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Emergence of heterogeneity and political organization in information exchange networks
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We present a simple model of the emergence of the division of labor and the development of a system of
resource subsidy from an agent-based model of directed resource production with variable degrees of trust
between the agents. The model has three distinct phases corresponding to different forms of societal organi-
zation: disconnected (independent agents), homogeneous cooperative (collective state), and inhomogeneous
cooperative (collective state with a leader). Our results indicate that such levels of organization arise generi-
cally as a collective effect from interacting agent dynamics and may have applications in a variety of systems

including social insects and microbial communities.
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I. INTRODUCTION

To understand systems of social and political organiza-
tion, it is tempting to begin by trying to understand the indi-
viduals that form them. This approach quickly runs into a
problem—the behavior of individuals is very hard to predict.
The behavior of any given individual depends upon a large
number of factors: their culture, their experiences to date,
their genetics, the events they are currently experiencing,
their education, their economic status, and so on. It seems as
if understanding the behavior of a group is an impossible
goal if predicting the behavior a single person is so difficult.
However, models of group behavior through agent-based
modeling [1] have been reasonably successful despite this,
reproducing generic properties of the dynamics of crowds,
mobs, and riots [2-4]; collective opinion formation [5-7];
the structure of social groups [8—15]; and financial markets
[16]. When large numbers of people interact, there exists the
possibility for the emergence of collective effects which—
surprisingly—are insensitive to the details of the elements
which comprise them. When this occurs, the interactions be-
tween agents overwhelm their individual dynamics; and al-
though their may well be many factors difficult to model for
each individual’s behavior, the interactions are frequently
easier to specify, characterize, and model.

The purpose of this paper is to understand the factors at
work in setting up and maintaining the large scale structure
of societies from the point of view of an abstract model.
Other models [17] have analyzed the stability and transitions
of an established form of social order. In this paper, we will
instead seek to explain how social order emerges from an
unstructured state due to collective interactions between in-
dividual agents. We will consider the optimum networks that
could emerge, without treating the dynamics of the network
evolution or active networks [18].

The emergence of networks of preferred interactions be-
tween agents has been observed in [19,20]. The resultant
structure of agents is heterogeneous—a state emerges in
which some subset of the population (the leaders) extracts
maximal benefit. There is however no explicit flow of infor-
mation from the leaders to the other agents. We posit that the
structure of information exchange in the system is a key
element to the form of political organization it possesses. We
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would like to differentiate between the agent with the great-
est payoff and the agent whose decisions hold maximal
weight in influencing the decisions of others. In our model,
we observe the development of a division of labor from
simple selfish behavior and communication between the
members of the system. The role of active information is
central to achieving this heterogeneous population structure.
This mechanism is not unique as far as ways in which the
division of labor might emerge [21,22]. Any system that en-
courages specialization and provides some way for the pro-
ceeds of labor to be redistributed may very well produce
division of labor, and there are a number of proposals for
how this might come about.

The mechanism studied in the present paper is differenti-
ated from earlier work because the method of redistribution
(information exchange) has the additional consequence that
networks of behavioral control can emerge from the popula-
tion. They are not mandatory consequences of the dynamics
but only arise under certain conditions specified by param-
eters in the model. Thus our model does not function as a
zero-sum game in which there is exchange of a variety of
resources. Information exchange has been studied in various
other models. However, in such models it is usually a passive
variable, for instance in voting and opinion formation mod-
els.

The role of active information—information used to make
a decision with either positive or negative consequence—is
less well known. In [23], active information played the role
of a diffusive field in a spatial prisoner’s dilemma model, and
in [24], information was given to a subset of members of a
swarm to see how informed decisions would propagate to
determine the swarm direction. In these cases, the agents had
no way of evaluating the quality of the information they
received—whether it had in the past led to a good or bad
decision. This dynamics leads to information acting prima-
rily as a homogenizing agent: it determines the average be-
havior in [23] and directs the average swarm direction in
[24]. On the other hand, in our model, each agent determines
the optimal degree of trust to place in information received
from another. This “trust,” in other contexts such as a politi-
cal system or organizational structure, could be any way in
which control over an agent’s behavior is surrendered to one
or more external agents. By giving each agent the ability to
tune its trust in the other members of the system, it is pos-
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sible for clusters to form in which the members of the cluster
have voluntarily given over the reins of their decision mak-
ing to a leader of their choice.

