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The modularity maximization model proposed by Newman and Girvan for the identification of communities
in networks works for general graphs possibly with loops and multiple edges. However, the applications
usually correspond to simple graphs. These graphs are compared to a null model where the degree distribution
is maintained but edges are placed at random. Therefore, in this null model there will be loops and possibly
multiple edges. Sharp bounds on the expected number of loops, and their impact on the modularity, are derived.
Then, building upon the work of Massen and Doye, but using algebra rather than simulation, we propose
modified null models associated with graphs without loops but with multiple edges, graphs with loops but
without multiple edges and graphs without loops nor multiple edges. We validate our models by using the exact
algorithm for clique partitioning of Grötschel and Wakabayashi.
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I. INTRODUCTION

Community detection is a topic of particular interest in
the analysis of complex networks, which are often used to
represent systems arising in a variety of fields, such as tele-
communications, sociology, biology, and computer science.
Roughly speaking, edges joining pairs of vertices in a com-
munity should be more dense than elsewhere. This idea was
made precise by Newman and Girvan �1�, who proposed to
compare the fraction of edges within a community to the
expected fraction of edges in that community for a null
model where the edges would be distributed at random. To
make this model realistic, the degree distribution should be
kept constant. This led to precise definitions of the modular-
ity of a community, or cluster, and, summing over all com-
munities, of the modularity of a partition.

So, modularity can be used as a function to assess the
quality of a network partition as well as a basic concept in
models and methods for the identification of communities in
networks. Indeed, modularity maximization has spawned in
recent years numerous methods to identify such communi-
ties. Most of them are heuristics. They are based, for ex-
ample, on simulated annealing �2�, extremal optimization
�3�, genetic search �4�, dynamical clustering �5�, multilevel
partitioning �6�, contraction-dilation �7�, multistep greedy
search �8�, quantum mechanics �9�, and a variety of other
approaches �10–15�. Newman �16� developed an agglomera-
tive hierarchical clustering heuristic to maximize modularity.
An efficient agglomerative hierarchical algorithm was pro-

posed by Clauset et al. �17�. Newman �18� also developed a
spectral method for divisive clustering with the modularity
criterion, based on signs of the components of the first eigen-
vector of the so-called modularity matrix. Other approaches
based on modularity maximization are within the framework
of mathematical programming. Agarwal and Kempe �19�
used mathematical programming heuristically followed by
randomized rounding. Brandes et al. �20� used an integer
programming formulation and an algorithm close to those of
Grötschel and Wakabayashi �21� for clique partitioning. Re-
cently, Xu et al. �22� proposed a model to maximize modu-
larity exactly, based on a mixed-integer quadratic program
with a convex relaxation. These exact algorithms apply only
to small instances with about a hundred entities.

Despite the great success of modularity, several criticisms
of the original modularity concept can be found in recent
literature. Some authors showed, for example, that counter-
intuitive results can be obtained for artificially constructed
instances �20,23�. Moreover, some limit of resolution has
been pointed out for the modularity criterion in �23�. In this
work, Fortunato and Barthelemy gave some examples of data
sets where, in the presence of large communities, small com-
munities are undetected even if they are very dense. These
criticisms also led to modifications to the modularity func-
tion �15,24�. Recently, Good et al. �25� also discussed the
resolution problem as well as another difficulty in using the
modularity function, i.e., the exponential number of high-
modularity partitions.

Another criticism of the modularity function has been put
forward by Massen and Doye in �26�. They remarked that in
the original modularity model the graphs corresponding to
the null model will have loops �or self-edges� and possibly
multiple edges. However, graphs occurring in applications
are usually simple graphs, i.e., graphs without loops nor mul-
tiple edges. So a better estimate of the density of random
edges will be obtained by excluding loops and multiple
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edges from the model. Massen and Doye �26� proposed a
simulation approach to do this. Starting from the given net-
work G, they transform it into a random graph using rewiring
�27,28�. The basic rewiring operation consists in replacing
two randomly chosen disjoint edges �i , j� and �k , l� by the
two edges �i ,k� and �j , l�, or by the two edges �i , l� and �j ,k�,
provided this does not create multiple edges. Clearly, it does
not create loops. Note that this operation does not change the
degree distribution. This step is repeated a sufficient number
of times on each edge for the graph obtained to be consid-
ered as random, which can be estimated from the clustering
coefficient reaching equilibrium, i.e., having only small fluc-
tuations. After obtaining such a random graph the procedure
is repeated to yield a sufficiently large family of them. Prob-
abilities of presence of an edge are then estimated from those
observed in this family. Modularity maximization heuristics
can then be applied. Note that if precise probabilities are
requested, the family of random graphs without loops or
multiple edges should be large.

