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Icosahedral viral shells are characterized by intrinsic elastic stress focused on the 12 structurally required
pentamers. We show that, according to thin-shell theory, assembling icosahedral viral shells should be subject
to the Asaro-Grinfeld-Tiller instability �AGTI�. AGTIs are encountered in growing epitaxial films exposed to
extrinsic elastic stress. For viral shells, the AGTI relieves intrinsic elastic stresses by generating corrugation
along the perimeter of the assembling shell. The buckling transition of Lidmar, Mirny, and Nelson provides an
alternative mechanism for stress release, which in principle would allow for avoidance of AGTIs. For system
parameters appropriate for viral shells however, the AGTI appears to be unavoidable. The azimuthal stress
condensation produced by the AGTI might actually assist assembly by providing a guiding mechanism for the
insertion of pentamers during viral assembly.
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I. INTRODUCTION

The genome molecules of viruses are enclosed by a shell
of proteins: the “capsid.” High-resolution crystallography
studies �1� reveal that the capsid proteins �“subunits”� are
assembled into a precisely ordered structure, which other-
wise is unusual for protein aggregates. Spherical capsids usu-
ally have icosahedral symmetry, with the subunits grouped in
protein pentamers and hexamers �“capsomers”� �2�. Notwith-
standing the considerable structural complexity of these
icosahedral capsids, viral shells often assemble spontane-
ously from supersaturated solutions of subunits provided
thermodynamic parameters such as acidity and salinity are
set appropriately �3�. Subunits interact through a combina-
tion of electrostatic repulsion and hydrophobic attraction.
Varying the acidity and salinity conditions adjusts the rela-
tive balance between these competing interactions, thereby
favoring assembly or disassembly �4�. Thermodynamic stud-
ies of viral self-assembly report that the strength of these
subunit-subunit interactions typically is in the range of
�5–10�kBT �5�. Although the structure of many fully as-
sembled shells is known in great detail, it has proven remark-
ably difficult to reconstruct how a viral shell is assembled. It
is believed that viral shells grow on a “capsomer-by-
capsomer” basis, much like crystals, by continued addition
of subunits. Individual subunits or small oligomers diffuse in
from the aqueous solution to partially assembled shells and
are added along the growth perimeter. These initial interac-
tions appear to be relatively weak �6�, with high “off rates.”

In this paper we will borrow concepts from the theory of
the growth of conventional crystals and apply them to the
assembly of viral shells. A viral shell can be viewed as a
curved two-dimensional crystal with intrinsic elastic strain.
Caspar and Klug, two pioneers of viral crystallography, used
basic symmetry arguments to show that the internal structure
of the subunits necessarily is deformed with respect to a per-
fect hexagonal sheet �2�. They introduced the “model” icosa-
hedral viral shell composed of 12 pentamers and 10�T−1�
hexamers, with T as an integer, arguing that this construction
minimizes subunit deformations �“quasiequivalence”�. By
quantitatively applying the principle of minimum elastic en-

ergy to thin elastic shells with icosahedral symmetry, Lidmar
et al. �7� showed that for smaller shells the bending energy
dominates, which leads to shells with a spherical shape while
for larger shells, the stretching energy dominates. In the latter
case, the 12 fivefold symmetry sites buckle out: the “buck-
ling transition.” A transition from predominantly spherical to
predominantly polyhedral shape for increasing shell size in-
deed can be observed grosso modo in a catalog of capsid
structures.

It is well known that elastic stresses have drastic effects
on the growth of conventional crystals: they produce growth
defects �8�. If a crystal is grown from a �supersaturated� va-
por on a substrate with a different lattice constant �“het-
eroepitaxy”� then the first few layers of the growing crystal
often adopt the lattice constants and symmetry structure of
the substrate, with the result that they are elastically strained.
The elastic energy of these “commensurate” overlayers is
proportional to the film thickness. Eventually, this growing
elastic energy is released either by the nucleation of topo-
logical defects �“misfit dislocations”� or by the nucleation of
microcrystallites with the equilibrium lattice constant. Linear
stability analysis of a semi-infinite elastic material under a
uniaxial, externally applied stress reveals that, as the layer
thickness grows, an unstable mode develops with a charac-
teristic wavelength determined by the ratio of the surface
energy and the bulk elastic modulus of the crystal �9�. This
“Asaro-Grinfeld-Tiller instability” �AGTI� is not related to
Euler buckling—it takes place both for stretching and
compression—and it is believed to be the main precursor of
the formation of microcrystallites. The aim of this paper is to
examine the implications of the minimum elastic energy con-
dition for incomplete shells—as opposed to fully assembled
shells—and to check if AGTI-type instability interferes with
viral shell assembly. We will do this by applying the con-
tinuum theory of thin elastic shells developed by Nelson and
Seung �NS� �10�. Our first step is to extend the NS method to
include the “capillary” stresses generated by the perimeter of
the incomplete shell and the “curvature” stress generated by
the spontaneous curvature of a sheet of capsid proteins.
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II. CONTINUUM ELASTICITY THEORY OF INCOMPLETE
SHELLS WITH PREFERRED CURVATURE

In thin-shell continuum theory, the elastic energy Fe of a
thin layer of material is written as the sum of a bending
energy, a stretching energy, and a dilation energy. The bend-
ing energy is given by

Fb =
�

2
� d2s�H − 2/R�2 − �̄� Kd2s . �1�

Here, H is the local mean curvature of the shell, while 2 /R is
the spontaneous or preferred curvature of the shell. Next, K
is the local Gauss curvature while � and �̄ are moduli with
dimension of energy. We will assume both moduli to be posi-
tive. Spontaneous curvature is assumed to be the determinant
of the size of the fully assembled shell with the “spontaneous
curvature” radius R identified as the radius of the fully as-
sembled shell. A closed spherical shell of radius R minimizes
Fb for positive � and �̄. The sum of stretching and dilation
energies can be expressed as