The optimization that we ask the agents to perform with
respect to their communication and resource usage corre-
sponds to the classic problem of exploration versus exploita-
tion [25,26]. This problem is usually considered in light of
some centralized, existing structure (e.g., the determination
of corporate policy with regards to allocating funding be-
tween research and production). In essence we test if the
agents in our model will build such a centralized structure
through their own individual optimizations or if other types
of organization may occur.

This organization, in its simplest form, arises from uni-
form information exchange between the individuals in the
system, resulting in a homogeneous shared information pool.
This corresponds to communal decision making by majority
vote. In a system in which different agents are better or
worse at making decisions, one would expect the emergence
of a system of weighting by reputation simply as a tool to
optimize the decision-making process. If, however, resources
can be allocated toward making better decisions, it becomes
possible for a subset of the individuals to specialize in being
an information source. At this point, the majority of agents in
the system will be following instructions provided by a mi-
nority of agents, without a significant information flow in the
reverse direction. These two phases—unstructured and struc-
tured, respectively—are distinct forms of political organiza-
tion. Which is achieved depends on the costs and benefits
associated with information generation.

A requirement for stability in the structured phase is that
the agents which are acting as an information source must
either gain from producing information or lose if they fail to
produce information as they dedicate their own resources
into providing this information. In modern governments, sys-
tems of taxation subsidize the decision makers, but the emer-
gence of such structures is difficult without a heterogeneous
system already being in place. Our results show that in cer-
tain circumstances, the decision-making structure of a popu-
lation may become heterogeneous even without the inclusion
of subsidies or resource exchange, due to a collective effect
where the refusal to generate information by the majority of
the population forces the agents that are the last to act to take
on the decision-making role simply to preserve their own
benefit. From this phase, the introduction of a resource sub-
sidy would improve the efficiency of the system and could
be done in a continuous manner. A schematic phase diagram
that qualitatively exhibits the nature of the phases and tran-
sitions between them is illustrated in Fig. 1.

II. MODEL

We propose the following model to capture the dynamics
of information exchange. The system consists of a set of
agents, each of which chooses one out of a set of O different
actions to perform during each iteration of the game. Each
agent must choose how to allocate its time between produc-
ing resources or producing information about the environ-
mental state (“thinking”). In this model, there is a single
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FIG. 1. (Color online) Schematic phase diagram for our model.
The Investment axis is the degree that a large initial investment of
resources is needed to see an improvement in accuracy: this corre-
sponds to the nonlinearity « in the model. The benefit axis is the
total difference in accuracy between random guessing and perfect
knowledge, which corresponds to the variable O in our model. In
the lazy phase, random guessing is the optimal behavior. In the
heterogeneous phase, a subset of agents dedicate their resources to
thinking whereas the rest of the agents dedicate their resources to
working (division of labor). In the homogeneous phase, all the
agents dedicate the same nonzero amount of resources to thinking.

correct action which changes during each iteration of the
game. This represents an environmental state that in some
sense needs to be responded to in order for resource produc-
tion to be successful. For simplicity, in this model resource
production is either successful or it is not although one could
conceive of variations of the model with a best choice, sec-
ond best choice, etc. If the agent guesses the environmental
state correctly, it produces a number of resources propor-
tional to the fraction of its time it allocated to production.

Before the actual resource production occurs, each agent
can observe the guesses made by all of the other agents in the
system. This is sensible for a small, highly connected com-
munity of agents (such as a small business, a set of neigh-
boring farmers, or an insect hive). It also makes sense as a
first-order approximation for a large system with some sort
of information aggregation, where an agent’s ability to see
the choices of other agents comes through some intermediary
reporting system such as public opinion polls although de-
pending on the biases inherent in the aggregator there would
be higher order effects not considered here.

