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Doubly excited ferromagnetic spin chain as a pair of coupled kicked rotors
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We show that the dynamics of a doubly excited Heisenberg spin chain, subject to short pulses from a
parabolic magnetic field may be analyzed as a pair of quantum kicked rotors. By focusing on the two-magnon
dynamics in the kicked XXZ model we investigate how the anisotropy parameter—which controls the strength
of the magnon-magnon interaction—changes the nature of the coupling between the two “image” coupled
kicked rotors. We investigate quantum state transfer possibilities and show that one may control whether the
spin excitations are transmitted together, or separate from each other.

DOI: 10.1103/PhysRevE.81.046201

I. INTRODUCTION

Over recent years, there has been sustained interest in
coupled quantum systems. Numerous studies investigated the
causes and effects of decoherence on a subsystem as it be-
comes entangled with its environment; others probed the
generation of bipartite entanglement between a pair of quan-
tum systems. It is vitally important to understand these pro-
cesses so they can be accounted for in protocols for quantum
computation and communication.

Studies of decoherence also shed light on the emergence
of classical behavior from quantum dynamics [1,2]. Quan-
tum systems with a chaotic classical limit often feature in
such studies. For example, they can play the role of the en-
vironment: a one-dimensional (1D) system which displays
chaos can replace a many-body heat bath (often modeled by
an infinite collection of quantum harmonic oscillators) as a
source of decoherence [3]. Other studies focused on en-
tanglement generation: for weak chaos, the rate of growth of
the von Neumann entropy of the subsystem—i.e., the rate at
which the subsystem becomes entangled with its
environment—can be directly related to measures of the
chaos in the subsystem’s classical limit [4—6].

The chaos paradigm known as the quantum kicked rotor
(QKR) [7] plays a central role in these studies. The QKR
corresponds to the dynamics of independent quantum par-

ticles evolving under the rather simple Hamiltonian H,:%
+K sin x;2,8(t—n), where K represents the kick strength
and, for convenience, we have rescaled so that the period
between kicks Tp=1. Cold atoms in pulsed standing waves
of light were found to provide a very clean realization of the
QKR in 1995, the phenomenon of the quantum suppression
of classical chaotic diffusion was clearly demonstrated ex-
perimentally [8]; later, the recovery of the classical diffusive
behavior in the presence of decoherence was also observed
[9]. These works were followed by other studies by different
experimental cold-atom groups worldwide [10] probing
wide-ranging aspects of the QKR dynamics. In a previous
work [11,12], we proposed that the singly-excited Heisen-
berg spin chain in a pulsed parabolic field could provide an
exact physical realization of the QKR: the dynamics of the
spin waves are given by a time-evolution operator of analo-
gous form to that of the QKR.
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Coupled QKRs have also been investigated in a number
of theoretical studies, though, unfortunately, no physical re-
alization has yet been achieved. In this case, one considers
two QKR Hamiltonians with an additional coupling potential
V, i.e., H=H,;+H,+V(x,,x,,1). In [13], interactions which
depended on the separation of two rotors with a nonlocal
sinusoidal term were investigated; in [14] the two particles
were confined to within a short distance of each other. How-
ever, several studies considered a sinusoidal coupling term
dependent on a center of mass coordinate [15-17], such as
c.g., V(.Xl s X2, t)zKlz COS(.X] +.XZ)EH(S(I—”).

In this work, we show for the first time that the doubly
excited Heisenberg spin chain system may—to a good
approximation—be analyzed as pair of coupled kicked ro-
tors. In fact, in this system, Nature even provides a coupling
term of the centre of mass form K, cos(x;+x,). The map-
ping is, however, far less straightforward than that found for
the one-excitation system in [11,12]: the coupling here is
mediated by bound-pair eigenstates (not found in the corre-
sponding one-excitation chain), rather than spin waves, so
acts only over a restricted part of the “image” phase space.
The wavenumbers of the bound states are complex, further
complicating the mapping. Nevertheless, the analogy holds
sufficiently well, so one can use it to shed insight on the
dynamics. Further, it points to useful applications in state
transfer, since we can use this understanding to control
whether the two spin flips propagate along the chain to-
gether, or separately. This adds to other applications that
make use of the single-excitation correspondence [18].

