq. (1) (repetitions of) a periodic orbit r of period 7, in the
phase-space plane (Re ¢g,Rep) at energy E>y (recall that the
planes g= = 7 are identified); Eq. (2) one half of a periodic orbit ¢
of period T, in the phase-space plane (Im g,Re p) at energy E.

orbits in a three dimensional space (Re ¢,Re ¢,Im ¢) and the
connection between the allowed and the forbidden trajecto-
ries occurs on the axes (Re g=0, Im ¢g=0) and (Re g= = m,
Im g=0) [Fig. 4(a)]. Trajectories in family (i) escape from
the unstable point at Re p=0, Im ¢=0 without coming back
to the plane Re p=0, Re ¢=0. Only orbits in family (ii) can
be used to produce periodic orbits. A typical periodic orbit o
connecting two symmetric rotations of the pendulum is given
in Fig. 4(b)). We will choose Im T to be precisely the half
period of the periodic orbit ¢ of family (ii) at energy E, and
Re T to be (an integer multiple of) the period of rotation of
the pendulum at the same energy. This choice exhibits the

dominant contribution to tr(éfln U(T)). We can reproduce the
same reasoning that led to Eq. (44) with the rdle of p and ¢

being exchanged. Now T,=d§,/ dE is the typical frequency
on the torus at energy E,.

Keeping only the contributions that provide a positive
imaginary part of the action, expression (13) becomes

Sf d
Szf p](s)%(s)ds—EReT
, s

Sl

+i(f5fp1(s)%(s)ds+E(—Im T)). (51)

Then
So(E) = S,(E) - ET, (52)
with 7,=T and

S(E) =wS(E) +iS(E)2

= ZW‘f V2(E + ycos q)dg

0
argch(E/y)
+ 2if V2(E-vychq)dg. (53)
0
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All these expressions can be written in terms of the complete
elliptic integrals [38] (defined for |u|<1)

def /2
dx
K(u)= ’ , 54a)
( o VI—u*sin®x (
def w2
Eu)= V1 — u? sin® xdx. (54b)
0
Namely,
~ — 2y
S(E)=4\2(E+DE\ \ |, (552)
E+y
~ o —— E- E-
SC(E)=8\2(E+y)[IC(\/ 7)—5( 7)}
E+vy E+vy
(55b)
Then we obtain
2h 3
o~ oSc(E,)/(2h) (56)
T.(E,)
with
~ =
s, 22 2
T(E)= "= — K(\/ 7)- 57)
dE \E+vy E+vy

The energies of the highly excited states are approximately
given by the free rotations: E,=n’%?/2> 7. Then T,/(E,)

=27/ (nh). The asymptotic expansion of S.(E) for large E
leads to

2
L~ h_ V2E, GAI(YE,)}+2-3 In 2]\3‘2—En/h’ (58a)
1 e 4n % 2n
~ — ﬁ2( —) . 58b
’77714"_1 ( 2 ) h2 ( )

The last expression corresponds exactly to equation (3.44) of
[36] obtained with standard uniform semiclassical analysis.
We see on Fig. 5 that Eq. (56) is a very good approximation
even when the energies E, get close to 7y the energy of the
separatrix.

VL. RESONANT TUNNELING AND FABRY-PEROT
EFFECT

We are now ready the see how formula (40) allows us to
reproduce the resonant tunnelling between two wells related
by parity when the potential in Eq. (1) has also a deeper
central well [Fig. 6(a)]. The minimum of the right and left
wells is fixed at zero, the minimum of the central well is
V(0)=V,,;,<0 and the local maximum between the wells is
denoted V.. When 0<E<V,,., we will denote by ¢,(E)
<gq/(E)<{!(E) the three positive solutions of V(g)=E. As
explained in Section IV, we will try to construct appropriate
time paths [7] to exhibit complex trajectories o with purely
real ¢ that connect the two symmetric tori from r to [ at some
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FIG. 5. (Color online) For the pendulum with y=1, we have
plotted in (a) the exact value of In(AE,) [see Eq. (47)] versus 1/#
for n=1,...9 (black lines). The dots are given by the semiclassical
approximation In(A,,) [see Eq. (58b)] up to the maximum value of
1/# (vertical dotted lines) where E: become lower that the separa-
trix energy 7y. The semiclassical limit is obtained when the states
become more and more localized in the region of phase space cor-
responding to rotations: for a fixed n this requires to increase E,
=n’h?/2 that is to increase f; or for a fixed energy £>y, we must
increase n o V2E/#. To control the validity of the prefactors, we can
check in (b) that In(AE,/A,) approaches zero in the semiclassical
limit.