Each agent makes its choice by combining the informa-
tion it observes from the other agents in some weighted fash-
ion with its own generated information. This set of weights
forms a trust network—the weight of each link measures
how much that agent trusts that the choice made by another
is the correct one. In principle this network emerges through
observation of past performance or some other dynamical
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process. We consider the infinite time limit so that each agent
has perfect knowledge of each other agent’s prior perfor-
mance and thus their accuracy.

We assume in this first part that each agent has a number
of degrees of freedom (how to combine information from
other agents and how much time to allocate toward produc-
ing resources) which are adjusted in order to maximize its
average score. The immediate consequence of this is that we
may determine what the optimal trust network should be and
thus determine our trust-network order parameters in terms
of the distribution of thinking values—the agent with the
highest thinking value will have the most trust directed at it,
and if the thinking values are distributed homogeneously
then trust will also be distributed homogeneously. This treat-
ment neglects dynamical effects and fluctuations. Later, we
will analyze the effect of fluctuations and dynamics on the
stability of the various phases. We will also examine the
consequences of allowing agents to make a centralized deci-
sion to exchange resources with each other, in essence sub-
sidizing agents who generate useful information in order to
support a locally suboptimal but globally optimal choice.

The base accuracy—that due to the agent’s own produc-
tion of information—is a nonlinear function of the fraction of
time dedicated toward information production 7. A success-
ful guess then produces one resource per unit time spent on
resource generation. This results in a total production of 1
—T resources from a successful guess, or zero from a failed
guess. If we take the average performance over many such
trials, then we can derive a score function that the system
may try to optimize.

We must now determine how the accuracy depends on the
amount of time spent upon thinking. The choice of functional
form must satisfy a number of constraints. The accuracy
should monotonically increase with the fraction of time
dedicated toward it. Additionally, it is bounded above by 1
and below by 1/0 (the accuracy of a random guess). In
principle one could have agents that perform worse than ran-
dom although the proper way to model this so as to be gen-
eral is not obvious. However, if we consider the limit of O
— 0, then a random choice is the same as a zero accuracy.
This means that the effect of agents performing worse than
random will be to effectively increase the value of O above
the actual number of options present in the system. Given
these constraints, we may choose any function of the form
A=[1/0+(1-1/0)f(T)], where f(T) is a monotonically in-
creasing function that maps the interval [0,1] to itself. Given
an accuracy, one can calculate the average score of an agent
operating only on its own information (the score function S):

S(1) = (1~ DAD) = (1 —T)[} (1 —%)f(T)] (1)

The key character of our choice of function will be the
range of values of the other parameters for which the score
function has a local maximum in the interval [0,1]. The point
at which this maximum appears or disappears will control
part of the resultant phase diagram. If f(7) is monotonically
increasing, then the larger O is, the more likely there is for
there to be a maximum, and the less concave up f is, the
more likely there is to be a maximum. This can be seen by
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calculating the concavity of the score function at the location
of its extremum in terms of an arbitrary f:

sgn(8”) =sgn[(1-T)f" - 2f"]. 2)

Consequently, the specific details of f(7) should not
strongly influence the results. Its local derivatives in the vi-
cinity of the extremum of S are the only relevant properties.
If f(T) is concave up, then specialization is favored. If con-
cave down, then there are diminishing returns and even an
infinitesimal amount of time dedicated toward producing in-
formation will be beneficial. While we could in principle
combine an arbitrary number of concave up and concave
down regions in order to create a series of optima in S, it is
hard to justify that arbitrary complication.

A simple choice of function that allows us to smoothly
vary between concave up and concave down behavior with a
single parameter is A=[1/0+(1-1/0)T*], where « is a pa-
rameter of the model controlling the disposition of the social
problem toward specialization or generalization. If a>1
then the function is concave up, and specialization is fa-
vored. With this basis, we can discuss a number of possible
system configurations and evaluate their average score for
optimal choices of T.

While one could argue that we have put in the possibility
of the existence of an optimum value of 7 by hand, it is an
allowed possibility given the most arbitrary choice of f(T).
We are then exploring the consequences to the phase dia-
gram of political organization that result from the existence
of this optimum choice, rather than saying that we have
shown that fundamentally that optimum must exist in real
social systems. It is clear that in many cases such as social
insects there is such an optimum because in those systems
specialization is favored over generalization.

