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In this paper, we analytically examine the influence of synaptic short-term plasticity �STP� on the transfer of
rate-coded information through synapses. STP endows each presynaptic input spike with an amplitude that
depends on previous input spikes. We develop a method to calculate the spectral statistics of this amplitude
modulated spike train �postsynaptic input� for the case of an inhomogeneous Poisson process. We derive in
particular analytical approximations for cross-spectra, power spectra, and for the coherence function between
the postsynaptic input and the time-dependent rate modulation for a specific model. We give simple expres-
sions for the coherence in the limiting cases of pure facilitation and pure depression. Using our analytical
results and extensive numerical simulations, we study the spectral coherence function for postsynaptic input
resulting from a single synapse or from a group of synapses. For a single synapse, we find that the synaptic
coherence function is largely independent of frequency indicating broadband information transmission. This
effect is even more pronounced for a large number of synapses. However, additional noise gives rise to
frequency-dependent information filtering.
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I. INTRODUCTION

Synapses constitute the connections between nerve cells
�neurons� in the brain. However, they are not just bare con-
veyers of information from one neuron to another, but play a
far more active role �1�. First of all, slow changes in their
efficacy �i.e., in their postsynaptic amplitude�, called long-
term plasticity, are believed to be the physiological basis for
learning and memory in the brain. Furthermore, synapses
also display changes in their efficacy on shorter time scales
��100 ms to 1 s�. The latter effect is referred to as short-
term plasticity �STP� and is the subject of our work. Depend-
ing on the most recent spiking history, synapses modify the
amplitudes of the action potentials they transmit. Repeated
presynaptic spiking may increase the postsynaptic amplitude
�facilitation� or decrease it �depression�. Both kinds of STP
can coexist in a single synapse because they rely on a variety
of different physiological mechanisms �2,3�.

A number of phenomenological models describing STP
have been established in the past �4–10�. In this paper, we
focus on facilitation-depression �FD� models as proposed
and studied in �8,11–13�.

The fact that synapses are active elements in the neural
dynamics suggests, that they may also play an important role
in information processing in the brain. STP may be important
for synaptic gain control, for the detection of transients and
of bursts, and may be linked to working memory
�6,9,14–16�. In addition, synaptic filtering properties have
been examined in terms of the average postsynaptic ampli-
tude depending on the presynaptic firing rate �6,8,14,17�. The
amount information about the presynaptic spiking history
carried by the synaptic strength has been studied in �18�.

Recently, it was shown that information transmission
about a rate-coded time-dependent stimulus across an en-
semble of dynamic synapses is broadband, i.e., independent
of frequency �13�. More precisely, it was shown by numeri-
cal simulations that neither facilitation nor depression intro-
duces a frequency-dependent filtering of the spectral input-

output coherence. In this work, we study this problem
analytically. We consider an ensemble of independent dy-
namic synapses driven by rate-modulated Poisson processes
and derive expressions for the power spectra, cross-spectra,
and coherence functions. We investigate these statistics in
detail for a single FD synapse and discuss their basic features
for the physiologically accessible part of the parameter
space. For an ensemble of many synapses, we furthermore
inspect the effect of an additional synaptic noise on informa-
tion transfer. Our results contribute to a deeper understanding
of the conditions for broadband coding by dynamic synapses.

Our study can also be regarded as a contribution to the
theory of point processes. The main problem in this paper is
the calculation of the spectral statistics of a spike train with
time-dependent amplitudes which are functionals of the un-
derlying point process itself. We would like to point out that
our results may also be of interest for other areas where pulse
trains with variable amplitudes are encountered, as for in-
stance, in the time series of earthquakes or in drop-outs of
lasers.

II. MODEL AND MEASURES

We consider a population of facilitating and depressing
synapses, by which a neuron �the “target neuron”� receives
independent Poissonian spike train input from other neurons
�the “input neurons”�; see Fig. 1. For a part of this input
ensemble �the “signal neurons”� a time-dependent stimulus is
encoded in the instantaneous firing rate of the input spike
trains. The transfer of this stimulus is affected by the nature
�facilitating or depressing� of the “signal synapses” connect-
ing the signal neurons to the target neuron. The remaining
“noise synapses” receive Poissonian input spike trains with
constant rates. They may have a different STP character and
they will also contribute to the total postsynaptic input to the
target neuron.

We would like to stress in this context, that we use the
term “postsynaptic input” for the amplitude-modulated input
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that a synapse provides to the target neuron. Similarly, the
“total postsynaptic input” is the sum over all the synaptic
inputs that the target neuron receives. In this paper, we do
not consider the output spike train of the target neuron,
which is often termed “postsynaptic spike train.” However,
in Sec. II E, we briefly show how to extend our results about
the total postsynaptic input to the membrane conductance
and the subthreshold membrane voltage of the target neuron.

Note that in the following, we strictly distinguish between
the notions of rate and frequency. Rate refers to a neuronal
firing rate, whereas frequency is solely used for the argument
of the Fourier transform.

