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Role of quantum heat bath and confinement in the low-temperature thermodynamics
of cyclotron motion
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In this Brief Report we show how the low-temperature thermodynamics of the dissipative motion of an

electron in a magnetic field is sensitive to the nature of the spectral density function, J(w), of the quantum heat

bath. In all cases of couplings considered here the free energy and the entropy of the cyclotron motion of the

electron fall off to zero as power law in conformity with the third law of thermodynamics. The power of the
power law however depends on the nature of J(w). We also separately discuss the influence of confinement.
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The low-temperature thermodynamic behavior of small
systems has received attention due to the importance of
quantum dissipative environment [1]. In order to critically
assess this issue, the dissipative cyclotron motion of a
charged quantum oscillator has been extensively studied
[2,3]. The main conclusion is that while the free oscillator
has an exponential suppression of the low-temperature spe-
cific heat, strong coupling with the quantum bath makes the
specific heat vanish at zero temperature as a power law in
temperature, in conformity with the third law. It is easy to
trace the origin of the exponential suppression to the dis-
creteness of the so-called Landau levels of the charged oscil-
lator in the presence of the magnetic field. In contrast, the
power law emerges from the disappearance of the energy gap
due to a continuous spectrum of the energy, as a result of the
presence of the bath. In this Brief Report we explore the
issue of what role the nature of the coupling with the bath
and the boundary plays in determining the power of the
power law for a charged magneto-oscillator.

The magnetic response of a charged quantum particle has
an important bearing on the problem of Landau diamagne-
tism [4-7], quantum Hall effect [4,8], atomic physics [9],
and two-dimensional electronic systems [10]. The further ef-
fect of quantum dissipation because of the coupling with an
infinitely large collection of quantum harmonic oscillators
had been investigated in a series of papers by Ford et al.
from the point of view of a quantum Langevin equation
(QLE) [11]. These authors have not only considered the dia-
magnetic response but have also provided a treatment for the
free energy from which all thermodynamic attributes can be
evaluated. The problem has indeed turned out to be illustra-
tive for clarifying the essential role of the boundary mim-
icked by confining the charged particle in a harmonic oscil-
lator potential [7], and unifying the Einstein and Gibbs
approaches to statistical mechanics [6].

In this Brief Report, our focus of attention is not dissipa-
tive diamagnetism but the low-temperature thermodynamic
property of the dissipative cyclotron motion of an electron.
Lately Hanggi et al. have advanced the intriguing thesis that
quantum dissipation has an important bearing on the third
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law [1]. They confirm this by showing that the low-
temperature specific heat of both a free particle and a single
Einstein oscillator assumes a power law in temperature be-
cause of dissipation, whereas their corresponding free parts,
i.e., free from heat bath influence, are characterized by con-
stancy or exponential suppression in temperature, respec-
tively [1]. This work was further expanded in [3] by also
bringing the problem of dissipative diamagnetism within the
ambit of the third law. One common feature in all the above
treatments, be it for a free particle, or an Einstein oscillator
or a charged particle in a magnetic field, is the assumed form
of the interaction with the environment, which has almost
exclusively been taken to be a linear coupling between the
coordinate of the system at hand and the coordinate of the
bath oscillator. The question we address here is: how does
the low-temperature entropy behave if the nature of coupling
or more specifically the nature of the spectral density func-
tion of the heat bath is altered?