Fs = 1
2� d2s���u��, �2�

with ��� as the two-dimensional �2D� stress tensor and u��

as the strain tensor. For a small, partially formed shell, the
strain tensor can be expressed in terms of the in-plane dis-
placement u��r�� of the shell, with r� as a Cartesian coordinate
in the reference plane shown in Fig. 1, and of the out-of-
plane displacement ��r�� of the shell with respect to a refer-
ence plane in the Monge representation �see Fig. 1�:

u�� =
1

2
� �u�

�x�

+
�u�

�x�
� +

1

2

��

�x�

��

�x�

. �3�

If, for example, a constant mean curvature H is imposed on a
flat circular sheet then this introduces a strain of the order of
H2�2, with � as the distance to the origin. In terms of the
out-of-plane displacement, the Gauss curvature equals K�r��
=�xx�yy −�xy

2 . For a sheet with hexagonal symmetry, apart
from isolated defects, the relation between stress and strain
tensors is given by

u�� = Y−1��1 + ����� − �����kk� , �4�

with Y as the �2D� Young’s Modulus and � as the Poisson’s
ratio. For a completed shell of radius R, the ratio of stretch-
ing and bending energies is determined by the dimensionless
“Foppl von Karman �FvK� number” YR2 /�, introduced by
Lidmar et al. �7�. For YR2 /� large compared to 102, the
shape of a �completed� shell is that of a facetted icosahedron
while for YR2 /� small compared to 102, it has a spherical
shape.

Within the Gibbs theory of thermodynamics, the total as-
sembly free energy of a patch of partial shell under elastic
strain can be written as 	G=Fe−
A+�P, with A as the shell
area and P as the length of the perimeter of the incomplete
shell. For the case of incomplete viral shells, the parameter

 can be identified with the assembly free energy gain per
unit area of shell due to �favorable� subunit-subunit contacts
but excluding the elastic energy costs given by Fe, which is

neither proportional to A nor to P, as discussed below. The
parameter � can be identified with the line energy cost of the
perimeter of the partial shell, representing the fact that sub-
units lining the perimeter of an incomplete shell will have
more exposed hydrophobic residues and fewer favorable
subunit-subunit contacts than subunits in the interior.

The minimization of the elastic energy for given A and P
is simplified by introducing the Airy stress function � with
�xx=�2� /�y2, �yy =�2� /�x2, and �xy =−�2� /�x�y. NS
showed that minimization of the elastic energy with respect
to the in-plane displacement leads to an inhomogeneous bi-
harmonic equation for the stress function:

	2��r�� + Y�K�r�� − s�r��� = 0. �5�

Here, K�r�� is the local Gauss curvature and s�r�� is the local
disclination area density. For viral shells mainly composed
of hexagonal protein sheets, these disclinations are identified
with the pentamers. We will examine two cases, namely shell
growth “seeded” by a hexamer and growth seeded by a pen-
tamer. In the first case, the partial shell initially has no pen-
tamers while in the second case a single fivefold disclination
is located at the origin, i.e., s�r��= �2
 /6���r��.

Equation �5� must be solved with the boundary condition
that along the perimeter, the stress must compensate the cap-
illary pressure exerted by the line energy, which leads to the
condition that �ijnj =−�Cni, with n̂ as the outward normal to
the perimeter and with C as the local curvature of the perim-
eter. Once the Airy function has been found, the stretching or
dilation contribution to the elastic energy can be expressed as

Fs =
1

2Y
� d2r��	��2 − 2�1 + ��	 �2�

�x2

�2�

�y2 − � �2�

�x � x
�2
� .

�6�

The simplest shape for an incomplete shell would be a cir-
cularly symmetric spherical cap �11� with constant mean
curvature. The projection on the reference plane tangent to
center of the cap is then a circle with radius �0. We will
define an effective FvK number �=Y�0

2 /� for incomplete
shells and obtain the elastic energy for the different regimes
of �.

A. �™1

For � small compared to one, the bending energy domi-
nates the elastic energy. When the bending energy dominates,
a mean curvature H close to 2 /R is imposed on the cap �see
Eq. �1��. The out-of-plane displacement of the cap is then
given by ��r����1 /2�r2 /R so the contribution to the strain
tensor that depends on the out-of-plane displacement is
�1 /2�x�x� /R2. The Airy function that obeys the boundary
conditions �ijnj =−�� /�0�ni for a spherical cap with a circu-
larly symmetric border is easily found:

��r� =
Y

64R2 �2�0
2r2 − r4� + � sY

8

�r2�ln r/�0 − 1/2� −

�

2�0
r2.

�7�

Here, s=0 for a shell composed of hexamers and
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s=2
 /6 if a pentamer is located at the origin. The stress
tensor derived from ��r� is written as −�� /�0��ij +�ij

0 .
The first term is the Laplace pressure generated by the
line energy. The remaining term is diagonal, with
�rr

0 �r�= �Y /16R2���0
2−r2�+ �sY /4
�ln r /�0 and ���

0 �r�
= �Y /16R2���0

2−3r2�+ �sY /4
��ln r /�0+1� independent of

the line energy. In both cases, the first term is the stress field
introduced by the curvature imposed on the shell while the
second term is the stress field of a disclination in a flat sheet
characterized by logarithmic singularity at the origin. The
total elastic energy of a circularly symmetric cap with �
�1 is then

Fe 
�
Y�0
2	2� s

8

�2

−
1

8
� s

8

� �0

2

R2 +
1

384

�0
4

R4
 − 
�0
2�̄/R2 � � 1


�1 − ��
Y

�2 − 
�0
2�̄/R2 � � 1,� �8�

with �=� /Y�0 as the dimensionless line energy. According
to Eq. �8�, the Gauss curvature term can be absorbed into a
redefinition of 
. The elastic energy is however proportional
to neither the area A nor to the perimeter P. Below, we will
assume that �0 /R is small compared to one. According to Eq.
�8�, it is not energetically favorable for shells with �0 /R less
than �2s /

0.81 to introduce a pentamer at the origin.
However, viral assembly typically is an example of “hetero-
geneous nucleation”, and the initial conditions could favor
assembly starting from pentamers. Separately, assembly is
often initiated by interaction between capsid proteins and
genome molecules and in some cases this is known to favor
assembly starting from pentamers �12,13�.