A. Disconnected homogeneous phase

In the case that no agent in the system uses information
from any other agent, there is an optimal value of 7 to maxi-
mize an agent’s score. The average score in this phase S}, is
perforce independent of N.

_ 1
SDH(T)=5(1 -D1+(0-DT17]. 3)
The optimal value of T satisfies

1
a—1 -

T [« (a+1)T]—0_1. 4)

If a=1, then this value of T is always less than zero, so
T=0 is the optimal choice. At larger values of a a local
maximum appears in the curve at a finite value of O and then
becomes a global maximum as O increases. The value of O
at which the maximum value of the score is equal to the
value at T=0 is O=1+a%/(a—1)*"'. In the limit of large a,
this becomes O=ea+(1—-e/2). So in effect, for values of
a>1 (representing a nonlinear reward for dedicating re-
sources to thinking) there is a first-order transition between a
guessing phase and a thinking phase, where the more options
there are, the more valuable a resource spent on ‘thinking’ is.
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FIG. 2. Score functions in the Isolated Phase as a function of
thinking time 7, for four values of O and «. In the Isolated Phase,
each agent does not receive information from other agents.

The larger « is, the larger O must be for a nonzero thinking
phase to be optimal. The score function for various values of
a and O is plotted in Fig. 2.

An additional consideration is the effect of fluctuations on
this phase. If each agent may only specify their actual think-
ing value to within some standard deviation, then the result-
ing average score is lower than if fluctuations had been ab-
sent. Near the limits of the range of the thinking variable
fluctuations are constrained such that they may not take it
outside of the range. For fluctuations of magnitude o around
an optimal value of 7, we expect that the average score will
change by

2 _
AS = 023—;; =d?al* [(a-1) - (a+ l)T]%. (5)

For fixed «, as O becomes large the optimal value of T
approaches «/(a+1) and so the decrease in the score ap-

proaches
@ a=2
a+1 ) o ©)

AS:—a(

When the optimal solution is T=0, however, the first deriva-
tive is nonzero and so fluctuations have a linear effect. The
effect of this is that AS =0'Z—§/ N assuming Gaussian fluctua-
tions. The slope of the score function around 7=0 is

dSpy

=-1/0. 7
T (7)

So we expect AS=—0/(0 V) to be the leading effect at this
point. The consequence of this is that sufficiently large fluc-
tuations will favor the 7=0 phase.

B. Connected homogeneous phase

If communication between agents is permitted but no re-
source reallocation takes place, then the resulting accuracy is
higher than any of the individual accuracies in the system (so
this phase is always favored over the disconnected phase for
permitted values of T). The optimal trust network in this
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FIG. 3. Score functions in the Homogeneous Phase as a function
of thinking time 7, for different numbers of agents N, with O=5
and a=5. In the Homogeneous Phase all agents share information
and have the same parameters.

phase must be homogenous, as the agents are indistinguish-
able from each other, and turns out to be a fully connected
graph where all agents equally trust the decisions of each
other and themselves.

For O=2, the effective accuracy can be solved for in the
large N limit. If the initial accuracy is A, then the total num-
ber of agents that pick the correct option Cj is CO=E§V ;s
where 7; is either 1 (with chance A) or 0 (with chance 1
—A). In the large N limit, C, is described by a Gaussian
distribution with mean NA and standard deviation A(1
—A)vW.

The probability that the system picks the correct option is
thus the probability that Cy>N/2. As the range of permitted
values is not infinite, care must be taken to compute the
correct normalization factor. So

f” {_( X—AN ﬂ
P T\ 2NA(T - a)

Aeff="7n av (8)
JO exp[_<2NA(l—A)) }

which evaluates to

/_ _ ,'/_
rf[ (1= AN } _erf[ (112 A)\Nl

2A(1-A) A1 -A)
off = = =71
f{(l—A)\’N| f{ AVN |
erf| ———— | —¢rlf| - 77—
24(1-4) A1 -A)

where A(T)=(1+T%)/2 in this case.