Our starting point is the so-called system plus reservoir
Hamiltonian

N
1
+ 21 L—mj(ﬁf +mjwG)) + g(F.p.Gup) | (1)
of a charged ojscillator of mass m, charge e and frequency w,
with {7,p} and {G;,p;} are the sets of three-dimensional co-
ordinate and momentum operators of the system and bath
oscillators, respectively, A is the vector potential of the ap-
plied magnetic field B(B=V X A) and g ; is the coupling that
assumes different forms depending on the nature of the in-
teraction [12,14]. For the much studied classical [15] and
quantum Brownian motion [16,17]
2
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On the other hand, for system-momentUmj and environment-
momentum coupling [14,18,19]
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The latter case is relevant for a Josephson junction under the
effect of a blackbody electromagnetic field [20]. The quanti-
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ties ¢/ and e/ are the respective coupling constants. The sec-
ond term in each of the above Egs. (2a) and (2b) is the
so-called “counter term” to make the Hamiltonian bounded
from below [12]. Tt is pertinent to mention that the equation
of motion ensuing from Eq. (1) and following the steps given
in Ref. [11], even for the assumed form of the coupling in
Eq. (2b), has the explicit presence of the Lorentz force term,
and are therefore, not gauge-specific. However, the issue of
gauge invariance of the total Hamiltonian (including heat
bath effects) is being investigated in detail and the results
will be reported elsewhere [13].

As mentioned earlier our main focus is the thermodynam-
ics of the charged oscillator in a magnetic field for which
there exists the fascinating formula derived in Ref. [11] that
expresses the free energy entirely in terms of the free energy
of an isolated harmonic oscillator, f(w,T) and the familiar
response function (generalized susceptibility), a,(w) [21]

1 [~ d ai(w)
FM(T,B):—J dof(w,T)Im| —In 3 ,
) dw B (eBw) (o)
c ©
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where u=1,2 stands for the two different coupling schemes,
and the free energy of a single oscillator with frequency w is
given by

f(w,T):kBTln{l —exp(— :—(;ﬂ, (4)
B

with the zero-point energy contribution ignored as the latter
makes no difference to the heat capacity and

1

m(w(z) - w?) - i0y,() '

(5)

a,(w)=

For a brief derivation of Eq. (3) one can consult Refs.
[18,20]. The remarkable aspect of the formula (3) is that the
entire influence of the quantum heat bath enters through the
frequency-dependent “memory friction” %,(w). The cubic
power in a,(w) occurs in Eq. (3) because of the three-
dimensional nature of the isotropic oscillator. The other in-
teresting feature is that the effect of the magnetic field is
solely contained in the term multiplying e?. The expression
(3) for the free energy can be meaningfully split into a sum
of a magnetic field independent term and a field dependent
term

©

1
FM(T,B)=—f dof(o,T)[If(w) + Iz(w)], (6)
m™J 0

where

d
IH(w)=3 Imaln a, (o), (7)

and
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From the free energy and its derivatives with respect to tem-
perature we can of course compute other thermodynamic
functions like the entropy and the specific heat.

We now turn our attention to the heat bath induced fric-
tion ¥,(w), which is the Fourier transform of the time-
domain function that can be written as:

AL ®(t)%_rfw dw{'“(—w)cos(wt), 9)
0 w

J,(w) being the spectral density which varies in accordance
with the nature of coupling with the bath. Thus,
N
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and
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The idea is to model the spectral density, J,(w), and through
that, the memory friction '7M(w). In this Brief Report, we are
interested in the low-temperature thermodynamics in the
context of the charged magneto-oscillator for which we only
need to consider the low frequency contribution. Because,
the function f(w,T) vanishes exponentially for w>kgT/h
and frequencies w=<kzT/f give contribution in Eq. (9). For
the coordinate-coordinate (c-c) coupling, we shall consider
the case in which spectral density has a power law form at
low frequencies. Choosing cutoff at (), we can describe the
reservoir as

) N
Jl(w)zm%,(g) 0(Q, - w), (11)
where, O is the Heviside step function. Specifying this kind
of spectral density function for the heat bath one can easily
write down the memory friction function for the c-c coupling
at low frequencies [12]
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@ Q,
15)
Cl(i), for s=4
L @

. 275 Qc — —2)/2 ~
with C;=—75(Z)"? and CZ_ﬁ:(?ﬁ' Here, @ is a ref-

erence frequency to make the dimension of the coupling con-
stant 7, that of frequency for all 5. In accordance with the
references [12,17], s>1 is the super-Ohmic case, s=1 the
Ohmic case and 0=s5<1 the sub-Ohmic case. These three
cases are also relevant for a real physical system. To describe
quantum tunneling in a metallic environment one can use the
Ohmic spectrum [12]. The super-Ohmic spectrum corre-
sponds to the phonon bath in d> 1 spatial dimensions and it
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refers to s=d or s=d+2 cases depending on the underlying
symmetry of the strain field [12]. The sub-Ohmic spectrum is
useful in describing the type of noise in some solid state
devices or 1/f noise in Josephson junction [22].