B. �š1: No central pentamer

If there is no central pentamer, then the optimal shape of
a circularly symmetric shell approximately remains that of a
spherical cap even if ��1 but the mean curvature H will be
less than 2 /R. The optimal value of H can be estimated by
comparing the bending energy Fb
��0

2�H−2 /R�2 of the cap
with the stretching energy Fs
Y�0

2�H2�0
2�2 that is associated

with a strain tensor u��� �H�0�2. Minimizing Fs+Fb with
respect to H then gives �2 /R�−H� �� /�0��H�0�3. Accord-
ingly, smaller caps with ��0

2 /R2�1 still have a mean curva-
ture H close to 2 /R and the results of the previous section are

not changed. For larger caps, with ��0
2 /R2�1, the mean cur-

vature of the shell H
R−1 / ���0
2 /R2�1/3 decreases with in-

creasing shell size. Note that this suggests that for a spherical
cap with preferred curvature Y�0

4 /�R2 is a more appropriate
measure for the ratio of bending and stretching energies than
�. The total elastic energy can then be estimated as Fs /�

�� /Y�0

2�1/3��0
2 /R2�2/3 in this regime.

C. �š1: Central pentamer

The case of a circularly symmetric partial shell with a
central pentamer is more challenging. The shell is expected
to buckle based on the results of NS and resemble a cone
with a flattened-out apex. The flattened section has a size of
the order of the buckling radius Rb=�� /Y. Inside the flat-
tened section, the stretching energy “wins,” while in the
conical section the bending energy wins. We need to extend
the results of NS to the case of shells with a preferred cur-
vature radius. This is done most easily by introducing the
following one-parameter trial form for the vertical displace-
ment:

��r� =�1

3
�r2 + b2�1/2. �9�

For r�b, this trial form resembles a cone having an apex
angle appropriate for a single s=2
 /6 disclination at the
origin. For r�b it reduces to a spherical cap with curvature
�s /
�1 /b� �from hereon, we will use s=2
 /6�. It is possible
to obtain explicitly the Airy function and the stress distribu-
tion for this trial function, as discussed in the Appendix. The
noncapillary contribution to the tangential elastic stress along
the perimeter—the quantity of interest for thermodynamic
stability of the perimeter—is for this trial function

���
0 �r = �0� =

Y

12
	b��0�

�0

2

ln�1 + 	 �0

b��0�
2� . �10�

The variation parameter b��0� is, in general, not equal to the
buckling radius, as might have been expected intuitively.
Figure 2 shows the dependence of b��0� on the shell size �all
lengths are expressed in units of the spontaneous curvature

FIG. 1. Monge coordinate representation for a rotationally sym-
metric partial shell having a circular boundary of radius �0. ��r�� is
the vertical displacement measured from a reference plane tangent
to the partial shell at the center.

ASSEMBLY OF VIRAL CAPSIDS, BUCKLING, AND THE … PHYSICAL REVIEW E 81, 041925 �2010�

041925-3



radius R� computed by numerical minimization of the elastic
energy. If the buckling radius is small compared to the radius
of spontaneous curvature R, then there is a sharp drop of
b��0� at a threshold �b. We will identify this sharp drop with
the buckling transition. In the Appendix we show that if �0
�b��0�, then b��0� is given by

b��0� ��1

3
R�1 −

1

384
��0

2/Rb
2�� . �11�

The shape of the trial shell is still that of a spherical cap but
with a curvature �1 /3(1 /b��0�) that now exceeds 1 /R. Ac-
cording to Eq. �11�, the shell curvature diverges when the
disk radius approaches a size �384Rb, which thus is the
buckling threshold �b for the case that R is large compared to
Rb. The requirement �0�b��0� is valid if two conditions are
satisfied: �i� �0�R and �ii� �0 must be less than ��384�Rb.
The noncapillary perimeter stress in this regime is given by

���
0 ��0� 


Y

36
� R

�0
�2	1 −

1

384
��0

2/Rb
2�
2

�ln�1 +
3�0

2/R2

	1 −
1

384
��0

2/Rb
2�
2� . �12�

According to Eq. �12�, ���
0 ��0�
Y /12 for small �0. For in-

creasing shell radius, the tangential stress starts to drop rap-
idly as �0 approaches the buckling threshold.

In the opposite regime �0�b��0�, b��0� is determined by
the buckling radius as might be expected intuitively. In the
Appendix, it is shown that b��0���12 /
�Rb�1+O�Rb

2 /�0
2��

for �0�b��0�. The shell shape reduces in this regime to a
conical cap. The tangential stress along the perimeter decays
in this regime as �����0��24Y�Rb /
�0�2ln�
�0 /12Rb�, so
roughly as the inverse square of the size of the conical cap.
The validity conditions are �0� �12 /
�Rb, but �0 must be
still less than R. Figure 3 shows the evolution of the cap
shape with increasing �0 across the buckling transition.

If the dimensionless curvature radius R /Rb is reduced
then, according to Fig. 2, the buckling threshold �b drops
below �384Rb while the sharp drops of b��0� and �����0� are
increasingly broadened. For R /Rb less than about 10, b��0�
��1 /3R and the buckling transition is nearly completely
smeared out.

III. BOUNDARY OF THERMODYNAMIC STABILITY

After these preliminaries, we now can carry out the ther-
modynamic stability analysis. Specifically, we want to verify
whether rotationally symmetric cap shapes represent, for a
given shell area, the stable minimum free energy shape. This
stability test is carried out by introducing an infinitesimal
periodic modulation of the perimeter shape:

���� = ��� + an cos n� , �13�

with n as an integer and with an /�0�1. The total area A
must remain the same as that of the spherical or conical cap,
but the perimeter length P is allowed to increase. It is easy to
show that, to first order in an /�0, the mean radius has to be
the disk radius of the symmetric cap so, to that order, ���
=�0. The binding energy of a subunit added to the perimeter
of the shell is given by

���� = �0 + ���C��� + Ue���� . �14�

Here, �0=−
� is the binding free energy of a subunit in the
assembled shell far from the interface in the absence of elas-
tic stress with � the surface area per capsomer and 
 the
cohesion free energy per unit area. The first term inside the
brackets in Eq. �14� is the excess Gibbs-Thompson chemical
potential of a particle placed on a curved surface separating