energy 0<E<V,.. These tori are delimited by the two
turning points *p'=(0, =¢/) and =p"=(0, £4”). What is
new of course is the existence of a central real torus m de-
limited by p=(0,¢q,) and —p. Using the three dimensional.
representation of the section Im ¢g=0 of phase space [Fig.
6(c) and 6(e)], we see that the orbits 0 must be a series of
concatenation of five trajectories connecting at the turning
points £p, = p’. First we start with one portion living on r
with dt/ds>0 and Im p=0, then connect at p' to a trajectory
with Re p=0 where id¢/ds > 0. It follows the energy curve ¢
whose equation is (Im p)?/2-V(g)=—E. Then o can connect
at p to a real trajectory on m with Im p=0 and dt/ds>0,
then can cross —c from —p to —p’ before reaching [=—r. The
corresponding time path will necessary have at least two
steps [Fig. 6(d)] each of them having a height which is a
half-integer multiple of T, the real period of the primitive
periodic orbit ¢c. Among all the possible o’s, we will keep
only the exponentially dominant contributions, when o re-
mains as shortly as possible with complex p. Then, for such
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a)
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FIG. 6. (Color online) To describe resonant tunnelling between
two symmetric wells centered at =a and separated by a third central
well (a), we use orbits made of five primitive trajectories with a
time path given in (d). We still maintain the position ¢ to be real and
can use a three dimensional section of phase-space (see text). Here
we have chosen V given by Eq. (65) with a=7/4 and b=1/2.

orbits to exist, we must choose T of the form
1 .
T=7+wT(E)+|wy,+ > T.(E) —iT(E) (59)

involving the periods of the primitive orbits and the corre-
sponding winding numbers w., w,, which are non-negative
integers. 7 denotes a positive fraction of time smaller than
T.(E). The base points for the two branches 8==* defined by
Rep=0 on t coincide with the turning point b.=g,, the

action S, (b s -bg.E,) and the index u, are independent of the
choice of the branch where o starts,

~ ~ 1)~ ~
So(bﬁ'abﬁ,En) = WtSt(E) + (Wm + E)Sm(E) + iSc(E)7

(60)
Mo =We+ Wy +3. (61)
Explicitly, we have
~ et g ————
S(E)=2 V2[E - V(g)]dq, (62a)
q,(E)
_ def  q,E) _
Sm(E)=4 f V2[E - V(g)]dq, (62b)
0
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def

- WE) ———
S{(E)=2 f ! V2[V(q) - Eldg; (62c)
qE)

and the corresponding periods T,
deriving with respect to E.

As we have seen, formula (40) will provide an approxi-
mation of the exact splitting AE, that becomes better, the
better the condition Re T(E,)>Im T(E,) is satisfied. Not
only this condition render the precise value of 7 irrelevant, it
also requires large w,, and/or w,, especially if we work with
E,=0 for which T.(E,)>T,(E) and T.(E,)>T.(E). For a
given pair of w, and w,, there are 4(w.+1) topological
classes of orbits corresponding to two possible initial
branches, two possible final branches and r=0,...,w, pos-
sible windings on t for w,—r windings on [. Then all differ-
ent w, and w,,, such that Eq. (59) holds, give a contribution

def
to Eq. (40): If we define R(T)=Re T—7-T,,/2=Re T then,

T., T. are obtained by

An(T) ~ %e—gc(En)/h
o T

X >
{wewp} pos. int. such that

WeT(E,) 4wy Ton(E,)=R(T)