For O=2 and a=2, benefits from a nonzero value of T do
not appear until around N>35. Figure 3 shows the score
function for the homogeneous, connected phase compared
with the isolated phase.

The effects of fluctuations are less obvious in this case
because they must be considered each agent independently,
whereas this analysis is done for all agents behaving in the
same fashion. In the case of this model, fluctuations may
actually increase the effective score, as a fluctuation to
higher thinking rate in one agent benefits the guesses of all
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other agents. Similarly, a decrease in thinking rate in one
agent will not significantly decrease his accuracy but may
increase his yield. This is a hint that this particular phase is
unstable to an inhomogeneous phase.

A rough estimate would suggest that when adding to-
gether the effects of fluctuations on each of the individual
agents, the effective size of fluctuations is reduced from o to
o' =0/+N. This has the consequence that the connected, ho-
mogeneous phase is less sensitive to fluctuations than the
disconnected phase.

C. Connected inhomogeneous phase

If the agents become inhomogeneous and divide their la-
bor between thinking and working, then structures in which
there is a directional information flow become possible.
Given perfect communication and no fluctuations, the opti-
mal configuration will be that of a single agent with high
accuracy (T) and N—1 agents with minimum accuracy but
always picking the action of the “leader” agent. Because the
leader is also trying to optimize their own score, the leader
does not have the highest possible accuracy (T=1) but in-
stead has the optimal accuracy for a completely isolated
agent. The trust network in this phase is a directed graph
where every agent trusts the leader but no agents use infor-
mation from each other. The average score for this phase is
simply

. (N=D+(1=D[1/0+(1 - 1/0)T"]
S, = v .

(10)

This phase in static conditions scores far better than the ho-
mogeneous phases, but it is very susceptible to fluctuations
lowering the score compared to the connected homogeneous
phase. The result of this is that neither the pure homogeneous
nor heterogeneous phases are realized. In a fully connected
population with some form of noise, the system produces a
number of leaders L which scales with the population size.

The inhomogeneous phase with a number of leaders can
always have a higher population average score than the ho-
mogeneous phase, but is not generally stable when the indi-
vidual scores are examined. Each leader agent can improve
their score by decreasing the portion of resources they dedi-
cate to thinking to the optimal value for the disconnected
phase. When the disconnected phase optimal value is 7T is
greater than zero, the inhomogeneous phase may still occur.
This occurs for small «, large O, and small N. If « is too
large, the height of the secondary maximum is decreased
below that of the 7=0 score function maximum and a homo-
geneous T=0 phase occurs (Figs. 4 and 5). If N is suffi-
ciently large, the homogeneous connected phase with non-
zero T can outperform a phase consisting of a single “selfish
leader.” So there are first-order phase transitions in the space
of O, a, and N between three phases: 7=0, leader, and ho-
mogeneous connected (or “communal” phase).

D. Resource subsidy

We have so far shown that for certain values of the pa-
rameters, the inhomogeneous leader phase is stable even
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FIG. 4. Phase diagram for O=10 in the space of the nonlinearity
a and number of agents N. The phase transition from the heteroge-
neous phase as N increases is due to the communal phase being
more efficient than a selfish leader phase. The phase transition as «
increases is due to the transition of the isolated phase to a 7=0
phase. The dotted lines show the phase boundaries when Gaussian
fluctuations with a standard deviation of 0.1 are added to the T
value of each agent.

without the leaders being subsidized. The system has not
maximized its resource production in this phase—rather, the
limit on resource production is set by the cost to the leader
agent, in that even though it might produce a large amount of
resources for others by changing its behavior, doing so
would decrease its own resource production.