FIG. 2. Dependence of the variation parameter b��0� in the
variational shell shape ��r�=�1 /3�r2+b2�1/2 on the shell radius �0

for different values of the buckling radius Rb. Both b��0� and Rb are
expressed in units of the radius R of the fully assembled shell. FIG. 3. �Color online� Minimum energy shapes of incomplete

shells with a central pentamer as a function of the shell size, as
determined by minimization of the stretching and bending energies.
The buckling radius Rb was equal to 0.025R. The dependence of
b��0� on the shell radius �0 is nearly the same as the dotted line in
Fig. 2 for Rb /R
0.03 so the buckling transition is predicted to be
in the range b��0� /R
0.13 as is indeed the case.
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two thermodynamic phases in contact. Physically, it de-
scribes the work against the capillary pressure when a par-
ticle is added to a boundary. Next,

C��� � �1/�0��1 + �n2 − 1��an/�0�cos n�� �15�

is the local curvature of the perimeter line to first order in
an /�0. Finally, in the second term inside the brackets in Eq.
�14�, Ue��� is the elastic energy cost per unit area
�1 /2����u�� evaluated at the perimeter. This term describes
the price in elastic energy that must be paid when a subunit is
added to the shell.

The chemical potential ���� of a subunit located along the
perimeter is equal to ���� plus a term that depends on the
solution concentrations of subunits and shells but not on the
stress or geometry of the perimeter. Within Gibbs theory, the
thermodynamic stability of an interface is determined by the
difference in chemical potentials of particles located at pro-
trusions and at indentations. If this difference is positive,
then a flux of particles from protrusions to indentations will
anneal out any surface roughness, so a smooth interface is
stable. If this difference is negative, then a flux of particles
from indentations to protrusions will cause surface roughness
to grow with time so a smooth interface is unstable. For
example, the term �C��� in Eq. �14�, which corresponds to a
local capillary pressure, is higher than average for protru-
sions and lower than average for indentations, so it always
has a stabilizing effect.

As before, the stress tensor at the interface must be ob-
tained from an Airy function that must be a regular solution
of the inhomogeneous biharmonic equation �Eq. �5��. For the
modulated boundary, this solution has the general form

��r,�� = ��r� + an��nrn+2 + �nrn�cos n� , �16�

with ��r� as the Airy stress function of the unperturbed shell.
The parameters �n and �n must be determined by the two
boundary conditions �ijnj =−�C���ni evaluated at the modu-
lated border. To first order in an /�0, the normal to the perim-
eter is here

n̂ � �̂ + �̂�an

�0
�n sin n� �17�

to first order in an /�0. After obtaining �n and �n from the
boundary conditions, the Airy function of the modulated
state can, to first order in an /�0, be expressed in terms of the
tangential stress along the perimeter of the unperturbed shell
shape as

��r,�� = ��r� −
1

2
an

���
0 ��0�
�0

�r/�0�n�r2 − �0
2�cos n�

− an
�

2�0
2 �r/�0�n��n − 1�r2 − �n + 1��0

2�cos n� .

�18�

The second term describes the modulation of the stretching
or dilation elastic energy and the third term the modulation
of the capillary stress.

The modulation of the chemical potential along the perim-
eter can now be evaluated using Eqs. �13�–�15� and �18�. For

� /�0����
0 ��0� the capillary contribution dominates and the

modulated chemical potential reduces to

���� � �̃0 + ��n2 − 1�� �

�0
��1 + 2

�1 − ��
Y

� �

�0
��

��an/�0�cos n� , �19�

with �̃0
�0+��� /�0�+ �� /Y��1−���� /�0�2 and �0 as a
constant independent of �0. Both terms inside the curly
brackets of Eq. �19� are due to capillary stress. The first term
is the change in the Gibbs-Thompson contribution to the
chemical potential due to the modulation while the second
term is due to the elastic stresses that are generated by the
variation of the capillary pressure Pcap���= �� /�0��1
+ �an /�0��n2−1�cos n�� along the perimeter of the shell. At
protrusions �cos n�=1� the chemical potential is always
larger than the average value �̃0, while at indentations
�cos n�=−1�, the chemical potential is always less than its
average value. The circular perimeter is thus stable for
� /�0����

0 ��0�.
In the opposite regime � /�0����

0 ��0� where the noncap-
illary stress dominates, the modulated chemical potential
along the perimeter is

���� � �̃0 + �� �

�0
�n2 − 1� −

1

Y
��2n + 1�����

0 ��0��2

−
�0

2

d

dr
����

0 ��0��2���an/�0�cos n� , �20�

with �̃0
�0+�� /�0+ �

2Y ����
0 ��0��2. A circularly symmetric

perimeter is stable if the expression in curly brackets is posi-
tive. The capillary contribution—the first term inside the
curly brackets—is again stabilizing but the second term in-
side the curly brackets can have either sign. A sufficient con-
dition for this term to be destabilizing would be for the pe-
rimeter stress ���

0 ��0� to decrease with increasing shell size
although this is not a necessary condition for instability, as
we will see. The stability condition can be expressed in the
form of a critical value for the line energy:

�n �
�0

�n2 − 1�Y��2n + 1�����
0 ��0��2 −

�0

2

d

dr
����

0 ��0��2� .

�21�

Incomplete shells with circular perimeter are stable against a
modulation with mode index n if the line energy exceeds �n.

A. Incomplete shell without central pentamer

We now are in a position to compare the thermodynamic
stability of the two types of incomplete shells under consid-
eration, using the perimeter tangential stress computed in the
Appendix. For symmetric hexameric spherical caps, the tan-
gential stress along the perimeter of the unperturbed shell
generated by the spontaneous curvature increases propor-
tional to the shell area as ���

0 �−�Y /8���0
2 /R2�. The condition

� /�0����
0 ��0� for dominance of the capillary stress thus re-

duces to ��Y�0
3 /R2. Small spherical caps with ��Y�0

3 /R2

are thus stable since capillary stresses have a stabilizing ef-
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fect. In the opposite limit, where ��Y�0
3 /R2, the chemical

potential of the modulated interface is, according to Eq. �20�,

���� � �̃0 + ���n2 − 1�
�

�0
− �n − 1�

Y

32
� �0

4

R4��
��an/�0�cos n� �� � Y�0

3/R2� . �22�

The critical line energy in terms of stability is thus �n��0�
� (Y�0 /32�n+1�)��0

4 /R4�. The mode that goes unstable first
with decreasing line energy is n=2, which corresponds to an
ellipsoidal deformation of the shell shape �see Fig. 4�. The
shell becomes progressively less stable as the shell size in-
creases further.