(we+ 1)

% eiwt[gt(En)/ﬁ—7T]+iwm[§m(En)/ﬁ—7r] (63)

We immediately see the resonance at work since the sum
def
reaches a maximum when both v,=S.(E,)/(27#)—1/2 and
def
Ve =Sn(E,)/(27h)—1/2 are integers: the energy of a state
mainly localized in the central well becomes nearly degen-
erate (up to % terms) with the energy doublet in the lateral
wells. Then the contributions of the repetitions of m interfere
constructively like the optical rays in a Fabry-Pérot interfer-
ometer [[21], Secs. 12.14-12.17. To estimate the sum in the
right hand side of Eq. (63), let us take a rational approxima-
tion of the ratio 7.,/ T,, namely,
T, m
s (64)
T, r
with m and r being coprimes positive integers. For the poly-
nomial potential

V(g) = (¢* - a*)*(q* - b?) (65)

with a>b>0, the argument presented in [39] can be gener-
alized to show that Eq. (64) is actually exact with r=1 and
m=2 for any energy 0<E<V,_.. If K denotes the integer
part of R(T)/(rT,,), we can compute and approximate for
K> 1 the right-hand side of Eq. (63) and obtain

2 e—i(E,,)/ﬁ
=0T, |sin(mr(mv, — rvy))|

(66)

Figure 7 shows that this latter expression provides a good
approximation for AE, even in the immediate neighborhood
of a resonance where estimation (10) is not justified any
more. If we had continued working with a finite K, the sum
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0’ In|AEn/Ap| ,0

1/h

FIG. 7. (Color online) For V given by Eq. (65) with a=7/4 and
b=1/2, we plot In|AE,| (thick black line) for the lowest doublet in
the symmetric wells E, =#ho/2 with o=2a\2(a*>~b?) =6.30. The
(blue) dots correspond to estimation (A13) with T=|T|e7%=(K
+1/2)T(E,)-iT(E,) in the limit K—o(6#—0). The upper thin
(red) curve provides In|AE,/A,|. The inset provides a magnification
of the third spike around 1/2=6.6 for which T (E,)=2T.E,)
=1.58 and T.(E,)=1.50. Here, we have also plotted In|A,(7)| for
K=100 [thin orange (light gray), #=0.01] K=30 (thin green 6
=0.03), K=5 (dashed thin magenta 6=0.17).

(63) would have involved a finite number of terms and the
singularities due to the vanishing denominators in Eq. (66)
would have been smoothed down (inset in Fig. 7). In other
words, for a fixed |T, rotating down T in the lower half plane
Im T<0, destroys very quickly (#=0.2) the large resonant
fluctuations of tunneling. This effect has already been shown
in the case of a kicked system [29].

VII. ESCAPE RATES

So far we have focused our analysis of tunneling in
bounded systems only, but the philosophy we presented here
can be extended to more general situations. For instance, let
us show how we can compute the escape rate from a meta-
stable state localized in a confining potential V whose shape
has the form given in Fig. 8(a). The potential has a local
minimum at ¢g=0 (say V,,;,=0) and an energy barrier for 0
< g <gmax Whose height is V... For ¢>¢g..x, the potential
remains non-positive and therefore in real phase-space
(Re p,Re g), V defines around the origin an island of stabil-
ity made of tori with positive energy. One state whose Hu-
simi distribution is initially localized in the island, say a
quasimode |®,) at energy 0<E, <V, will progressively
decay outside the well. The decay rate I', is then defined
from the overlap:

(@,|0(T)|®,) = ¢ T2, T -

If we choose a complex T such that
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-V(q)

0 a q

d)

FIG. 8. (Color online) The escape rate at energy E from an
island created by a confining potential V whose shape is shown in
(a) can be semiclassically computed in terms of complex classical
orbits where one canonical coordinate, say g, is kept real. In phase-
space, this trajectory appears to be a concatenation of two types of
curves that join on the (Re g)-axis: (1) a trajectory that lies in the
phase-space plane (Re ¢,Re p) with real variations of 7 at energy E
with the potential V and (2) a trajectory that lies in the phase-space
plane (Re ¢,Im p) with imaginary variations of  at energy —E with
the potential =V shown in (b). In (c) a family of constant energy
curves is shown (horizontal green for the first type, vertical red for
the second type). In (d) for a given energy, we show how three
curves [,c,t glue together at the turning points.