In Sec. II we review briefly the one-particle dynamics of
the Heisenberg XXZ spin chain and its mapping to the QKR.
In Sec. III we consider the doubly excited spin chain. We
summarize essential features of the well-known XXZ eigen-
states and their dependence on the anisotropy parameter A.
We then introduce the analogy with the two-particle coupled
QKR and explore the dynamics when the initial state consists
of two neighboring spin flips. We also highlight two cases
where the kicked rotor correspondence simplifies: (i) when
A=0 the kicked spin chain can be mapped to a pair of inde-
pendent QKRs; and (ii) when A>1 the bound states effec-
tively trap two excitations on neighboring sites and we show
that in this limit, these bound states give rise to a further
analogy with the QKR. We finish, in Sec. IV with examples
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of how we can use these results to manipulate correlations in
the spin-flip locations.

II. HEISENBERG SPIN CHAIN AND ITS
ONE-PARTICLE IMAGE

The well-known spin-1/2 Heisenberg XXZ chain is gov-
erned by the Hamiltonian

N
J
Hy.=- ZE [2(or0,,, + 0,00+ A%, ]1- B, o‘f
n=1 n

n”n+l

(1)

When investigating the dynamics of spin chains such as this,
a useful approach is to invoke quasiparticle models and in-
terpret excited states as systems of indistinguishable par-
ticles. In some cases, it is even possible to map the dynamics
to a one-body “image” system which approaches the classi-
cal limit as N— < [19].

H,,. conserves the number of spin flips and a single exci-
tation represents a spin wave which distributes a single spin
flip throughout the chain. Higher excited states correspond to
multiple spin waves which interact when they coincide
through both an exclusion process (no two spin flips can
simultaneously occupy the same site) as well as a mutual
interaction induced by the 0’075, (Ising) term—the strength
of which is determined by the anisotropy parameter A. Note
that A=0 corresponds to the XX0 chain and A=1 is the iso-
tropic Heisenberg chain.

The eigenstates for the single spin-flip sector of Eq. (1),
spanned by the basis states {{n)=0|17...T):n=1,...,N},
are translationally invariant magnon states with momenta «

1 N
Ky =—=2 &"|n). (2)
VN =1

Note that periodic boundary conditions are used, i.e., the
configuration is a closed ring with o7,y=0f. The magnon
momenta are determined by these conditions and take the
values k=2mI/N and I=1,...,N. These states have energy

E—-Ey=2B+J(A-cos k), (3)

where the ground-state energy E,=—JAN/4, ie.,
HplTT...T)=Ey|17...1). Adding an external kicking mag-
netic field to the Heisenberg Hamiltonian gives

N o
He =23 =l S Ko=), (@
n= J=—*

where the field has a parabolic profile with a minimum at n,
and amplitude determined by By. Time evolving the time-
periodic H for one period T yields a unitary map,

lp(t=(j+ 1)T))y = U(T)|y(t =jT)), (5)

where
U(T) = SiBGAE (n =)o, PR (6)

since the J-kick nature of the time-dependent field permits us
to split the operators.
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Using Egs. (2) and (3), it was shown in [11,12] that the
matrix elements of U(7) in the single-flip basis {|n)} have a
form very similar to the matrix used to evolve the quantum
chaos paradigm, the QKR. These are given by

U,y = e(-iBo/2)(n - no)zl.n/_n.]nr_n(JT), (7)

for the spin ring (an analogous form was given in [11] for

open boundary conditions). Here, J,(x) denotes a Bessel

function of order n and, for convenience, we have set i=1.
We recall the form of the QKR Hamiltonian