In this paper we consider again the problem treated by
Massen and Doye, but using algebra instead of simulation.
We first discuss further, in Sec. II, the basic modularity maxi-
mization model and derive sharp bounds on the number of
loops and their impact on modularity. Then we propose
modified null models associated with graphs without loops
but with multiple edges, graphs with loops but without mul-
tiple edges, and graphs without loops nor multiple edges. We
validate our models in Sec. III by using the exact algorithm
for clique partitioning of Grötschel and Wakabayashi �21�.
Brief conclusions are given in Sec. IV.

II. MODULARITY OF SIMPLE GRAPHS

A. Expected contribution of loops to modularity

Let G= �V ,E� be a network �or graph� with vertex set V
and edge set E. Its order, or number of vertices, will be
denoted by n= �V� and its size, or number of edges, by m
= �E�. An �undirected� edge is a pair of vertices represented
by a line segment. G can be described by its adjacency ma-
trix A= �Auv� where Auv=1 if an edge joins vertices u and v
and Auv=0 otherwise. A loop is an edge for which both end
vertices coincide. A multigraph is a graph such that several
edges have the same pair of end vertices �equivalently, two
vertices u and v can be joined by several edges in a multi-
graph�. A graph is simple if it has neither loops nor multiple
edges. The degree of a vertex u, denoted by ku, is the number
of edges of which it is an end vertex �loops, if any, being
counted twice�. A path joining vertices u and v is an alter-
nating sequence of vertices and edges such that the first ver-
tex of the first edge is u, the second vertex of this edge
coincides with the first vertex of the next edge and so forth
until vertex v is reached. A graph is connected if there is a
path between any pair of its vertices. All graphs considered
in this paper will be assumed to be connected. A partition
V1 ,V2 , . . . ,VM into M classes is such that Vi�� for all i
� �1, . . . ,M�, Vi�Vj =� for all i� j� �1,2 , . . . ,M� and
V1�V2� . . . �VM =V. The subgraph Gi of G induced by a

vertex set Vi�V is the graph having Vi as vertex set and as
edges those of E having both end vertices in Vi.

We are interested in finding partitions of V the classes of
which �or equivalently the subgraphs of G induced by these
classes of vertices� correspond to communities, i.e., roughly
speaking, they contain more edges joining vertices of the
same community than vertices belonging to different com-
munities. A precise definition of the quality of a partition into
communities has been given in a seminal paper of Newman
and Girvan �1�. It is equal to the sum over all communities of
the observed number of edges within them minus the ex-
pected number of edges within them when placed at random,
the distribution of degrees remaining the same. It is called
modularity and denoted by Q,

Q = �
s

�as − es� , �1�

where as is the fraction of edges in community s and es is the
expected fraction of randomly distributed edges in that com-
munity. Let Vs be the vertex set of community s and ms the
number of edges in that community �assuming G to be loop-
less�,

ms =
1

2 �
u,v�Vs

Auv = �
u,v�Vs

u�v

Auv, �2�

where in the first relation we consider the full adjacency
matrix and in the second one its upper triangular part. Then
as=

ms

m .
Let ds denote the sum of degrees of vertices in Vs,

ds = �
u�Vs

ku.

Given an edge, the probability that its first end vertex be-
longs to Vs is equal to

ds

2m . Assuming independence, the prob-
ability that its second vertex belongs to Vs is the same. This
can be illustrated by an urn model containing k1 balls of
color 1, k2 of color 2,… and kn of color n, that is 2m balls in
all. A ball is drawn at random and it is checked if its color is
the one assigned to the vertices of Vs. Then the ball is re-
placed, a second random draw is made and the same condi-
tion checked. Note that this urn model will be modified and
used again below in the context of non independent draws,
excluding loops.