A. Time-dependent signals as rate modulation

We write the presynaptic spike train associated to the ith
signal neuron as

x0,i�t� = �
j

� �t − ti,j� . �1�

We assume that the Poissonian spike trains from different
signal neurons are statistically independent from each other
except for a common rate modulation—the external stimulus
R�t�. This is clearly a simplification, since it is known, that

correlations between cortical spike trains are common �19�.
The time-dependent firing rate ��t� is

��t� = �r�1 + �R�t�� for 1 + �R�t� � 0 and

0 else.
� �2�

Here, r is the baseline rate, which is weakly modulated by
the external stimulus R�t� with small amplitude �. We as-
sume that R�t� is a band-limited Gaussian signal with 	R

=0, 	R2
=1, and a limiting frequency of 50 Hz. Generally,
we neglect the possibility of negative rates, i.e., 1+�R�t�
�0. Note that for the amplitudes used in this paper ��
�0.2�, the probability of 1+�R�t��0 at an arbitrary in-
stance t is less than 3�10−7.

B. Short-term plasticity

For each of the considered synapses in the population, we
use a deterministic FD model in order to describe short-term
plasticity. The corresponding dynamical system is similar to
those used in �8,11–13�. Generally, facilitation and depres-
sion are modeled via different variables F and D, respec-
tively. The product of these variables is the synaptic ampli-
tude A.

The postsynaptic input from the synapse corresponding to
the ith input neuron is given by �see also Fig. 1�
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FIG. 1. Scheme illustrating Eqs. �1�–�3� and �9�: The external stimulus R�t� modulates the rate of Poissonian spike trains x0,i�t�. Each of
these spike trains is modulated by a dynamic synapse according to the FD model turning it into xi�t�. Finally, the total postsynaptic input X�t�
to the target neuron is given by the sum of these modulated spike trains with an additional noise ��t�. The additional noise accounts for input
from synapses that are not involved in the transmission of the stimulus signal R.
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xi�t� = Ai�t−�x0,i�t� . �3�

Here and in the following, f�t	� refers to lim
�→0
�
0 f�t	��.

The synaptic amplitude Ai�t� is the product of a facilita-
tion variable Fi�t� and a depression variable Di�t�,

Ai�t� = Fi�t�Di�t� . �4�

The dynamics of the facilitation and depression variables,
Fi�t� and Di�t�, depend on the respective presynaptic spiking
history x0,i�t� of each synapse. For a static synapse we would
have

Ai�t� = A0 = const, �5�

i.e., the postsynaptic input would, apart from a factor, coin-
cide with the presynaptic spike train.

1. Facilitation

The facilitation dynamics models the increase of the re-
lease probability of synaptic vesicles due to an increase of
residual calcium in the presynaptic terminal �8,11�. FC�t�
corresponds to the concentration of a calcium bound mol-
ecule within the presynaptic terminal. Upon spiking, this
concentration is increased by the constant �. However, this
concentration decays with a rate 1 /�F. These features are
expressed by the following differential equation:

dFC�t�
dt

= −
FC�t�

�F
+ � � x0�t� . �6�

The calcium bound molecule may bind to the release site
altering the release probability of neurotransmitter into the
synaptic cleft. This release probability is our facilitation vari-
able F�t�, given by

F�t� = F0 +
1

�1 − F0�−1 + FC
−1�t�

. �7�

The constant F0 is the baseline release probability, i.e., the
release probability in the limit of low presynaptic spiking
rates. If FC
1−F0, we obtain F�F0+FC. If, on the other
hand, FC is large, F approaches 1.

The facilitation dynamics is illustrated in Fig. 2. As can be
seen in the amplitude dynamics �lower panel�, a rapid suc-
cession of presynaptic spikes evokes an increase of the syn-
aptic amplitude, whereas during large pauses of the presyn-
aptic spike train, the synaptic amplitude drops again.

2. Depression

As in �11–13�, we simplify the approach chosen in �8�.
We assume that depression is due to a refractoriness of syn-
aptic release sites. Release sites enter a refractory state upon
neurotransmitter release. Our depression variable D�t� is the
fraction of sites that are ready for immediate release. Sites
recover from the refractory state into the release-ready state
with the rate 1 /�D �in �8�, �D is defined differently�. This is
expressed by

dD�t�
dt

=
1 − D�t�

�D
− F�t−�D�t−�x0�t� . �8�

The initial value for D is chosen such that D varies between
0 and 1. The depression dynamics is illustrated in Fig. 3. In
contrast to the facilitation dynamics, a rapid succession of
presynaptic spikes leads to a decrease in the synaptic ampli-
tude, whereas for long pauses in the presynaptic input, the
synaptic amplitude recovers. The combined effect of both,
facilitation and depression, is illustrated in Fig. 4.