HQKR=?—KCOS)22 ot -j), (8)
J

with x€[0,27). In its classical limit, the dynamics is
described by the famous standard map which is known
to display a transition from integrability to chaos as the
stochasticity parameter, K, is increased. For K=1 diffusion
in momentum is blocked by invariant tori running through
classical phase space. At large K phase space is almost
completely chaotic and unbounded diffusion in momentum
is typically seen. However, in certain ranges of K=2jm, j
e 7, small transporting islands known as “accelerator
modes” (AM) appear in classical phase space and give rise
to anomalous diffusion. In the QKR, diffusion of momentum
at large K is suppressed by quantum interference in a pro-
cess known as dynamical localization [20,21]. We can ex-
press the QKR time propagator in a basis of plane waves
|ly=exp(ilx)

2 N K
(NUggglly = e 72! ljw-z(;) . )

Here 7 is the effective Planck’s constant.

Comparing the above with Eq. (7) we see that the QKR
and spin chain propagators are of similar form, provided we
identify é —JT and note that the kicking field B, — 7 plays
the role of an effective Planck’s constant. In effect, the spin
chain equivalent to the Kcos x term in Hggy arises from the
dispersion relation of the spin waves, i.e., rewriting Eq. (1)

HhCZZJ(A—COS )| k) K. (10)

So, to make the QKR — spin-wave mapping we also had to
identify position (x) in the QKR, with momentum in the spin
chain («); and momentum in the QKR with position (spin
site) in the chain.

With the aid of this mapping we can identify the spin-
wave equivalent of classical chaos phenomena such as
AM, transport on tori [22], cantori, or stable islands, and
quantum chaos phenomena such as dynamical localization
[7]. The classical transporting islands represented by the AM
have evident potential applicability in quantum state transfer
so, below, we investigate these in particular: they occur for
K=2jm where j is an integer. In the classical image phase
space, they correspond, e.g., to initial conditions located
around (xg,pg) = (£ 7/2,0) which “hop” in momentum each
period such that at t=n (n € 7Z)
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(x,p,) = (12, + 27mj). (11)

Quantum mechanically, if the effective Planck’s constant is
small enough, these islands can support Gaussian states that
follow the classical trajectories—i.e., they hop in momentum
every period [23]. Gaussian excitations were indeed seen in
the one-flip spin chain [11], provided the initial spin flip
occurs at a site near the minimum of the magnetic kicking
field and K=JTB,~2j. The excitations were seen to hop
approximately 27/ B, sites each period, with little disper-
sion.
We now consider the two-flip case.

III. TWO SPIN EXCITATIONS
A. Bound-pair states and spin waves

Eigenstates in the double excitation sector are expressed,
via the Bethe ansatz, as pairs of spin waves [24]

|K1,K2>=A(K1,K2) E a(nl,n2)|n1,n2>, (12)

0=n1<np,=N

where A(k;,k,) is a normalization constant. |n;,n,) denotes
a state with a spin flip at sites n; and n,. Bethe’s ansatz for
the amplitude is

a(n1 nz) — ei(K1n1+K2n2+0/2) + ei(K1n2+K2n1—0/2) (13)
9 .

The scattering phase 6(k,,x,) accounts for the interaction
between the pair of spin waves. On applying H,,. in Eq. (1) to
these states and solving the eigenvalue equations, one ob-
tains the dispersion relation

E—-Ey=4B+ J(2A —cos k| —COS K»), (14)

and also a relation between 6 and the quasimomenta, the
Bethe ansatz equation (BAE)

o L+ etk _ g Aeiki
O T T sk Jppeim (15)