The expected fraction of edges in community s is thus

es =
ds

2

4m2 .

Hence, substituting in Eq. �1�, we have
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Q = �
s
	ms

m
−

ds
2

4m2
 = �
s

	ms

m
−
	 �

u�Vs

ku
2

4m2



= �
s

	ms

m
−
	 �

u�Vs

�
v�Vs:v�u

kukv + �
u�Vs

ku
2


4m2



= �
s

	ms

m
−

�
u�Vs

�
v�Vs:v�u

kukv

4m2

 −

�
u�V

ku
2

4m2 .

Introducing the Kronecker symbol ��cu ,cv�, equal to 1 if
vertices u and v belong to the same community cu=cv and to
0 otherwise, and observing that ��cu ,cu�=1 ∀u�V, we get

Q = �
u,v�V

u�v

	Auv

2m
−

kukv

4m2
��cu,cv� −

�
u�V

ku
2

4m2 �3�

or, using the upper triangular matrix and the main diagonal,

Q = �
u,v�V

v�u

	Auv

m
−

kukv

2m2
��cu,cv� −

�
u�V

ku
2

4m2 . �4�

This formula will require half the variables of the previous
one for its maximization, as shown in the next section. As G
contains m edges, the expected number Puv of edges between
vertices u and v is equal to kukv / �2m� and the expected num-
ber Puu of loops at vertex u is ku

2 / �4m�. One can thus write,
as in �29�,

Q =
1

2m
�

u,v�V
	Auv −

kukv

2m

��cu,cv� , �5�

=
1

2m
�

u,v�V

�Auv − Puv���cu,cv� �6�

in which terms in u and v are repeated for symmetry and the
constant is not made explicit.

So the contribution to Q of the loops is equal in absolute
value to

C =

�
u�V

ku
2

4m2 . �7�

Let us now evaluate the importance of this constant.
The Cauchy-Schwartz inequality leads to the following

inequality on the sum of squares of degrees of G:

k1
2 + ¯ + kn

2 �
1

n
�k1 + ¯ + kn�2 =

4m2

n
.

Substituting in Eq. �7� gives

C �
1

n
.

The de Caen’s inequality �30� gives

k1
2 + ¯ + kn

2 � m	 2m

n − 1
+ n − 2
 =

2m2

n − 1
+ m�n − 2� .

Substituting again in Eq. �7� gives

C �
1

2n − 2
+

n − 2

4m
.

As the graph G is connected by assumption, we have m
�n−1. Substituting for m,

C �
1

2n − 2
+

n − 2

4�n − 1�
=

n

4n − 4
.

We next show that these lower and upper bounds are both
sharp. Let us consider a regular graph with all degrees equal
to r and n vertices. We have 2m=nr and

�
u�V

ku
2

4m2 =
nr2

n2r2 =
1

n
.

Hence the lower bound on C is attained by a very large class
of graphs, which includes sparse ones, such as cycles, and
dense ones, such as complete graphs.

Let us now consider a star graph �or, in other words, a
tree with a dominant vertex connected to all others�. Then
m=n−1 and,

�
u�V

ku
2

4m2 =
�n − 1�2 + �n − 1�

4�n − 1�2 =
n�n − 1�
4�n − 1�2 =

n

4n − 4
.

Hence the upper bound on C is sharp for stars.
Remark 1. When the order n of the graph increases, the

bounds tend to different limits,

lim
n→�

1

n
= 0 and lim

n→�

n

4n − 4
=

1

4
.

So, due to loops, at least a small constant will be subtracted
from the community dependent part of Q when n increases,
but quite a large one must be subtracted in the worst case,
even for large n.
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Remark 2. The previous bounds can be used to evaluate
the expected number of loops. It suffices to multiply C by the
number m of edges to obtain

m

n
� mC �

mn

4n − 4
.