T, 7] <1, (68)

then we obtain a trace formula for I, with the help of the
projector-like operator f[n

2 : A
I, == Im(e& (M, (7)) (69)
ImT

which allows an explicit semiclassical expansion in terms of
classical solutions with a complex time path. The dominant
contributions will be provided by periodic orbits in time 7
with real ¢ starting on the torus at energy E,, then, while
idt/$>0, going forth outside the well before coming back to
its initial starting point [Fig. 8(c) and 8(d)]. Then, up to a
dimensionless factor f, of order one, we get

fo 5
N = ——— (B 70
" TUE) 70

with
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IO V) —
S(E)= 2f V2[V(g) - Eldq, (71)
q,(E)

where 0<q,(E)<gq,(E) are the two right turning points at
energy E. Here we have supposed that the action between the
two left turning points is larger than Eq. (71) and gives a
subdominant contribution. If the potential is symmetric, two
symmetric complex orbits would contribute with the same
weight and therefore the escape rate should twice as large. In
the case of an island with sharp boundaries around g,

S.(E), which is the area enclosed by the primitive orbit ¢
[Fig. 8(d)] is mainly given by the portion of ¢ where we can
keep an harmonic _aBproximation for the potential: V(q)
2,2 ~ ./ 4 ~ ./ :
w°q°12, g(E)=\2E/w, q.(E) = JA/(mw), where A is the
area of the island in the real phase space. Then, with a
def
=wA/(27wE), we have

~ 2E - —— —
S{(E) = —[aya~1- n(a+Va-1].  (72)

Inserting this expression in Eq. (69) with E,=(n+1/2)ho,
we exactly recover the expression (5) used in [40] with an
elegant and simple interpretation. The chaotic sea that sur-
rounds the integrable island in the mixed system considered
by Bicker et al. acts as a sharp effective potential barrier as
the one draw in picture 8; our complex trajectory that allows
to escape from the regular region has its main features gov-
erned by the integrable (and even harmonic) approximation
of the dynamics about the island, following precisely the
general philosophy of [40,41]. This computation of the “di-
rect” tunnelling (by opposition to resonant tunneling where
the model of a pure quadratic kinetic energy fails) can also
be reproduced within the standard one-dimensional JWKB
theory used for computing transmission coefficients.

Here again, we can check easily that the traditional instan-
ton method is included in our approach: The regime RT
—0 selects the instanton solution and provides the escape
rate from the equilibrium point as given by Eq. (2.47) of [[2],
Chap. 7].

VIII. CONCLUSIONS

The explicit semiclassical expansions of trace formulas
for tunneling splittings (or escape rates) in terms of classical
orbits constructed with complex-time paths provide an inter-
esting alternative approach to Herring formulae essentially
because they do not require to analytically continue the wave
functions in the complex plane. In multidimensional tunnel-
ling and/or for a nonautonomous Hamiltonian system, the
generic lack of constants of motion isolates the stable islands
(if any) from each other by chaotic seas. The analytic con-
tinuation of the KAM tori that build the islands is prevented
by the existence of natural boundaries (see for instance the
recent discussion in [[31], Part I, Appendix B and references
therein). The approach we have presented here seems to cir-
cumvent these difficulties but, of course, the problem of how
to select, with an appropriate [¢], the relevant trajectories
among an a priori exponentially growing number of classical
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complex solutions remains open. We expect the tunneling
splittings between two states at energy around E localized in
two symmetric islands to be approximated by the expansion
of the form