Further restrictions are imposed by the periodic boundary
conditions

NK1=27T)\1+0, NK2=27T)\2—0 (16)

where the Bethe quantum numbers \; =\, are integers in the
range \; €{0,1,...,N—1}. By solving the coupled system of
equations in Eqgs. (15) and (16), ;, and @ can be obtained.
Broadly speaking, these solutions fall into two groups de-
pending on whether 6 has an imaginary component. The ma-
jority of the solutions of Eq. (15) are real—these correspond
states of two magnons which scatter off each other. For A
=0 all the available solutions of Eq. (15) are real (and equal
to 7). When 6 is complex, the eigenstates correspond to
bound states of two spin flips. The probability amplitudes of
these states are at a maximum when the flips are on neigh-
boring sites and they decay exponentially with the separation
of the flips. While for any given A# 0 the widths of these
states vary with the total momentum k;+ k,, they become
narrower as A increases. Crucially, for long chains (N — )
the energy of these states can be written [25]
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J
E—E0=4B+JA—E[1+cos(/<1+/<2)]. (17)
when A>0.

B. Analogy with a pair of coupled kicked rotors

The departure point for our analysis of the spin dynamics
as a system of coupled QKRs is the two-excitation spin
Hamiltonian, equivalent of Eq. (10)

Hye= P, 2 J[A = cos(k;) = cos(i) | k1, ko) ey, 16|

K12

A J
- P> ﬂ[l +cos(ky + k) ||y, ko) (K, Ko

K1,2

+1(Ey+ 4B+ AJ) (18)

for A>0. Here 133 is a projector on to the scattering state

component of Hilbert space and I3b onto the bound states.

Comparing the above with the typical coupled QKR po-
tential V(x;,x,)=K; cos x;+K, cos x,+K;, cos(x;+x,) and
identifying «;—x; and K—fH% might suggest that the scat-
tering states be interpreted as giving rise to a pair of kicked
rotors; and that a coupling between these rotors arises due to
the bound states. However, we note the important difference
that the «; for the scattering and bound states correspond to
complementary portions of the “image” phase space. For the
bound states, k; is complex, but («;+k,) is real. In addition,
we show below [in Eq. (22)] that in fact, for large A, K,
i.e., the effective coupling is twice as large as suggested by
Eq. (18).

The parabolic kick will couple the eigenstates to each
other (including coupling bound-pair and scattering states).
As A increases, the overlap between the bound and scattering
state energies decreases and the two bands separate for A
>2. This will suppress the coupling and imply that for large
A, if the initial state has negligible overlap with the bound
subspace, the dynamics will be essentially uncoupled.

C. Evolution of |n,n+1) initial states

In this section, we explore the dynamics of an initial state
prepared with two spin flips localized on neighboring sites
near the center of the chain |¢(0))=|ny,no+1). Parameters
corresponding to accelerator modes are used: JT=130 and
By=1/10, so K~4ar. Figure 1 shows the resulting on-site
magnetization (Pf):(%(l - o‘,f)) of [(0)) after successive ap-
plications of the map (6) for A=0, 1, and 2.

When A=0, a pair of hopping wavepackets is produced.
Each travels 47/ B~ 130 sites each period. This is consis-
tent with the single-particle accelerator modes (see previous
section). In contrast, when A=1 or 2, there are two sets of
hopping wavepackets. One pair (AM) evolve such as those
in the A=0 chain, while the other pair (AM2) hop approxi-
mately 27/(ABy) sites each period. For A=1 the AM2
wavepackets decay rapidly and by the third period (r=37)
they are almost indistinguishable from the chaotic central
portion.
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FIG. 1. Showing the production of “bound state” accelerator
modes (AM2) which move slowly and fast “scattering state” AM.
We plot the time evolution of on-site magnetization (P,ﬁ) for two
initially neighboring spin flips |¢(0))=]400,401) on spin chains
with Ising terms of strength: A=0 (left), A=1 (center), and A=2
(right). When A=0, only the AM are present, in this case the dy-
namics maps to two independent QKRs. With increasing A the
AM?2 become dominant. We have chosen here, the parameters K
=13, Bp=0.1, ny=400, and T=1 for chains of 800 spins, which are
known to produce Gaussian excitations in a singly-excited chain.