So the expected number of loops is at least half the average
degree of G and at most slightly more than one quarter of its
size m.

B. Modified null model which avoids loops

As shown in the previous subsection, the effect of loops
on the value of Q may be substantial even if the graph G is
loopless. We next propose a modification to the configuration
model which avoids loops completely. This can be done eas-
ily with conditional probabilities. Consider the probability
that an edge joins vertices u and v�u, assuming the distri-
bution of degrees is the same as for G and there are no loops.
To compute this probability, one can draw at random a first
vertex, say u, exactly as before, i.e., with a probability
ku /2m. However, once this is done, to select the second ver-
tex probabilities should be conditional on the fact that u has
been drawn. Vertex u cannot be drawn again, as this would
induce a loop. Considering once again the urn model dis-
cussed above, one sees that after a first draw of a ball of
color u among the 2m balls, it is necessary to remove all
remaining balls of the same color before making the second
draw. From the classical definition of probability �i.e., the
ratio of number of favorable cases to the total number of
cases�, instead of having

kv

2m one will have
kv

2m−ku
. Moreover,

as the event considered occurs both when u is first drawn and
v after and when v is first drawn and u after, a similar cal-
culation must be done in the second case.

Then, substituting in Eq. �3�, the modified modularity Q�
is expressed as

Q� = �
u,v�V

	Auv

2m
−

ku

2m

kv

2m − ku

��cu,cv� . �8�

Let Puv� denote the expected number of edges joining u and v
in the new model. Then

Puv� =
ku

2m

kv

2m − ku
+

kv

2m

ku

2m − kv
�9�

and, using an upper triangular matrix, Q� is equal to

Q� = �
u,v�V:v�u

	Auv

m
− Puv� 
��cu,cv� . �10�

Substituting for Puv� gives the final expression

Q� = �
u,v�V:v�u

�Auv

m
−

kukv

2m
	 1

2m − ku
+

1

2m − kv

���cu,cv� .

�11�

C. Modified null model which avoids multiple edges

We now consider the problem of avoiding multiple edges
in the null model. This will be done by transferring prob-
abilities from vertex pairs for which the expected number of
edges is greater than 1 to the other vertex pairs. Increases in
probabilities smaller than 1 �after the probability transfer�
will be chosen to be proportional to the values of these prob-
abilities. So the ratio of any two of these probabilities which
have increased will remain the same. The key observation is
that pairs of vertices will belong to three categories:

�1� the set I1 for which the expected number of edges
kukv

2m
is larger than 1; the excess probability for each of these
edges will be

kukv

2m −1. The excess probability for all edges
will be �u,vmax�

kukv

2m −1,0�;
�2� the set I2 for which the expected number of edges

kukv

2m
is smaller than 1, but would become greater than 1 after
excess probability is redistributed proportionally;

�3� the set I3 for which the expected number of edges
kukv

2m
is smaller than 1 and would remain smaller than 1 after ex-
cess probability is redistributed proportionally.

We proceed in the following way in order to obtain modi-
fied probabilities. Excess probability will be redistributed
among index pairs of category 2 in order to raise their prob-
ability up to 1 and among index pairs of category 3 propor-
tionally to

kukv

2m . In other words, for all index pairs of category
3 the redistribution of probability corresponds to a change in
scale.

Probability redistribution satisfies the following equation
after ranking of index pairs by decreasing expected number
of edges:

�
�u,v��I1

	 kukv

2m
− 1
 = �

�u,v��I2

	1 −
kukv

2m

 + � �

�u,v��I3

kukv

2m
,

�12�

where � is such that ��1−
kukv

2m ∀ �u ,v�� I2 and ��1
−

kukv

2m ∀ �u ,v�� I3. The index pair set I2 is not known a pri-
ori and may be empty. We first check if this is the case. This
is done by computing � and checking if the second inequality
is satisfied. If so, I2 is empty and the redistribution of ex-
pected number of edges satisfied the desired conditions. If
not, I2 is not empty and the first index pair follows immedi-
ately the last one of I1. We then have to determine the last
index pair of I2. To check if the first index pair of I2 is also
the last one, we compute � by using Eq. �12� and check if the
two inequalities on � are satisfied. If not, we increase the
index by 1 and iterate. Note that, for large networks, a
quicker procedure would be to use a dichotomous search for
the last index pair in I2, but this step is not very time con-
suming. Probabilities of pairs of vertices with indices in I2
are then increased to 1 and probabilities of pairs of vertices
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with indices in I3 multiplied by 1+�. The algorithm just
described can be applied either to the initial model or to the
model obtained after removing loops.