B. Incomplete shell with central pentamer

We show in the Appendix that if a single pentamer is
located at the center of the incomplete shell, then for shell
sizes below the buckling threshold the stress can be approxi-
mated as ���

0 �r�
�Y /12��ln r /�0+1�. The condition � /�0
����

0 ��0� for dominance of elastic stress now reduces to the
requirement that ��Y�0. By applying Eq. �21�, the stability
limit for the line energy is found to be

�n��0� �
Y�0

72�n2 − 1��n −
1

2
�2n − 1���0/b��0��2� ,

�0 � ��384�Rb. �23�

We included in Eq. �23� the lowest-order correction term
generated by the curvature stress. As the shell radius grows,
the minimum line energy required for stability initially grows
linearly with the radius. This increase begins to slow due to
the correction term, as the shell size approaches the buckling
threshold. By comparing Eqs. �22� and �23�, it follows that
below the buckling threshold a circularly symmetric patch of
shell with a central pentamer is significantly less stable with
respect to the AGTI, by a factor �R4 /�0

4�, than a shell of the
same size without a central pentamer. On the other hand,
beyond the buckling threshold the stability limit is

�n��0� �
576


4

YRb
4

�n2 − 1��0
3	2�n + 1�ln2� 
�0

12Rb
�

− ln� 
�0

12Rb
�
, �0 � ��384�Rb. �24�

Now, the critical line energy drops with increasing shells
size: a shell with a central pentamer that has passed the buck-
ling transition becomes progressively more stable with re-

spect to the AGTI. The buckling transition is thus a critical
region in terms of thermodynamic stability. Assembling
shells with a circular perimeter would be stable against the
AGTI for any shell radius if there is no AGTI around the
buckling transition. This condition is satisfied if the line en-
ergy exceeds the stability limit �max for n=2 modes at the
buckling threshold. Figure 5 shows that if R /Rb�1 then the
linear dependence of �2��0� on �0 in Eq. �23� extends prac-
tically to the buckling threshold �0=�b. It follows from this
observation that �max�YRb. Numerically, we obtain �max
�0.14YRb for R /Rb�1. Figure 5 shows that for smaller val-
ues of R /Rb, �max is reduced compared to this value.

IV. GROWTH KINETICS

The determination of the stability limit of incomplete
shells with circular perimeters was carried out within the
bounds of equilibrium thermodynamics. It is known from the
studies of the AGTI in the context of epitaxial growth that
the most rapidly growing unstable mode cannot be deter-
mined by thermodynamic considerations alone. In this sec-
tion we will investigate a simple kinetic model for the insta-
bility in order to identify the most rapidly growing unstable
mode, which will lead to other useful results as well.

For epitaxial growth, AGTI kinetics is dominated by the
transport of particles in response to the chemical potential
gradients along the interface. This can take place either by
diffusion through the vapor or solution �“evaporation or re-
condensation”� in contact with the solid or by diffusion along
the interface �14�. Both mechanisms in principle would be
possible for viral shells as well, but in view of the high
reported off-rates, we will restrict ourselves to the evapora-
tion or recondensation mechanism. Consider a partial viral
shell in contact with a solution that contains a certain low
concentration c��� of subunits. In the limit of low concen-
trations, the on-rate k+ for subunits in solution �or an oligo-
mer of subunits� to be added to the perimeter of the shell is

FIG. 4. �Color online� The n=2 mode. The dominant instability
encountered in a thermodynamic stability analysis. The elongation
of the shell allows relaxation of the perimeter stress.

FIG. 5. The minimum line energy � required for thermodynamic
stability of a shell with central pentamer as a function of the shell
radius for different values of the buckling radius, with n=2. Note
that the vertical axis plots the ratio of � and �0. The maximum value
for the minimum line energy is near the buckling transition, where
the plot shows a sharp drop.
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diffusion limited. According to the Smoluchowski theory of
diffusion-limited reactions, the on-rate k+ is then given by
4
aDc���. Here, D is the subunit diffusion coefficient and a
is the “reaction radius” for subunit capture by the shell pe-
rimeter. If one assumes, as we will, that the reaction radius
for capture of a subunit is determined solely by the structure
of individual subunits �or oligomers�, then the on-rate is in-
dependent of the geometry of the partial shell. According to
the principle of detailed balance, the off-rate k− for a perim-
eter subunit to be released back into solution is then given by
k−=k+c0 exp ��, with �minus� � as the subunit or oligomer
binding energy along the perimeter and with c0 as a constant
with the units of concentration. The off-rate thus depends on
both the local shape of the perimeter and on the local elastic
stress along the perimeter through the binding energy ����
=�0+���C���+Ue���� of Eq. �14�.

The time-dependent shape of the perimeter will be ex-
panded in a Fourier series ��� , t�=�0�t�+�nan�t�cos n�. We
showed earlier that if the capillary pressure � /�0 is large
compared to the perimeter elastic stress ���

0 ��0�, then the
shell is stable. We will focus below on the opposite case
where � /�0 is less than ���

0 ��0� and use Eq. �20�. Using
k−��� /k+=c0 exp�������, one can expand exp������� to low-
est order in powers of �an /�0�:

k−���/�k−��0
� �1 + ���

n�1
� �

�0
�n2 − 1� −

1

Y
��2n + 1�

�����
0 ��0��2 −

�0

2

d

dr
����

0 ��0��2��
��an/�0�cos n�� . �25�

The angular-averaged off-rate �k−��0
is here given by

�k−��0

 k+c0 exp ���0 + ��/�0 +

�

2Y
����

0 ��0��2� .