fh s o lw,.[E,-(E,,)/h-w]e-zj’le;[Ejf(E,,)/ﬁ], (73)
T
[Plspzs---]

where the sum runs over all possible sequences of turning
points [p;,p,,...] at energy E such that we can choose a
complex-time path that leads to a trajectory, made of primi-
tive orbits, that connects in time T the two (real) tori. The
winding {w;} and the actions {S;} (respectively, {w’} and {51’})
refer to the primitive orbits obtained when the variations
dt/ds are purely real respectively, purely imaginary). For di-
mensions larger that one, the dimensionless prefactor f may
appear as a power law in . Here, inspired by the study in
Sec. VI, we can qualitatively see how the constructive inter-
ferences between repeated paths emerge in a speckle-like
forest because of the presence of resonances. As shown in
[29], a progressive complex rotation of time provides a natu-
ral way to select the main resonance effects. If we want to
expand the splittings (or the escape rates) according to el-
ementary process as proposed in [41], our approach offers a
promising tool to interpret and compute semiclassically all of
the ingredients of such an expansion.
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APPENDIX A

In this appendix, we derive the dominant contributions
(19a) and (19b) to the traces involved in Eq. (9). Both cases

(U (7)) and (ST (7)) will be treated simultaneously by de-
fining the sign 7 to be +1 in the first case and —1 in the
second case. The semiclassical arguments underpinning the
derivation are relatively standard and may be found in one
way or another in the literature. For instance, the contribu-
tion (A13) for =1 can be found in [[42], Eq. (2.12)]; within
a more restricted context (see also [[43], Chap. 8]). Never-
theless we found it useful to provide all the steps in the
precise context of this work, not only to render the presen-
tation self-contained, but also because we are working in the
time domain with general Hamiltonians that have not neces-
sarily the form (1).

Given a [z], for any classical phase-space path o, we can
consider the final coordinates (p;,q) at time #(s)=T as
smooth functions of the initial coordinates (p;,q;) at time
t(s;)=0. The monodromy matrix M, is defined as the differ-
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ential of these functions: to first order, an initial small per-
turbation implies the final perturbation

(5Pf> _ (Mo,ll M, 12)(@%)
5C]f My, M,/ \ég;
The submatrices can be expressed from the second deriva-
tives of S,(¢s.q;:T) by differentiating equations (18),

(A1)

M,y =7, quso(a; 050" (A2a)
Moo=y So= 5 4 Sold, S 1 S0, (A2D)
M, = (az S (A2¢)
Moo=~ (7,50 30 So- (A2d)

provided that &Zf S, is invertible. Equations (A2a), (A2c¢),
and (A2d) can be inverted in

FqSe==(Mo2)™", (A3a)
ﬁﬁiqiso = (M, M, 2, (A3b)
ﬁﬁquS =M, (M), (A3c)

while Eq. (A2b) provides
Myp==(Moo)" + Mo (Mop) ' My, (A4)

which is nothing but the expression that det M,=1 once we
use the identity

A B
det( ) =det(CAC™'D - CB), (AS)
C D
where (A,B,C,D) are square matrices of the same size and
C is invertible.

Coming back to the oscillating integral (17), if the inte-
gration path can be deformed in order to pass through an
isolated critical point g, of ¢—S,(7q,q,T), we will have a
contribution of the form

( 07250 )
det
aqiaqf iSy/h

e s
J det(_ az(sowq,q;n))
dq9q

where all the functions are evaluated at (7q,,q.,T). Physi-
cally ¢, is interpreted as the initial position of the phase
space paths o such that (p;,qp)=(7p;, 7q;). With the help of
Eq. (A3), the prefactor of the exponential can be written as
[det(M o0 +My 2 M, 11((My0)' =271 up to a global
sign. Using Eq. (A5) again, the contribution (A6) can be
written as

(A6)