If we allow agents to exchange resources as well as infor-
mation, then starting from the connected inhomogeneous
phase it is possible to improve or keep constant the scores of
all agents. If we have a phase with a single leader agent, then
for that agent to dedicate more than the disconnected optimal
fraction of resources to thinking, it must be reimbursed by at
least the same amount of resources as it loses to increase the
resources it spends on thinking. This resource cost may then
be absorbed by the remaining N—1 agents. In effect, the
criterion of selfish optimization becomes one of global opti-
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FIG. 5. Phase diagram for N=50 in the space of the nonlinearity
a and thinking benefit O. The dotted lines show the phase bound-
aries when Gaussian fluctuations with a standard deviation of 0.1
are added to the T value of each agent.
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FIG. 6. Optimal number of leaders as a function of total number
of agents for a system with O=5 and two different fluctuation
strengths. In this case, the fluctuations are parameterized by the
resultant average accuracy A of a leader with 7=1.

mization. The globally optimal phase in the absence of fluc-
tuations is that with a single leader agent.

This need not be the case in general, as one may posit the
existence of cheaters: agents which do not give resources
toward the subsidy but still gain its benefits. A system with
multiple types of resource or multiple agendas, such as in
[27] might also retain a more detailed structure.

When fluctuations are added, it becomes beneficial to
have multiple leaders in order to reduce the impact of fluc-
tuations but retain the benefit of increased efficiency. We use
the connected, homogeneous solution for L agents to deter-
mine the accuracy of the remaining N—L given a known
accuracy of the leaders. For simplicity, we will assume that
the leader agents have 7=1, which the optimal choice con-
verges to as N> L. For a given level of fluctuations, each
leader will have an effective adjusted accuracy. We evaluate
the score function numerically as a function of L and find the
location of the maximum as a function of N. The results are
plotted in Fig. 6. At large N, the optimal number of leaders
approaches Loclog(N).

For a spatially distributed system or one in which there is
not total connectivity, it is expected that such effects will
require a larger number of leaders to cover the system extent.
For example, in a two-dimensional system in which agents
can only commungzate within a radius R, a number of leaders
proportional to VN/7R? would be expected to ensure total
coverage.

III. APPLICATIONS

The abstract model of emergent political systems that we
have outlined is capable of providing a framework in which
to analyze real social systems, and in this section we briefly
indicate some examples. It is important to emphasize that our
model is not required to model all situations in which divi-
sion of labor occurs—a simpler model with only a nonlinear
benefit to specialization and some form of exchange of ser-
vices would be sufficient to enable division of labor to
emerge. Such a process would not need to involve informa-
tion sharing as a core element. On the other hand, our work
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shows that the emergence of the leader phase (which corre-
sponds to the occurrence of a division of labor in other pic-
tures) is primarily a consequence of the special property of
information when compared to other resources that, once
created, it can be duplicated with a much smaller additional
cost than the cost to first generate it. This process of infor-
mation amplification makes the leader phase described here
distinct from other scenarios that produce division of labor.

We must also be careful to understand the nature of the
relevant optimization being implicitly performed when con-
sidering a given system. In human economic and political
behavior, one considers that each individual tries to maxi-
mize its personal benefit in the context of the greater system.
In other systems, such as foraging insects, the net benefit to
the colony as a whole is what is likely maximized—this
corresponds to the case where resources may be redistrib-
uted, which in our model means that the leader phase is
always optimal for all parameter values.

Even with these caveats, there are several systems which
could potentially be understood in the context of our model:
the behavior of social and hierarchical insects compared to
asocial insects [22,28,29], the distribution of information in
swarms [30], and innovation sharing in unicellular organisms
via horizontal gene transfer [31,32]. All of these cases in-
volve some piece of information being discovered by a
single individual—a randomly chosen one of a set of similar
individuals in the case of swarm behavior (corresponding to
the homogeneous phase) or via directed searching by a spe-
cialized subset of the population, as is the case in some for-
aging insects (corresponding to the leader phase). We will
now briefly discuss each case.

Different species of insects are socialized to different de-
grees. On one extreme, there are insects such as the solitary
wasps [28], which do not share resources or information. On
the other extreme, eusocial insects such as bees, ants, and
certain kinds of wasps have highly structured communication
channels and vehicles of information discovery. Foragers and
scouts use various means to communicate the location of
food supplies or nesting sites. The distinction here seems to
be that bees and ants reproduce centrally via a queen, and so
maximizing their interest corresponds to maximizing the in-
terest of the queen. As a result, resources can be redistributed
freely, and so we expect the system to emerge in the leader
phase—this is equivalent to a system of resource subsidy as
discussed earlier. Trust, here, is embodied in the genetically
programmed behaviors of the individuals in following sig-
nals sent by other insects.