III. COMPUTATIONAL EXPERIMENTS

In this section, we recall a mathematical programming
formulation due to Grötschel and Wakabayashi �21� for the
clique partitioning problem. This model can be used to maxi-
mize modularity with any of the models described in the
previous section. Binary variables xuv are associated with all
pairs of vertices u and v and equal to 1 if u and v are in the
same community and 0 otherwise. Cliques correspond to
communities. They satisfy the conditions of reflexivity, com-
mutativity, and transitivity. As we use the upper triangular
matrix, commutativity is automatically satisfied. It is also the
case for reflexivity as both end vertices of any loop always
belong to the same community. The remaining constraints
express transitivity, i.e., if vertices u and v are in the same
community and v and w are in the same community, then
also u and w are in the same community. The resulting prob-
lem is a linear 0–1 program with n�n−1� /2 variables and
n�n−1��n−2� /2 constraints,

maxu,v �
u,v�V:v�=u

Quvxuv, �13�

s . t . ∀ u � v � w � V xuv + xvw − xuw � 1, �14�

∀u � v � w � V xuv − xvw + xuw � 1, �15�

∀u � v � w � V − xuv + xvw + xuw � 1. �16�

This problem is NP hard, even for the particular case of
modularity maximization, as shown by Brandes et al. �20�.
To accelerate the solution process, instead of considering the
full model from the beginning, unsatisfied constraints may be
added by batches until there are no more. When neither loops
nor multiple edges are excluded, the coefficients Quv in the
objective function �13� are those of formula �4� and the con-
stant C of Eq. �7� must be subtracted from the objective.
When loops are excluded from the null model but not mul-
tiple edges these coefficients are replaced by the coefficients
of formula �11� �recall we denote this modified modularity

by Q��. When multiple edges are excluded from the null
model but not loops, these coefficients are obtained by ap-
plying the algorithm in Sec. II C to the coefficients of Eq. �4�
�in which case we denote the modified modularity by Q��.
The constant C must be subtracted from the objective func-
tion and the decrease in weights of the loops �if any� added.
Finally, when loops and multiple edges are excluded from
the null model, these coefficients are obtained by applying
the same algorithm to the coefficients of Eq. �11� �in which
case we denote the modified modularity by Q��. We imple-
mented the Grötschel and Wakabayashi �21� algorithm using
AMPL �31� and the “lazy constraints” feature of CPLEX
�32�, which automatically sets aside constraints which are
strictly satisfied.

A. Artificial examples

We first consider results for two small artificial instances.
The complete graph with n=6 vertices minus an edge given
in Fig. 1 is the first of them. In the standard model a single
community C1= �1,2 ,3 ,4 ,5 ,6� is obtained with Q=0. The
constant C is equal to 0.168 367, close to the lower bound of
the interval of feasible values �0.166 667, 0.300 000�, which
would be attained if one more edge was added. When for-
bidding loops in the null model a partition into the two com-
munities C1�= �1,4 ,5� and C2�= �2,3 ,6� is obtained, with a
modularity Q�=0.030 020 7. As there are no multiple edges
in the null model, Q�=Q and the single community partition
is obtained once more. When forbidding loops and multiple
edges in the null model, once again two communities are
obtained, i.e., C1�= �1,5 ,6� and C2�= �2,3 ,4�, with a modu-
larity Q�=0.025 470 6. Note that this partition is equivalent
to the partition found for the case of excluded loops. Its
value Q� differs from Q� because removing loops entailed
some expected numbers of edges becoming greater than 1
and the edge probabilities were then modified by the algo-
rithm of Sec. II C.