To get a more complete picture of the dynamics we plot,
in Fig. 2, the two-site correlation function <Pi1P}12> for
|y(T)), allowing us to follow the relative positions of the spin
flips. We find that the AM2 wavepackets contain flips that
travel together, this suggests they are supported by the bound
states. The AM wavepackets on the other hand appear in an
anticorrelated portion of the wavefunction.

We now consider these two different kinds of behavior in
more detail.

D. A=0 and “independent” QKRs

For A=0 only the exclusion interaction is present between
flips. The effects of this interaction are subtle and sensitive to
the initial conditions. For certain cases, where the flips are
initially separated by an odd number of sites, it has been
shown to change the character of entanglement when the two
excitations collide [26]. A separate study on the transfer of
entangled states in a doubly excited XX0 chain was carried
out in [27].

Here, we are interested what influence the exclusion in-
teraction has on the QKR-like behavior of excitations in the
kicked spin chain. The A=0 model can be mapped to a sys-
tem of spinless fermions via the Jordan-Wigner transforma-
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300 350 400 450 500
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,

300 350 400 450 500
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tion (see Appendix for details). The number of fermions
matches the number of spin flips. The exclusion interaction is
accounted for by the anticommuting property of the fermi-
onic operators. Consequently, the fermions are “free” (non-
interacting) and can be evolved separately under the single-
particle dynamics. The result of this is that the kicked chain
maps to a system of noncoupled QKRs. However, in the spin
representation, the exclusion interaction is still relevant (the
spin flips do not evolve separately). To see this we make use
of the Floquet operator in the two spin-flip basis (see Appen-
dix)

<”1,”2|UA:O(T)|m1am2>

. 2 2
— e—l(BQ/Z)[(nl — ng)“+(ny — ng) ]in1+n2—m1—m2

>< I:‘In l—ml (B)‘Iﬂz—ﬂlz(ﬁ) - ‘Inl—mz(ﬂ)‘/nz—m 1 (B)] >
(19)

where B=JT and N — e,

The effects of the exclusion interaction are not actually
seen in Fig. 1. For example, the on-site magnetization after
one period [i.e., for |g(t=T))] is (Pi)=2,11<n|UA:0

2
A<O 5 ngn,no,n0+l|
+E Uﬁ;zz,no,no-#l|2’ Wthh 18 <Prlt>:‘]n—n0(18)+‘In—n0+1(18)'

This is the same as for two independent spin flips initialized
at sites ng and ny+ 1. Using the free-fermion correspondence,
it is straightforward to show that for all later times (Pi) is
exactly equivalent to the sum of expectations for a pair of
uncoupled QKRs.

The coupling induced by the exclusion interaction is,
however, evident in Fig. 2, which plots the two-site correla-
tions after the first period: <P1£1Pi2>=|U3:22,n0,n0 Ll Tts ef-
fect, for this particular initial state, is to prevent the spin flips
from traveling together. The two-site correlation is highest
when the flips travel JT=130 sites in opposite directions. If
the flips were non interacting (i.e., allowed to co-exist on the
same site) then it would be equally likely the flips would
travel together or apart. Different correlations are seen when
the initial separation of the flips is changed.