(=1 oiSolh
V(= )P det(1 - 7M,)

where (—1)" fixes the sign of the square root and D demotes

; (A7)
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the number of degrees of freedom. Recall that in the defini-
tion of the path-integrals (12), a time-slice 7 is always im-
plicit. Let us keep for a moment an explicit discretization, for
instance with T being an integer multiple of 7, o referring to
a discrete set of points, Hamilton’s equations (14) being dis-
cretized into a phase-space map, path integral (13) being
turned into a discrete (Riemann) sum, etc. Then, the contri-
bution of each of the points of a given o, such that (pf,qf)
=(mp,, nq;), is the same and remains given by Eq. (A7); but
this is correct only if, for a given 7, & is small enough,
because when performing the steepest-descent method on
Eq. (17), one must be able to split the oscillating integral into
separate contributions coming from two distinct points of o.
In the continuous time limit, i.e., when the limit 7—0 is
taken before the semiclassical limit 72— 0 (see [50]), the or-
bits o of non-zero-length appear as a one-dimensional con-
tinuum none of whose points can be considered separately
anymore. The only isolated critical points g, are given by the
position of some equilibrium points. Under the symmetric
condition (g;,p;)=(-p;,—q;), only the origin must be exam-
ined. Linearizing the Hamiltonian flow about a nondegener-
ated fixed point e=(p,,q,) leads to a monodromy matrix
whose eigenvalues can be collected by pairs exp(* X\, ,7)
where {\, ,}o=1. p are the Lyapunov exponents. Then Eq.
(A7) becomes

( l)vee_iH(l’e’qe)T/h

H (e>‘ T2 _

(A8)
—)\e’aT/Z)

with a possible adjustment of the sign. For a generic choice
of 7, the denominator does not vanish.

For a non-zero-length path o, the critical ¢’s are degener-
ate along the trajectory; for a system with several degrees of
freedom, one must treat separately the (Gaussian) integrals
on the transverse coordinates ¢, along which S,(7%q,q,T)
varies (quadratically) from the longitudinal coordinates g,
along which S,(7q,q,T) is constant. Of course, the dimen-
sions of ¢, and ¢, depend crucially on the presence of KAM
tori. However, multidimensional tunnelling is beyond the
scope of this paper and, the quantitative studies presented
here concern one-dimensional systems only. The contribu-
tion to the trace of such a path is then, up to a global sign,

LS /h 0—,2 S

V= Zzﬂ'h \/(9,(961 (79.q:T)
The conservation of energy along o, H(p,q)=E, implicitly
defines a function p(g,E) in the neighborhood of any point
where d,H # 0. Globally along the trajectory o, we may en-
counter several possible branches pg(q,E) for the graph of
these functions [the two possible signs of a square root when
the Hamiltonian has the form (1)] which become singular but
pairwise connect smoothly at the turning points, defined by

d,H=0. A relation between E, T, g and g; can be obtained
by integrating [/(dt/ds)ds and using Eq. (14b),

(A9)
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def sy

dqlds
T=T,(qpq9:;E) =

. H(p(q(s).E).(5))

ds. (A10)

Everywhere but at the turning points, the value of s dictates
the choice of the branch used for the integrand. This relation
implicitly defines E,(qy,q;;T). The usual expression for the
derivative of implicit functions leads to the relations: dgp
=1/9,H and 9, E,==3, T,/ IgT,=drE,/ 9,H(p;,q;). If we dif-
ferentiate (18b) with respect to g; when p, is given by
p(qs,Eo(q7,q;,T)), we obtain

&S, 1 1 GE,
941945 | (pq5m) FpHPpap) HHPiq1) T | (g g
(A1)

With property (3), we get d,H(7np, nq)=nd,H(p,q) and then,
by differentiating Eq. (A10), we have d,(T,(7nq,q,E))=0.
Therefore, the energy E, of the path o depends only on 7', not
on its starting point g. The square root of drE,(7nq,q,T)
=dE,/dT can be got out from the integral in Eq. (A9). When
adding the contribution of each path whose starting point lie
on the branch B, we obtain

def dq
ToE)= f d,H(pp(q.E).q)

This is not exactly the right-hand side of Eq. (A10) because
the domain of integration in Eq. (A12) is the domain of the
branch where the starting point of o lives. Each branch S is
delimited by two turning points and T is the time spent to
go from one point to the other.