�26�

Equating the radial growth velocity ����,t�
�t =

d�0

dt +�n
dan

dt cos n�
with the growth velocity vn=a�k+c���−k−���� along the nor-
mal to the perimeter leads to separate equations for the am-
plitude of each mode:

d�0

dt
� a�k+c��� − �k−��0

� , �27�

dan

dt
� − a�k−��0

��� �

�0
�n2 − 1� −

1

Y
��2n + 1�����

0 ��0��2

−
�0

2

d

dr
����

0 ��0��2��an/�0. �28�

Using Eqs. �27� and �28�, we can again investigate the two
different shell geometries.

A. Incomplete shell without central pentamer

If we use in Eq. �26� the perimeter stress appropriate for a
spherical cap composed purely of hexamers, then the
angular-average off-rate reduces to

�k−��0

 k+c0 exp ���0 + ��/�0 +

1

128
�Y��0

4/R4�� . �29�

Initially, for small shell sizes, the off-rate decreases with in-
creasing shell radius, when capillary effects still dominate.
Then, for shell radii larger than ��= �32�R4 /Y�1/5, the off-rate
starts to increase with shell radius, as the stretching stress
generated by the shell curvature takes over. Let �k−��� be the
minimum off-rate separating these two regimes. For low
concentrations, with k+c��� less than �k−���, shells are unable
to even start forming, due to this curvature-induced elastic
stress. If the concentration is increased and k+c��� exceeds
�k−���, then shell growth becomes possible. It is easy to show
that this condition is obeyed if the subunit concentration ex-
ceeds the threshold c���� /ceq=exp��5 /4����� /����, where
ceq /c0=exp ��0 is the bulk concentration at which subunits
in solution are in chemical equilibrium with stress-free
shells. If the concentration exceeds c����, then the average
growth rate d�0 /dt�a�k+c���− �k−��0

� has two zeros as a
function of the shell radius denoted by �− and �+. These
zeros act as fixed points for the growth equation. Close to
c����, their location is given by

��� − ���/�� � � � ��

�5/2����
ln�c���/c������1/2

. �30�

The first zero, �−, is an unstable fixed point. If the initial
radius is less than this unstable fixed point, then the shell
shrinks. The shell grows if the initial radius exceeds the un-
stable fixed point. The unstable fixed point thus has the same
properties as the usual critical nucleus of the classical theory
of nucleation and growth. The second zero is a stable fixed
point. At �+, the increasing elastic energy cost of the growing
shell starts to exceed the free energy gain. As a result the
average radius of the shell stops growing. A hexameric shell
without pentamers will naturally evolve to this fixed point.
However, the shape of the shell at this fixed point need not
be rotationally symmetric. Assume that the average radius of
the shell equals �+. In Eq. �28�, each mode then has a time-
independent growth rate �n, with dan /dt=�nan, given by

�n � a�k−��+
�+

−1���n − 1��−
�

�+
�n + 1� +

Y

32
� �+

4

R4�� .

�31�

At the onset concentration c���� for shell growth, where �+
equals ��= �32�R4 /Y�1/5, �n is negative for positive n but
with increasing free subunit concentrations, �n becomes
positive for larger and larger n, in which case the circular
shell is unstable �the critical concentration for the nth mode
to become unstable is found by using Eq. �30� in Eq. �31�
and setting the term in curly brackets to zero�. At the stable
fixed point, the shell is thus in general not circular. The most
rapidly growing mode is not n=2 but instead the mode with
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index closest to n�= �Y /64����+
5 /R4�. Note that though we

obtained this result from kinetic arguments, it does not de-
pend on the kinetic parameters. The full determination of the
actual shell shape at the fixed point is however beyond linear
stability analysis.

B. Incomplete shell with central pentamer

For a hexameric shell with a central pentamer and curva-
ture radius R large compared to the buckling radius, the off-
rate is given by

�k−��0

�k+c0 exp ���0 + ��/�0 +

1

288
�Y	1 −

3

2
��0

R
�2
2� , �0 � �384Rb

k+c0 exp �	�0 + ��/�0 +
288


4 �Y�Rb

�0
�4

ln2� 
�0

12Rb
�
 , �0 � �384Rb.� �32�

The off-rate now always decreases with shell size. At the
buckling transition the drop is particularly sharp. For very
large shell sizes, the off-rate approaches the equilibrium
value k+c0 exp ��0. Because the off-rate decreases mono-
tonically with shell size over the whole range, the rate
k+c���− �k−��0

can have only one zero. This zero is an un-
stable fixed point and corresponds to the critical nucleus of
conventional nucleation and growth theory. The buckling
transition prevents here the stress build-up that “suffocates”
the growth of pentamer-free shells.

We saw earlier that if the line energy exceeds the thresh-
old �max, then AGTI-free growth is possible. If this condition
is not obeyed, then unstable modes will be most pronounced
near the buckling threshold. At the buckling threshold itself,
the growth rate is estimated as

�n � a�k−��0
���/�384Rb��−

�

�384Rb

�n2 − 1� + 2n
Y

144�
�33�

using ���
0 �r�
�Y /12��ln r /�0+1�. The most rapidly growing

mode at the buckling transition has a mode index closest to
n�
0.14YRb /�, again independent of kinetic parameters. If
we view n� /Rb as a wavelength for the AGTI at the buckling
transition, then we recover the classical result that the wave-
length of the most unstable mode is determined by the ratio
of the elastic modulus and the interface energy. Finally, it is
easy to show that when the radius exceeds a threshold �n
� �(1 / �n−1�)�Y /��Rb

4�1/3, the amplitude of the nth mode will
start to decrease with time.