So when A=0, where the Heisenberg chain eigenstates
consist entirely of scattering states, the behavior of two spin
flips is like that of two kicked rotors except the flips build up
correlations in their relative positions.

n2<n|

500
450

400

Y

/
350

300

300 350 400 450 500

My

FIG. 2. Spin-spin correlations corresponding to Fig. 1 at t=T: (left) A=0, (center) A=1, and (right) A=2. The two-site correlation
function <Pi]P}2>, equal to the probability of finding one flip on site n; and the other on n,, is shown. At A=0 the spins are anticorrelated

2

in contrast to Fig. 1 which suggests the dynamics of uncoupled particles. A=1 and 2 have an anticorrelated component (flips separate) as

well as an additional component where the flips travel together.
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E. Bound state QKRs for large A

When A # 0, the spin flips can form bound pairs and when
A=1 or 2, a pair of neighboring spin flips will overlap with
both bound and scattering eigenstates. The additional fea-
tures seen in the probability distributions when A=1 and 2
are remnants of QKR-like behavior of bound states that ap-
pears in the limit of large A. In this limit, the bound states
confine the flips to neighboring sites. Santos and Dykman
[28] use a perturbation expansion in spin coupling strength J
to produce an effective Hamiltonian when A= 1. In this ap-
proximation the bound state amplitudes are

a(ny,ny) =6, lei("1+"2)"1, (20)

1~
and their dispersion relation remains unchanged from Eq.
(17). Clearly, in center of mass coordinates, the bound states
have the same form as a single magnon solution. Naturally,
this similarity extends to the dynamics of states on the
nearest-neighbor (NN) subspace, {|n,n+1)}: two initially
neighboring spin flips evolve together in approximately the
same way as a lone flip in the single-excitation basis {|n)}.
We anticipate that for A>1:

5 e Jt
<n1’n2|Uﬁc>l(t)|m’m+ 1> =~ Jnl—m(ﬁ)5n],n2—l’

1)

where the propagation of the neighboring flips is slower than
for a single flip—it is scaled by J/(2A) rather J.

The influence of the kicking field on the NN subspace can
be incorporated into Eq. (21) to give

o U (Dmm 4 1) = 6, _jealm = o127

Ny
o (7). 2

: MM\ 2A )7
up to a global phase. Again, we see an analogy to a QKR,
with stochasticity parameter K,=JTB,/A and effective
Planck’s constant 7,=2B,,.

We expect the accuracy of this approximation to fall with
decreasing A as the bound states become broader and are
coupled more strongly to the scattering states by the kicking
field. However, we show in Fig. 3 that even for A=2, QKR-

like behavior is still seen on the NN subspace for short times.

F. Scattering state QKRs and center of mass diffusion

We now consider parameter ranges for which a single
particle displays dynamical localization. Taking K=JTB,
=5.0 and By=1 a lone flip initially spreads diffusively but at
long times this spreading saturates and the flip becomes ex-
ponentially localized (P}~ exp{~2|n—nj|/L} with a local-
ization length L=(JT)?/4. The diffusion time is usually in-
creased for coupled kicked rotors, e.g., in a related study [29]
a pair of rotors coupled locally in momentum Udp,,p, were
shown to localize with a much greater L.

In Fig. 4 we follow the center of mass spreading of two
spin flips using the second moment <(n1+n2—2n0)23é). The
flips are initialized 10 sites apart so in the limit of large A
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FIG. 3. Decay of QKR-like behaviour of neighbouring spin flips
on the A=2 kicked Heisenberg chain. At large anisotropy (A> 1),
the matrix element in Eq. (22) implies a correspondence between
the dynamics on the nearest-neighbor subspace and that of a QKR
with stochasticity parameter K,=JTB,/A and effective Planck’s
constant 7,=2B,. Here we show how this correspondence holds
when A=2, for the initial state |100,101) on a chain of 200 spins.
We plot the fidelity F=[(4AnT)| s, (nT))| of evolution on the
chain calculated numerically |y(nT))=[U(T)]"|100,101) with the
state evolved by the matrix element in Eq. (22), |¢ns (t=nT))
=[U§>1(T)]”|100,101). We see that even at this relatively small
anisotropy, QKR-like behavior is seen for short times. However,
this correspondence decays more rapidly for larger By~ 1. This
may be due to increased coupling between the scattering and bound
states due to the kicking field.