The integral (A9) involves all the possible starting points
for a trajectory o and therefore we must add all the branches
that patchwork smoothly in phase-space to form the geo-
metrical set of points crossed by o. Referring to the purely
geometrical quantities (i.e., independent of the choice of the
parametrization), we have the contribution

37
(= ot %eisﬂ/h

\N=2nimh ¥ dT

(A12)

(A13)

only if T,=T; for n=+1 the path o is a periodic orbit and, for
n=—1, the path o is half a symmetric periodic orbit (the
whole periodic orbit being of period equal to 27). The sum
concerns all the geometrical branches B crossed by o (even if
o passes several times by the same points, each branch is
only counted once). As before, the conversion of a product of
two square roots of complex numbers to the square root of
the product may introduce a sign that can be absorbed in the
definition of w,; the exact computation of the index w, is
difficult but since it may change at the bifurcation points
only, where the semiclassical approximation fails, it is suffi-
cient to know that it depends on the nature and the number of
the turning points encountered on o. Therefore it is an addi-
tive quantity when several primitive orbits are repeated or
concatenated together.
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APPENDIX B

In this appendix we explain how to obtain the asymptotic
expansions (33) as E—0".

First consider §r and split it in two parts S,+S_ where

_ def ;E)
Sy= f 2\2[E - V(q)]dq, (Bla)
a
_ def (a
S_ = f 2\2[E - V(g)ldq. (B1b)
9,(E)
def _
Setting e=a—gq,(E), rewrite S_ as
1
S = 2\56[ \//V(a —€) —V(a-se)ds, (B2)
0

Now expand the integrand as a power series in € up to the
fourth order, compute the integrals that appear in each coef-
ficient and insert the expansion of € in E obtained from the
implicit equation V(a—e€)=E,

2y 3 AT, 274 3 2
E@+ 4 )(f)E— V2[30’V¥(a) —75(V( /(a)) ]E3/2
w 3w 36w

+O(E?). (B3)

Proceed in an analogous way for the computation of the first

three terms of the asymptotic expansion in VE for §+. When
summing S, and S_, expression Eq. (33b) is obtained with
Eq. (35).

The expansion of §c is more subtle since it is not differ-
entiable at E=0. Its derivative is given by

ds “
— = f L(s,€)ds, (B4)
dE .
def
where we denote e=a—gq,(E) and define
def r/_
2V2
L(s.€)= . (BS)

V/V(a -s)=Via-e

The function L(s, €) is not continuous but we can extract the
discontinuous part from

4 (= )2V (a)s" - &\
L(s,e)=———=| 1+
N w\s* - &2( ,23 n! s?- €
(B6)
by expanding the last factor,
4 2V3a) -
L(s,e) = + +M(s,€),
(s,€) -2 30 (st (5.6
(B7)

where now M(s, €) is a continuous function of its two vari-
ables. Then, a standard theorem in analysis assures that
e~ [¢M(s, e)ds is continuous and its limit when €— 0 is
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a a 3) a
J M(s,0)ds = f (L(S,O) - 4 - 2V )>ds
0 0 ws

30

_4A ~ 2aV3(a)

B8
w 30’ (B8)

with A given by Eq. (34). The two other integrals obtained
by inserting Eq. (B7) in the right-hand side of Eq. (B4) can
be computed exactly and expanded as e— 0" up to order
o(1). Then, inserting Eq. (B3), we obtain

= -— 1).
dE wn +o(l)

w

~ g
s, 4 2E 4A

2aw

Its integration leads directly to Eq. (33a).