We next consider a graph with 20 vertices and 28
edges with a skewed distribution of degrees �see Fig. 2�.
When using the standard model we obtain a partition into
four communities: C1= �1,2 ,3 ,4�, C2= �5,6 ,7 ,8 ,9�, C3
= �10,11,12,13,14,15,16�, C4= �17,18,19,20�, with a
modularity value Q=0.475 128 and constant C=0.063 776
belonging to the interval �0.050 000, 0.263 158�. When
forbidding loops in the null model a different partition

1

2 3

4

56

1

2 3

4

56(b)(a)

FIG. 1. �Color online� Partitions obtained on the artificial network with 6 vertices and 14 edges using the original modularity maximi-
zation model �left� and the modified model avoiding loops �right�.
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into four communities is obtained: C1�= �1,2 ,3 ,4 ,20�,
C2�= �5,6 ,7 ,8 ,9�, C3�= �10,11,12,13,14,15�, C4�= �16,17,
18,19�, with modularity Q�=0.518 175, so that vertex 20 is
moved, in the new partition, from C4 to the first community,
and vertex 16 is moved from community C3 to the fourth
one. There are no multiple edges with or without loops. So,
Q�=Q and Q�=Q�.

B. Examples from the literature

We now describe the results obtained on some data sets
corresponding to various real-world applications, which are
often used to test algorithms and heuristics for community
identification. We consider Zachary’s karate club data set
�33�, Lusseau’s dolphins data set �34�, Hugo’s Les Mis-
érables data set compiled by Knuth �35�, Girvan and New-
man data set on American football games �36� and Krebs’
political books data set �37�. The first data set describes
friendship relations between 34 members of a karate club,
studied by Zachary �33�. During the period of observation, a
dispute between the club administrator and the karate in-
structor led to a split into two groups. The second data set
describes the communications among a group of 62 bottle-
nose dolphins of Doubtful Sound, New Zealand, studied by
Lusseau �34�, leading to a graph with 159 edges. Hugo’s Les
Misérables data set describes the relationships between char-
acters in Victor Hugo’s masterpiece. Knuth �35� built a graph
with 77 vertices associated to characters which interact and
257 edges associated with pairs of characters appearing
jointly in at least one chapter. The data set on American

football games �36� represents the schedule of games be-
tween American college football teams in the Fall 2000. The
network is made of 115 vertices and 613 edges. Vertices
represent 115 teams, most of which belong to one or another
of 11 conferences, with intraconference games more frequent
than others. There are also five independent teams. Finally,
the last data set deals with copurchasing of political books on
Amazon.com.

Applying the exact algorithm by Grötschel and Wakaba-
yashi �21� we found optimal partitions with values of modu-
larity reported in Table I. This led to the following conclu-
sions:

�i� the optimal partitions for the first four out of the five
examples were the same for all models;

�ii� when forbidding loops alone, the modularity always
increased, sometimes substantially;

�iii� when forbidding multiple edges alone, the modularity
did not change much but decreased slightly or remained the
same;

�iv� when forbidding both loops and multiple edges, the
modularity increased slightly over the value obtained when
forbidding loops alone or remained the same.

We discuss in more details the results obtained for Krebs’
political books data set �37�, for which we find a different
partition when forbidding loops in the null model. This data
set is a network with 105 vertices corresponding to titles of
books and with 441 edges corresponding to copurchases.
Newman �18� provided a classification of these 105 books as
liberal �l�, conservative �c� or neutral �n�. The optimal parti-
tion we found for the standard model consists in the five
communities shown in Table II.

TABLE I. Number of vertices and number of edges of real-world data sets, values of the constant C defined in Eq. �7�, together with its

lower bound �C� � and upper bound �C̄�, and modularity values found applying the Grötschel and Wakabayashi algorithm on the original
modularity maximization model �Q�, the model forbidding loops �Q��, the model forbidding multiple edges �Q�� and the model forbidding
loops and multiple edges �Q��.