this state should overlap only with scattering states. The spin
distribution localizes for A=0 as expected for an uncoupled
QKR; however, for larger A, the diffusion is not halted, but
slows down appreciably after the “break time” at A=0. This

2500
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A=05
- |A=0.4
|A=0.3
A=0.2
A=01
A=0
500
2500
_. 2000}
[YKe)
o
= 1500}
c
9
< 1000}
¢
=
~ 500}
0 ‘ ‘ ‘ ‘
0 100 200 300 400 500
(b) uT

FIG. 4. Influence of the o707, coupling on the growth of the
“center of mass” second moments for two flips initialized 10 sites
apart and parameters K=5 and By=1 on a chain of 200 spins.
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slower diffusion saturates and reaches a constant rate for
A=1.

For large A, due to the large energy gap, the kicking field
will not significantly couple the bound and scattering states
so the quantum state is supported only by the scattering
states for all time. The behavior of the diffusion however,
does not reduce to that of uncoupled kicked rotors [as might
be suggested by the dispersion relation in Eq. (18)]. This is
because the scattering states do not exactly reduce to a pair
of magnons—even in the large N limit where the corrections
to the momenta «;, [see Eq. (16)] vanish (i.e., 6/N—0).
They are distorted by the Ising term and correspondingly the
presence of the bound states. This can be seen by rearranging
the Bethe equations in Sec. IIl A. For A#0 the scattering
state amplitudes can be written

a(n L n2) o e(iKC/Z)(n1+n2)

KC
cos—

X |i sin[ k,(n,—n,+1)]- sin[ k,(n,—n,)]|,

(23)

where k,=2m(N\|+\,)/N and «,=[7(\;=\,)+6]/N. Nota-
bly, when A> 1, the scattering states typically have no over-
lap with the |n,n+1) subspace (except, e.g., for the A=\,
=60=0 state) as this is occupied by the bound states.

IV. POSSIBILITIES FOR CONTROLLING
THE EVOLUTION OF SPIN FLIPS

These results may be of interest in the context of quantum
information and state transfer as they suggest possibilities for
manipulating the evolution of spin flips (and spin correla-
tions) in a Heisenberg chain. Clearly, the evolution of a two-
particle state on the nonkicked XXZ chain depends on A and
the shape of the initial wavepacket. These two factors also
determine the proportion of the wavefunction that is sup-
ported by the scattering/bound states. In the kicked chain, for
large A, the scattering and bound states correspond to differ-
ent QKR images: the bound (b) and scattering state (s) QKR
image parameters are related via K,=K,/A and 7,=27,. So,
by picking suitable values of JT and B, we can select which
dynamical regimes the bound and scattering components cor-
respond to.

For example, one could halt the propagation of either the
bound or scattering state portion of the wavefunction and
allow the rest to travel. A possible way to do this is to make
use of resonances in the QKR. These occur for 7=47r where
r is rational. For r=1 (primary resonance) ballistic spreading
occurs in momentum for the QKR (position for the spin
chain) and when r=1/2 (antiresonance) diffusion in momen-
tum can be suppressed. These two conditions could be
achieved for the bound and scattering states, respectively, by
setting 7,=4m. This would lead to ballistic diffusion for ini-
tially neighboring flips and could prevent flips that are ini-
tially well separated from spreading.
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V. CONCLUSIONS

We have investigated the dynamics of a pair of spin flips
on a periodically kicked Heisenberg chain, focusing on the
roles of the scattering, and bound eigenstates of the underly-
ing time independent model. Analogies to coupled and inde-
pendent rotor systems have been identified and analyzed.
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APPENDIX: TIME EVOLUTION FOR THE KICKED
XX0 MODEL