V. CONCLUSION

We found that assembling shells of large viruses should
be subject to the AGTI unless the buckling instability inter-
venes. Many large viral shells, such as the T=13 shell of
herpes simplex, are characterized by a very high degree of
structural order and reproducibility. Since for conventional
solids the AGTI leads to loss of structural order, our results
suggest that for large viruses the AGTI must be avoided,
presumably by buckling. Is this possible? In order to exam-

ine this question, one must estimate the threshold �max
�0.14YRb for stable growth and compare this with estimates
for the line energy itself. Interestingly, the estimate of �max
for viral shells in fact can be directly obtained from studies
of the mechanical deformability of shells. First, rewrite YRb
as �Y�. Next, we recall that the “spring constant” for indent-
ing a thin shell is given by 2.5�Y� /R according to con-
tinuum theory �15�. This spring constant has been measured
by atomic-force microscopy for different viral shells under
different conditions �16� and the quantity �Y� was found to
vary over a limited range. For a shell with a 12 nm inner
radius �cowpea chlorotic mottle virus�, this spring constant
is, for example, about 0.2 N/m �17�. That means that �Y�

0.9�10−9 N for that shell. The corresponding stability
limit of the line energy would be about �max�0.12 nN. The
line energy � itself has never been measured but the “natu-
ral” value for the line energy � would be the ratio of the
characteristic energy scale for capsid subunit interactions,
which is about 10kBT, and the characteristic length scale,
which is the size of a subunit �about one nanometer�. This
leads to a line energy � of about 10 pN. This is about an
order of magnitude less than �max�0.12 nN, which suggests
that an AGTI still should be expected. Actually, the proposi-
tion that � could be even as large as 10 pN is quite question-
able. The thermodynamic energy barrier of the “critical
nucleus” for capsid assembly is a hemisphere with a perim-
eter 2
R. The “transition state” free energy thus equals
2
R� in the absence of elastic stress and the presence of
elastic stress can only increase the height of this activation
barrier. For a large shell like herpes simplex, with a radius R
in the range of 50 nm, 2
R� would be hundreds of kBT for �
in the pN range. From kinetic studies of viral assembly �18�,
there is no experimental evidence for huge thermodynamic
activation energy barriers of this size. The line energy is thus
actually expected to be quite small on the pN scale.

This indicates that the AGTI cannot be avoided during
viral assembly even if buckling takes place. This need not be
a paradox. Viral shells are not exactly like two-dimensional
crystals: 12 pentamers must be inserted at appropriate sites in
order to produce an icosahedron. During an AGTI, the
chemical potential of subunits located inside indentations is
higher than that of protrusions due to the excess perimeter

ALEXANDER YU. MOROZOV AND ROBIJN F. BRUINSMA PHYSICAL REVIEW E 81, 041925 �2010�

041925-8



stress. This “stress-condensation” actually might be a precur-
sor for the insertion of fivefold disclinations, i.e., pentamers.
In this view, an AGTI instability might be a necessary step
for the proper assembly of a shell. An n=5 mode �see Fig. 6�
would be, for example, favorable for shell assembly for
pentamer-seeded growth. This would lead to an interesting
scenario where the combination of the buckling instability
and AGTI guides the insertion of subsequent pentamers. This
would however require a careful “fine tuning” of n�


0.14YRb /� to be close to five. Interestingly, a recent nu-
merical simulation of a hexameric growing shell indeed en-
countered an AGTI followed by stress-condensation, which
heralded the appearance of disclinations along the growth
perimeter �19�.

We should conclude by noting that all our results were
obtained using continuum elasticity theory. For smaller
capsids, with low T numbers, continuum theory is not ex-
pected to apply due to discrete structure of the shell. It is
known, from the study of the growth of solid materials, that
lattice anisotropy introduced by molecular-level discreteness
weakens growth instabilities �20�. Numerical studies we are
currently carrying out indicate that assembly of small T
icosahedral shells is indeed not affected by the growth insta-
bility discussed in this paper.
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APPENDIX

We need to solve

	2��r�� + Y�K�r�� − s�r��� = 0 �A1�

with disclination density s�r��= �2
 /6���r�� and Gaussian cur-
vature K�r��=�xx�yy −�xy

2 for the trial function ��r�=�s /
�r2

+b2�1/2 subject to the boundary condition �ijnj =−�� /�0�ni
along a circular perimeter of radius �0. For this trial function,
the Gaussian curvature

K�r� =
b2s


�r2 + b2�2 �A2�

has a maximum at the origin and then decays as 1 /r4 for
large r. Equation �A1� is linear and can be solved by stan-

dard methods. We need only consider radially symmetric so-
lutions. By substitution it can be checked that Eq. �A1� is
solved by

��r� =
Ys

16

�2r2 ln� r

�0
� + r2 ln��0

2 + b2

r2 + b2 � + b2� r2

�0
2�

�ln	1 + ��0
2

b2�
 − b2 ln	1 + � r2

b2�
 + b2Li2�−
r2

b2��
−

�

2�0
r2 �A3�

that satisfies the boundary conditions. Here, Li2�x�
=−�0

x�ln�1− t�) / tdt is the dilogarithm function. For the linear
stability analysis �Eq. �21��, the noncapillary contribution
���

0 �r�=d2��r� /dr2+� /�0 to tangential component of the
stress tensor and its derivative are needed. From Eq. �A3� we
find

���
0 �r� =

Ys

8

�2 ln� r

�0
� + ln��0

2 + b2

r2 + b2 � + �b2

�0
2�ln	1 + ��0

2

b2�

+ �b2

r2 �ln	1 + � r2

b2�
� . �A4�

The tangential component of the stress tensor and its deriva-
tive in Eq. �21� were computed from Eq. �A4�. Using Eq. �6�,
the complete noncapillary contribution to stretching energy
is

Fs = −
Ys2b2

32

��1 + b2/�0

2�	ln�1 +
�0

2

b2�
2

+ 2Li2�−
�0

2

b2�� ,

�A5�

while the bending energy Fb=� /2�d2s�H−2 /R�2 with H
=	� equals

Fb = �� 1

2
s ln�1 + �0

2/b2� + 2
�0
2/R2 − 4�
s

�0
2

R��0
2 + b2

−
b4s

4��0
2 + b2�2 −

b2s

��0
2 + b2�

+
5

4
s� �A6�

for ��r�=�s /
�r2+b2�1/2. Minimizing the sum of stretching
and bending energies with respect to x=�0 /b leads to the
final result:

4�
s��0/R�
x

�1 + x2�3/2 + s� 1

�1 + x2�3 +
1

�1 + x2�2

−
1

1 + x2 − 1� −
1

16

� s�0

xRb
�2

���1 +
2

x2��ln�1 + x2��2 + 2Li2�− x2�� = 0, �A7�

with Rb=�� /Y as the buckling radius. In the limit of small x,
the solution of Eq. �A7� reduces to Eq. �11�.