APPENDIX C

def
The quasimode |®,)= (| +|p))/ V2 is localized on one
torus at energy E;=E,. Standard JWKB techniques [44,45]
provide a semiclassical approximation to its wave function,

1 Aup
B

() =

q
X exp(if pB(x,En)dx/ﬁ> (C1)
bg

[B labels the possible several branches of the torus, A, 5 are
dimensionless coefficients of unit modulus, b 8 is a base point
of the branch B8 and T4(E,) the characteristic time (A12)
spent on the branch B]. Within the semiclassical approxima-
tion, it is, therefore, consistent to construct I1,(¢’,¢) by sub-
stituting Eq. (C1) in the matrix elements of the projector
operator |5 +| X | =D, NP, [ +S|D, XD, |S. From
the integral (20)

2 f dqdq' ®,%(q)(P;*(¢")*G(nq',q;T),  (C2)

when we insert the semiclassical expressions (16), we obtain
a sum of integrals of the form

qudq’ | o1} gy e—i/ﬁfZ;,pBr(x,En)dx

Vo,H(pp(a.E,)-q) N3, H(pg (14’ E,)q")
FS,
9q9;9q ¢

eiSolna" .t (C3)
(nq".q:T)

The stationary conditions

pﬁ(q’En) =- aq[,So(nq,9q;T)a (C4a)

npﬁ’(q,’En)=aquo(77q”q;T) (C4b)

select the classical trajectories o with energy E, that go
from  (p;,q)=(pg(q.E,),q) at t(s)=0 to (ps.qy)
=(npg(q'.E,),nq') at time #(s;)=T. Then the value of the
exponent
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SO,,B,,B’(E}’!’ T) == EnT+ So(bﬁ”bﬁ’En) (CS)
depends only on the branches where the starting and ending
points lie and not on the precise location of these points on
the branches. Since ¢ and ¢’ correspond to the same torus,
such a trajectory must connect the two symmetric tori for
n=-1. Ata given E, and T, for a fixed g=g; on the branch S3,
gy and B’ are uniquely given and we can make the stationary
phase approximation for the integral on ¢'. Then if we insert
Eq. (A10) at energy E, into Eq. (C4) and differentiate it with
respect to g or ¢', we obtain some identities that, with Eq.
(A11), allow us to simplify the combination of the prefactors
and the remaining integral in ¢ turns out to be precisely of
the form of the right hand side of Eq. (A12). A priori, the
domain of integration is included in the domain of the branch
[ but is not necessarily equal to it because when sliding the
starting point on the whole branch S, the endpoint may cross
a turning point and correspond to a jump of B’. However, we
obtain characteristic times that depend only on the geometry
of the orbit, not on the number of times the considered
branch may be repeated as s goes from s; to sy As discussed
in the case of the double well, if there exist different topo-
logical classes of o, each of them being characterized by an
ordered sequence of turning points [p;,p,,...], we must

add such contributions. Then, using directly tr(ﬂnﬁ(T))
=2¢7 T e have proven that

h <
BT ~ = 2 (= Doy (E,, e p st
h=01L7p p,....]

(Co)

where the sum runs over all the sequences of turning points
on the section s at energy E,, where one canonical variable is
maintained real. There must exist for such a sequence, one
half symmetric orbit o starting on the branch S of the torus at
energy E,, crossing successively all the sequences
[p1,p2,...] and ending on the branch B’ at time 7. The di-
mensionless coefficients Ag 5/(E,,T) have a fi-independent
modulus of order one and depend only on the geometrical
properties of the branches. If some parts of the trajectory are
repeated, their repetition numbers do not appear in
Ag g /(E,,T) but only in the cumulative quantities: the index

1, and the action §o(b,3,,b,3,En) given by

_ sy dg q(s;)
Spbp)= | p6) a5+ [ e
s bB

q(sf)
—f pp(x.E,)dx. (C7)

bBr

In the case of two branches, the computation of the coeffi-
cient can be done exactly using the appropriate choice of
phase conventions for the base points bg and A,, 5, we obtain

AB»B’(E"”T) == 1/2 (CS)
We illustrate in the main body of this article, how to compute
the sum in the right hand side of Eq. (C6).
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