In the case of honey bees, the various scouts return with
information about potential food locations, after which the
swarm comes to a unified decision about which site to pur-
sue. The method of decision making seems to be a weighted
average [30], similar to what we use to model the decision
making of our agents. Each scout has a certain chance of
finding the best site within a given distance—even if they
spend 100% of their time searching, they have a limited
maximum accuracy. This corresponds to the fluctuating case
in our model, so, as the swarm size grows, we can predict
that the optimal number of scouts should scale logarithmi-
cally with the swarm size.

Microbial organisms [33,34] and even multicellular eu-
karyotes [35-38] have the ability to swap genetic material
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and integrate it into their genomes via several pathways me-
diated often by mobile genetic elements such as viruses and
plasmids. There is cellular machinery associated with this
process, which can be active or inactive in a given cell. In
microbes, the state in which such an organism is receptive to
external DNA is called genetic competence. The regulatory
network associated with competence has been shown to gen-
erate a distribution of cells with differing levels of compe-
tence [31]. A small subset of the cells at any given time end
up being receptive to this information exchange, whereas the
rest remain closed. The competent subset changes with time,
so eventually, all cells will at some time be able to accept
foreign genetic material. This competence mechanism is then
the microbial analog of trust in our model. This dynamic
may be analogous to the leader phase in our model. Here, the
information amplification takes place when a subset of cells
exchange material and either live or die as a result. The
surviving exchanges are then passed on to the local popula-
tion, amplifying the induced information. An analogous pro-
cess to taxation (e.g., resource subsidy) may occur via a form
of symbiosis or biofilm formation, such that nutrient re-
sources are shared.

IV. DISCUSSION

We have shown that a model of communicating agents
that divide their time between information generation and
information usage has three distinct phases of organization
corresponding to structures identifiable in human political
systems. The flow of information between agents in the sys-
tem is critical to this phase structure. If agents can exchange
resources in a way that does not permit cheating, then the
optimal structure is to have a small number of leaders that
scales logarithmically with the system size, and a larger
number of workers. Fluctuations in the reliability of agents
tend to emphasize the communal phase over the leader
phase.

The social networks that emerge in these phases are all
simple structures, as we are looking at the optimum networks
in a homogeneous environment without considerations of
spatial or temporal organization. In essence, this is a zero-
temperature model—only the optimal network is considered.
It may be possible to devise a social entropy measure for this
model that would allow one to talk about statistical distribu-
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tions of trust networks around these optima, which might
give rise to more the complicated structures that one sees in
real social networks [10,11,39,40]. Even something as simple
as assigning a cost to the number of trusted links may give
rise to more nontrivial network topologies in the homoge-
neous phase although it would likely also stabilize and ex-
tend the leader phase.

The addition of dynamics is another interesting potential
area of expansion of this model. There is already an indica-
tion that dynamical elements are important to the leader
phase as the last agent to optimize their thinking value be-
comes the one stuck in a local maximum that it cannot es-
cape. The actual occurrence of this is a dynamical process.
With a reasonable ansatz for the decision-making process of
the agents of the model, the approach to the leader state and
its stability could be studied.

The phase transitions predicted by this model are all first
order in nature. As such, in a situation in which the agents
are approaching equilibrium dynamically, the various phases
can coexist over much of the parameter space. This makes
sense when one looks at the diversity of actual political sys-
tems in existence, on both the local and national scales. The
transition to the leader phase from a communal phase takes
the form of an inhomogeneous decay in the levels of deci-
sion making of the agents in the system, leaving one agent in
charge by default. In a dynamical version of this model in
which the distribution of agents changes with time, the tran-
sition between different leader agents could be studied.

This model has a relatively simple phase structure, as only
the thinking value and trust levels are allowed to vary. The
addition of spatial considerations, information exchange
costs, lying, resource exchange with cheating, or other such
factors could vastly increase the diversity of phases exhibited
by the model.
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