Data set n m C� C C̄ Q Q� Q� Q�

Karate 34 78 0.029412 0.049803 0.257576 0.41979 0.45517 0.418578 0.455302

Dolphin 62 159 0.016129 0.021399 0.254098 0.52852 0.54528 0.52852 0.54528

Les miserables 77 254 0.012987 0.023731 0.253289 0.56001 0.57943 0.55976 0.578091

Football 115 613 0.008696 0.008755 0.252193 0.60457 0.61249 0.60457 0.61249

Political books 105 441 0.009524 0.013531 0.252404 0.52724 0.53587 0.52724 0.53587
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FIG. 2. �Color online� Partitions obtained on the artificial network with 20 vertices and 28 edges using the original modularity maximi-
zation model �left� and the modified model avoiding loops �right�.
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The partition obtained when forbidding loops consists
again of five communities, which differ from the previous
ones and are those shown in Table III.

So in both cases we found a partition containing two large
communities with very few misclassifications and such that
one of these communities, namely, C3, is the same for both
models. We also found three smaller communities, again in
both cases. Using the standard model we have two small
communities with both n and c books and one community
with all three categories. Using the first new model we found
three communities more balanced in size, such that the first
one and the last one differ from those obtained with the
original model by one vertex only, and the second one con-
tains only c books. This new model splits the original com-
munity C2 into the two communities C2� and C4�, while the
original C4 is included in the new community C2�.

In �38� we introduced the following criterion to count
misclassifications: any l in a community with a majority of
c’s or n’s or conversely counts for 1; any n in a community
with a majority of c’s or a majority of l’s or conversely
counts for 1/2 misclassification. Using this criterion, we have
that the total number of misclassifications for the original

model is 9, while for the model avoiding loops it amounts to
8.5. Figures 3 and 4 show the partitions obtained using the
standard model and the model forbidding loops. As there are
no multiple edges, either in the standard model or in the
model forbidding loops, optimal partitions for the last two
models coincide with those of the first and the second model,
respectively.

C. Examples from Lancichinetti et al.’s benchmark

As final examples, we describe results obtained for five
networks with the same format as those of the Lancichinetti
et al.’s �39� benchmark. These networks are characterized by
a distribution of degrees and a distribution of size communi-
ties that follow power laws. Furthermore, the ratio of outer
edges to inner edges is controlled by a parameter �. We used
the code by Fortunato et al. �40� in order to generate these
networks, considering a value of degree distribution 	=2, a
value of size community distribution 
=2 and �=0.3. The
size of the networks is increasing up to n=256, m=8192.

The optimal partitions for all these networks were the
same for all models. In Table IV we show the values of

TABLE II. Partition obtained with the standard modularity maximization model on Krebs’ political books
data set.

C1 C2 C3 C4 C5

4, 9, 10, 11 31, 32, 60, 61

12, 13, 14, 15 62, 63, 64, 67

16, 17, 18, 20 71, 72, 73, 74

1, 2, 3, 5 21, 22, 23, 24 75, 76, 77, 78 51, 52, 53, 59

6, 7, 8, 19 25, 26, 27, 28 79, 80, 81, 82 49, 50, 58 65, 66, 68, 69

29, 30 33, 34, 35, 36 83, 84, 85, 87 70, 86, 104, 105

37, 38, 39, 40 88, 89, 90, 91

41, 42, 43, 44 92, 93, 94, 95

45, 46, 47, 48 96, 97, 98, 99

54, 55, 56, 57 100, 101, 102, 103

c=4, l=0, n=6 c=39, l=0, n=0 c=1, l=38, n=1 c=2, l=0, n=1 c=3, l=5, n=4

TABLE III. Partition obtained with the modularity maximization model forbidding loops on Krebs’
political books data set.