For small x, we can expand the left hand side of Eq. �A7�
in powers of x. Using Li2�x��x+ �1 /4�x2+ �1 /9�x3+¯ gives

FIG. 6. �Color online� The n=5 mode. If n=5 would be the
most rapidly growing AGTI unstable mode at the buckling transi-
tion then this could set the stage for proper insertion of additional
pentamers.
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4�
s��0/R� + � s2�0
2

32
Rb
2 − 4s�x − 6�
s��0/R�x2 + 8sx3 + ¯

= 0. �A8�

If both x and �0 /R are small compared to one, it is consistent
to retain only the first two terms, which leads to Eq. �11� of
the text. For large x, Li2�x→−���−�1 /2��ln x�2−
2 /6 and
Eq. �A7� simply reduces to −s+
s2�0

2 /48Rb
2x2�0 for �0 /R

small compared to one.

�1� For a review: T. S. Baker, N. H. Olson, and S. D. Fuller,
Microbiol. Mol. Biol. Rev. 63, 862 �1999�.

�2� D. L. D. Caspar and A. Klug, Cold Spring Harbor Symp.
Quant. Biol. 27, 1 �1962�.

�3� H. Fraenkel-Conrat and R. C. Williams, Proc. Natl. Acad. Sci.
U.S.A. 41, 690 �1955�; P. J. Butler and A. Klug, Sci. Am.
239�5�, 62 �1978�; A. Klug, Philos. Trans. R. Soc. London,
Ser. B 354, 531 �1999�.

�4� W. K. Kegel and P. van der Schoot, Biophys. J. 91, 1501
�2006�.

�5� J. M. Johnson, J. Tang, Y. Nyame, D. Willits, M. J. Young, and
A. Zlotnick, Nano Lett. 5, 765 �2005�.

�6� P. Ceres and A. Zlotnick, Biochemistry 41, 11525 �2002�.
�7� J. Lidmar, L. Mirny, and D. R. Nelson, Phys. Rev. E 68,

051910 �2003�.
�8� See, for example, Thin Film Materials: Stress, Defect, and

Formation and Surface, edited by L. B. Freund and S. Suresh
�Cambridge University Press, Cambridge, 2009�.

�9� F. Yang, Mech. Mater. 38, 111 �2006�.
�10� H. S. Seung and D. R. Nelson, Phys. Rev. A 38, 1005 �1988�.
�11� R. Zandi, P. van der Schoot, D. Reguera, W. Kegel, and H.

Reiss, Biophys. J. 90, 1939 �2006�.
�12� M. A. Krol, N. H. Olson, J. Tate, J. E. Johnson, T. S. Baker,

and P. Ahlquist, Proc. Natl. Acad. Sci. U.S.A. 96, 13650
�1999�; RNA-controlled polymorphism in the in vivo assembly
of 180-subunit and 120-subunit virions from a single capsid
protein. Institute for Molecular Virology, University of Wis-
consin, Madison, WI 53706, USA.

�13� J. Tang, J. M. Johnson, K. A. Dryden, M. J. Young, A. Zlot-
nick, and J. E. Johnson, J. Struct. Biol. 154, 59 �2006�.

�14� D. J. Srolovitz, Acta Metall. 37, 621 �1989�.
�15� L. D. Landau and E. M. Lifshitz, Theory of Elasticity �Perga-

mon, New York, 1986�.
�16� I. L. Ivanovska, P. J. de Pablo, B. Ibarra, G. Sgalari, F. C.

MacKintosh, J. L. Carrascosa, C. F. Schmidt, and G. J. Wuite,
Proc. Natl. Acad. Sci. U.S.A. 101, 7600 �2004�; J. P. Michel, I.
L. Ivanovska, M. M. Gibbons, W. S. Klug, C. M. Knobler, G.
J. L. Wuite, and C. F. Schmidt, ibid. 103, 6184 �2006�.

�17� W. S. Klug, R. F. Bruinsma, J. P. Michel, C. M. Knobler, I. L.
Ivanovska, C. F. Schmidt, and G. J. Wuite, Phys. Rev. Lett. 97,
228101 �2006�.

�18� G. L. Casini, D. Graham, D. Heine, R. L. Garcea, and D. T.
Wu, Virology 325, 320 �2004�.

�19� W. Klug �private communication�.
�20� See, for example, E. Rolley, S. Balibar, and F. Gallet, Euro-

phys. Lett. 2, 247 �1986�.

ALEXANDER YU. MOROZOV AND ROBIJN F. BRUINSMA PHYSICAL REVIEW E 81, 041925 �2010�

041925-10

http://dx.doi.org/10.1073/pnas.41.10.690
http://dx.doi.org/10.1073/pnas.41.10.690
http://dx.doi.org/10.1098/rstb.1999.0404
http://dx.doi.org/10.1098/rstb.1999.0404
http://dx.doi.org/10.1529/biophysj.105.072603
http://dx.doi.org/10.1529/biophysj.105.072603
http://dx.doi.org/10.1021/nl050274q
http://dx.doi.org/10.1021/bi0261645
http://dx.doi.org/10.1103/PhysRevE.68.051910
http://dx.doi.org/10.1103/PhysRevE.68.051910
http://dx.doi.org/10.1016/j.mechmat.2005.05.014
http://dx.doi.org/10.1103/PhysRevA.38.1005
http://dx.doi.org/10.1529/biophysj.105.072975
http://dx.doi.org/10.1073/pnas.96.24.13650
http://dx.doi.org/10.1073/pnas.96.24.13650
http://dx.doi.org/10.1016/j.jsb.2005.10.013
http://dx.doi.org/10.1016/0001-6160(89)90246-0
http://dx.doi.org/10.1073/pnas.0308198101
http://dx.doi.org/10.1073/pnas.0601744103
http://dx.doi.org/10.1103/PhysRevLett.97.228101
http://dx.doi.org/10.1103/PhysRevLett.97.228101
http://dx.doi.org/10.1016/j.virol.2004.04.034
http://dx.doi.org/10.1209/0295-5075/2/3/014
http://dx.doi.org/10.1209/0295-5075/2/3/014