For the momentum-momentum coupling, as it turns out,
¥,(w) can be expressed as a modified Lorentzian form cen-
tered at a frequency () [14,23]

2my o’
F2w2 + (Q2 _ w2)2 :

Note that at low frequencies [w?><Q? but ['~0(Q)] the
friction coefficient y,(w), has a quadratic dependence on the
frequency. At low frequencies, one can show from Eq. (12)
that the spectral density function for this case J,(w)~ w’
which is nothing but a non-Ohmic kind of spectral density
function. Thus, one can say that momentum-momentum cou-
pling necessarily leads to a non-Ohmic spectral density at
low frequencies which is our observable regime in the
present paper. Using Egs. (5), (15), and (16), the quantities
If}(w) and I(w) can be easily calculated, and from these, the
free energy can be computed, at least at low frequencies [cf.
Egs. (9), (10a), (10b), and (11)]. But, suffice it to note that as
far as the low-temperature thermodynamics is concerned it is
only the low frequency behavior of Ifj(w) and I%(w) that
matter, in the light of the comment made in preceding para-
graph. In assessing these limiting properties it is important
however to keep track of two distinct cases wy# 0 and wy
=0 [24].

Case of wy#0. For wy#0, one can easily show that
lim,, . au(w):m%)%. Because the term proportional to B? in

Yo(w) = (13)

I%(w) has a prefactor ® that vanishes identically,
lim,, o I4(w)=0. Thus, the magnetic field dependence com-
pletely disappears from the low-temperature thermodynamic
properties, irrespective of s and u, i.e., the nature of heat
bath. Here, we must mention that this case is similar to a
two-dimensional harmonic oscillator for which the change in
spectral density function causes a difference in the power
law of thermodynamic properties at low T [17]. Since B
dependent term disappears we need to focus only on the
magnetic field independent term which, from Eq. (10), yields

. 3 ,
lim/§(w) = — lim[wy, (o) + y,(0)]. (14)
w—0 mwgyw—0

We are now ready to estimate the temperature dependences
of the low-temperature free energy.

(A1) u=1 and 0=s5<2; sub-Ohmic (0<s<1), Ohmic
(s=1) and a part of super-Ohmic range (1 <s<2) fall into

one category, for which
3s7y w\*!
lim /(o =—S<—> : 15

wﬂoo( ) sin(sw/Z)w(z) @ (15)

From Eq. (9) one obtains,

. B 3571'}/5 g 2<M>S+l
;T})FI(T)__sin(sw/Z)<wO> ha F@is+D, (16)

where we use the following integral (which is relevant
throughout the paper):
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fwdyyvln(l—e_y)=—F(V+1)§(V+2), (17)
0

I and ¢ being the gamma and zeta functions, respectively.
Consequently the entropy vanishes as 7°.

(A2) w=1 and s>2; two super-Ohmic regime with 2
<s<4 and s=4 fall into this category, for which we have

12,0572
limlf)l)(w) _ L(2>

0—0 T (s -2) wg (18)

@

Thus, the free energy becomes

s=2 [ ~\2 3
202 0T i .

IimF (T) =—-
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(19)
Correspondingly, the entropy goes to zero as 72,
(A3) For u=2;

30
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As a result the free energy becomes

iy Q2 6
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IimF,(T)=—-
JimF(T) 50

W
The entropy now vanishes as 7°.