C1� C2� C3� C4� C5�

31, 32, 60, 61

4, 9, 10, 12 62, 63, 64, 67

13, 14, 15, 18 71, 72, 73, 74

19, 21, 22, 23 75, 76, 77, 78

1, 2, 3, 5 24, 25, 26, 27 79, 80, 81, 82 11, 16, 17, 20 52, 53, 59, 65

6, 7, 8, 29 28, 33, 41, 42 83, 84, 85, 87 34, 35, 36, 37 66, 68, 69, 70

30 43, 44, 45, 46 88, 89, 90, 91 38, 39, 40, 56 86, 104, 105

47, 48, 49, 50 92, 93, 94, 95

51, 54, 55, 57 96, 97, 98, 99

58 100, 101, 102, 103

c=4, l=0, n=5 c=31, l=0, n=2 c=1, l=38, n=1 c=12, l=0, n=0 c=2, l=5, n=4
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modularity obtained on the considered networks using the
original modularity maximization model and its proposed
variants. The values of the constant C defined in Eq. �7�,
together with its lower bound and upper bound, are also re-
ported. The results show that when forbidding loops alone,
the modularity always increased, as already observed for ex-
amples from the literature. There are no multiple edges in the
considered examples, hence the values of modularity for the
model forbidding multiple edges alone are the same values
obtained with the original model and the values of modular-
ity for the model forbidding loops and multiple edges are the
same values obtained with the model forbidding loops only.
For four networks the value of the constant C is on its lower
bound.

IV. CONCLUSIONS

In the standard modularity maximization model of New-
man and Girvan the null model is associated with a graph
containing loops and possibly multiple edges, while the
graph under study usually has neither. We have given sharp
bounds on the expected number of loops and on their impact
on the modularity value. While the absolute value of the
lower bound on this last quantity is only 1 /n, which is at-
tained for regular graphs, and tends to be small, the absolute

value of the upper bound is n / �4n−4�, which is attained for
stars, and is thus large. So, the effect of loops in the null
model can be considerable in the worst case.

Using conditional probabilities, we have provided a modi-
fied formula for modularity in the case where loops are ex-
cluded from the null model. We have also given an algorithm
for redistribution of the excess over 1 of the expected num-
ber of edges between two vertices to the other edges for
which it is not the case. This redistribution is proportional to
the edge probabilities. The algorithm can be applied either to
the initial null model or to the modified null model in which
loops have been eliminated.

The effect of these modifications are studied on a couple
of small artificial graphs as well as on five graphs from the
literature. For four of the latter, the optimal partition remains
the same but the modularity value is increased. For the fifth
one, both modularity value and the corresponding partition
are different from those of the standard model. Similar re-
sults were obtained for five increasingly large networks of
Lancichinetti et al. �39� format.

The theoretical results of this paper show that the influ-
ence of loops on the value of modularity is substantial in
worst case. Experimental results show that the partitions ob-
tained with the standard modularity function and with the

TABLE IV. Number of vertices and number of edges of data sets from Lancichinetti et al.’s benchmark,

values of the constant C defined in Eq. �7�, together with its lower bound �C� � and upper bound �C̄�, and
modularity values found applying the Grötschel and Wakabayashi algorithm on the original modularity
maximization model �Q�, the model forbidding loops �Q��, the model forbidding multiple edges �Q�� and the
model forbidding loops and multiple edges �Q��.

n m C� C C̄ Q Q� Q� Q�

32 128 0.031250 0.031250 0.258065 0.453125 0.477319 0.453125 0.477319

64 517 0.015625 0.017760 0.253968 0.389303 0.401042 0.389303 0.401042

100 1250 0.010000 0.010000 0.252525 0.4508 0.458376 0.4508 0.458376

128 2048 0.007812 0.007812 0.251969 0.450684 0.456589 0.450684 0.456589

256 8192 0.003906 0.003906 0.250980 0.449829 0.45277 0.449829 0.45277
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FIG. 3. �Color online� Partition obtained using the standard
modularity maximization model for Krebs’ political books data set.
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FIG. 4. �Color online� Partition obtained using the modularity
maximization model forbidding loops for Krebs’ political books
data set.
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modified modularity function in which loops are excluded
are often the same. However, values of the latter function are
larger than those of the former.

When loops and multiple edges do not appear in the
model under study, the proposed variants of modularity can
be useful, in two ways: if the data set is small enough for
exact optimization in reasonable computing time, that can be
done. Otherwise, as any heuristic for standard modularity
maximization can be viewed as one for the modified modu-
larity, any performing heuristic can be used to find a good

partition, the value of which will then be computed from the
main formula of this paper.
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