Here, we show how the kicked XX0 chain [obtained from
Eq. (4) by setting A=0] maps to a system of independent
QKRs. This is done by first applying the Jordan-Wigner
transformation [30], a nonlocal mapping of spin flips on
the chain to free fermions on a lattice. This transformation
defines fermion creation and annihilation operators, c}'
and c;, respectively, in terms of spin operators so that

ai=(1-2c]c;) and

6f = [H (1 —26‘;C'j):|cl-, 07 = [H (1 —2C}Cj):|cj-—.

j<i j<i
(A1)

The product of (1 —2c;fc ;) terms accounts for the difference
between interparticle exchange statistics—negative for fer-
mions and positive for spin flips. The creation and annihila-
tion operators obey the standard commutation relations:
{c,-,c;}=6,<, ; and {c¢;,c;}=0 and are defined with respect to a
vacuum state |¢) such that ¢;[¢)=0.

Making use of the transformation and setting A=0, the

kicked spin chain Hamiltonian (4) becomes
N-1

2 (C;‘-Cj+l + C_-/;'.+1Cj) -(= 1)’(cTcN+ C;[]Cl)
j=1

J
H=-~>
2

N
+ %2 (= jo)*(1 =2cfc)) 8t/T).

- J
J=1

(A2)

The transformed Hamiltonian has boundary terms that de-
pend on whether the number of fermions, r, is odd or even;
these arise from the periodic boundary conditions oy, =0,
and 0%/+1=0%'

We now calculate the result of time evolving over one
period. Using the Heisenberg picture, we define c;(T)
=U"(T)c;(0)U(T), where U(T) is the Floquet operator of Eq.
(6). The absence of any mutual interaction [i.e., terms of the
form v(jja, /1, jé)c-flcfzcj‘jc;;] in Eq. (A2) implies the fermi-
ons are “free” and therefore the fermion operators can be
time evolved using single-particle states: U'(T)c[4(0)]U(T)
=cTy(~1)] where ¢[¢(~1)] creates the single-particle state
(—1)=U"(T)y(0). This corresponds to the single-flip basis,
s0 ¢;(T)|¢)=U"(T)]}). Using the matrix elements U,,, in Eq.
(7) gives, up to a global phase,
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ci(T) = Bl =2 'y,
jr

L(=JD)c0).  (A3)

The equivalence between this propagator and the time evo-
Iution for the QKR is clear and the parameters correspond as
before: JTBy— K and By— . Therefore, a kicked fermion
evolves in position in the same way as a QKR evolves in
momentum, i.e., j— /7. This multiple-fermion correspon-
dence is a direct extension of the single-flip analysis [11,12].

Calculating two-particle correlation functions is now
straightforward. For example, we find the matrix element
of the Floquet operator in the two spin-flip basis |n;,n,)=

1‘12 Yl1|¢>

(n,n| U(D)|my,my) = ($le,, ¢, U(T)e, cf, |b)

=(<¢|cmlcmz ;12(T)c (T)|¢>)
(Ad)

Substituting Eq. (A3) into this

PHYSICAL REVIEW E 81, 046201 (2010)

(1o U(T) |y my) = Y, emiB2m = o) +(ny = jo) "l riz=my=n
i1y
X Jion (=D (= IT)
X<¢|cmlcm2clzcll|¢) (A5)
From  Wick’s  theorem  (¢[c,, ¢y .C i 12|¢) iy Oy
-0, : 0 and therefore,

my,iy mz,il
(nl,n2|U(T)|ml,m2) — e(—iBQ/Z)[(nl _j0)2+(n2 _jo)z]l.nl+l12—m1—m2
X []m 1 ( JT)J )Ty JT)

- ml—nz(_ JT)Jt712—n| (_ JT)] .

Substituting J;(-B8)=J_;(B) into this yields Eq. (19).

Finally, we note that when A#0 the Ising term,
H;,=—JAS,0%d%, /4, introduces a mutual interaction be-
tween the fermions:

(A6)

N

Hy=JAY, cTc —1/4 - j+1cj+lcj. (A7)
j=1

As a result,
coupled.

the corresponding QKR images will be
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