Case of wy=0. The situation at hand is that of a free
charged particle in a constant magnetic field interacting with
a quantum dissipative heat bath. Interestingly, in this case,
the opposite to what happened under case 1 for wy# 0 oc-
curs, in that I4(w) does not vanish for most of the cases, and
thus the field dependent as well as field independent free
energy survive. Following the analysis of case A, we now
find, for (B1). u=1; sub-Ohmic (0=s<1)

3 sin(7/2s)(2 — 1=
limZ(w) = sin(m/2s)( S>(%> , (22)
w—0 Vs
lim/p(w) = 0. (23)
w—0
Thus, the free energy becomes
3C5(2 - )i sin(sm/2) [ kpT >
limp, (1) = -~ 2T )<%> er)
70 v @ ha

with C3=I"(2-5){(3-s). Hence, the entropy vanishes as
>,
(B2)u=1; Ohmic (s=1) Following Ref. [2] one can write:

3
limIj(w) = —, (25)
w—0 Y1
. 2 2y,
limly(w) = — - —"—, 26
= e 26

where cycltron frequency w.=eB/mc through which mag-
netic field enters into the thermodynamic functions. Thus, the
free energy becomes
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: _|——™ 7T 2
limF(7.5) = {3h(%+wz)+ﬁ%}(kﬂ). (27)

So, the entropy vanishes linearly with temperature, but the
prefactor has an explicit dependence on the magnetic field
and the second term is inversely proportional to 7;.

(B3a) u=1, super-Ohmic with 1 <s<2,

3 sin(sm/2)(2 - 1=
lim 1} () = S-S ™2) ”(%) L)
0—0 Vs &
2 2v,(2 - s=1
lim () = = lim 1}(w) - Ls)z(%) (29)
0—0 0—0 sin(s7/2)w, \ @
Thus, the free energy becomes
C3(2 - $)ha sin(sm/2) [ kgT\>™*
lim (1) = - SEZIO ST )<L~) . (30)
70 v @ ha
(B3b) =1, super-Ohmic with 2 <s<4,
, 3C,C,0.(2-5) ( w )H
liml)(w) = ———S— —| 31
)= e\ 31
) 2C1C2Q (Z—S)( w )S_S
lim/y(w) = ———S—=| —| . 32
w—0 (o) (1+CHa \Q, (32)
Hence,
. C1C2C4(S - 2)03%( kBT)S_l
IimF(T)=- — s 33
70 (@ w(1+A%& hQ, (33)

with Cy=I'(s-2){(s—1).

(B3c) u=1, super-Ohmic with s=4; for which one can
show that limy_,, F,(T,B)=0.

(B4) Finally, for u=2,

6y , 12y ,
C Tt

lim I3(w) = -

34
lim Vo (34)

c
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6y
o2
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Now, the free energy becomes
imFy(T) = 2 (kDT L). (36)
T—0 #30*

Thus, the entropy maintains the following power law:
limy_ S(T)=%(kBT)3F(2)§(3). Again, the prefactor as
well as the temperature dependence are very much different
from that of a confined particle [Eq. (24)].

In conclusion, we find that different spectral density func-
tions of the heat bath, i.e., various kinds of density of states
of the heat bath and the confinement of the particle lead to
distinct low-temperature thermodynamic properties. The w
#0 and wy=0 cases for coordinate-coordinate coupling (u
=1) yield identical temperature dependence for the Ohmic
heat bath, but the prefactors depend differently on the fric-
tion coefficients and the magnetic field. On the other hand,
for other values of s with =1 and for the velocity-velocity
coupling (u=2), the temperature dependence as well as the
prefactors in terms of their dependencies on the friction co-
efficients and the magnetic field are quite different for the
free particle (wy=0) and the confined particle (w# 0). The
distinct temperature dependence through power law can be
attributed to different density of states factors appropriate to
various spectral density function of the heat bath as well as
on the confinement of the particle. Although the isolated cy-
clotron motion gives an exponentially vanishing heat capac-
ity [2,3], but all the cases discussed in this Report naturally
yield a satisfactory third law behavior [25].
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