C. Total postsynaptic input

The total postsynaptic input X�t� to the target neuron in-
cludes the postsynaptic input xi�t� from the N signal synapses
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FIG. 2. �Color online� Illustration of facilitation-only dynamics
as described by Eq. �3� with A�t�=F�t�, and Eqs. �6� and �7�. Upper
panel: presynaptic spike train x0�t�. Middle panel: dynamics of
FC�t� and facilitation dynamics F�t�. Lower panel: postsynaptic in-
put x�t�. For illustration purposes, the presynaptic spike times were
chosen manually. Parameters: F0=0.1, �=0.3, and �F=200 ms.
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FIG. 3. �Color online� Illustration of depression-only dynamics
as described by Eq. �3� with A�t�=F0 ·D�t� and Eq. �8� with F�t�
=F0. Upper panel: presynaptic spike train x0�t�. Middle panel: de-
pression dynamics D�t� and synaptic amplitude A�t�. Lower panel:
postsynaptic input x�t�. Parameters: F0=0.4 and �D=2000 ms;
spike times as in Fig. 2.
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and the total synaptic input ��t� by the noise synapses �see
also Fig. 1�:

X�t� = � �t� + �
i=1

N

xi�t� . �9�

The noise � �t� could likewise include intrinsic fluctuations
of the target neuron, for instance, channel noise of the
postsynaptic membrane. Below, we will however mainly
consider the case, in which the noise statistics is shaped by
either facilitation or depression, i.e., the case where the noise
arises from presynaptic input.

D. Spectral measures

We define the correlation function Kab��� between two
stochastic processes a�t� and b�t� by

Kab��� = 	a�t�b�t + ��
 − 	a�t�
	b�t�
 . �10�

Kab does not depend on the absolute time t, because we
assume stationarity �i.e., we ignore any kind of transient�.

The spectrum Sab�f� is the Fourier transformation of the
correlation function Kab���,

Sab�f� = �
−�

�

e2�if�Kab���d� . �11�

If a=b, then Kab��� is the autocorrelation and Sab�f� is the
power spectrum of a�t�. If a�b, then Kab��� is the cross-
correlation and Sab�f� is the cross-spectrum of a�t� and b�t�.

Another way to calculate the spectra is given by �20�

��f − f��Sab�f� = 	ã�f�b̃��f��
 , �12�

where b̃� denote the complex conjugate of b̃, and ã denote
the Fourier transform of a,

ã�f� = �
−�

�

e−2�ifta�t�dt . �13�

Correlations between two signals a and b can be quanti-
fied by the coherence function given by

Cab�f� =

Sab�f�
2

Saa�f�Sbb�f�
. �14�

This function attains values between zero and one and mea-
sures the normalized linear correlation in the frequency do-
main.

E. Relation to the conductance and membrane potential

In this paper, we are mainly interested in the coherence
CRX�f� between rate modulation R�t� and the total postsyn-
aptic input X�t� and in the cross- and power spectra SRX�f�
and SXX�f�. However, we briefly want to point out relations
to statistics which is more easily accessible in experiments
than the postsynaptic input X, as for example the total mem-
brane conductance G of the target neuron or its membrane
voltage V. In voltage-clamp experiments, G�t� is propor-
tional to the excitatory postsynaptic current �EPSC�.

According to a common model for conductance-based
synapses �21�, the conductance G is the low-pass filtered
postsynaptic input X. Hence, the cross- and power spectra
SRG�f� and SGG�f� are low-pass filtered versions of SRX�f�
and SXX�f�. We conclude that CRG�f� equals CRX�f�.

One may use a conductance-based leaky integrator model
in order to characterize the subthreshold membrane voltage
V. For a low variance of the conductance G, which is a
realistic assumption for many neuronal systems, one can ap-
proximate the conductance-based leaky integrator by a
current-based neuron model via the effective time constant
approximation �22,23� �for critical evaluations of this ap-
proximation and for improved approximation schemes, see
�24,25��. With these assumptions, the cross- and power spec-
tra SRV�f� and SVV�f� are twice low-pass filtered versions of
SRX�f� and SXX�f�; and furthermore, the coherence CRV�f� is
well approximated by CRX�f�. However, as soon as a spiking
mechanism for the target neuron is taken into account, non-
trivial consequences arise �13�.

III. THEORY

The main interest of this paper is the study of effects of
STP on the information transmission across the synapse. To
this end, we aim at the calculation of the coherence function
between the external stimulus R and the total postsynaptic
input X to the target neuron.

In Appendix A, we find

1

CRX�f�
=

1

N
�

1

CRx�f�
+

N − 1

N
�

1

CR	x
�f�

+
1

N
�

1

CRx�f�
�

S���f�
NSxx�f�

. �15�

This is one of the central formulas used in this work, because
it illustrates the influence of the number of synapses N, the
single synapse coherence CRx�f�, and noise S���f� on the
coherence CRX�f�. The coherence CR	x
�f� between R and
	x
x0
R turns out to be approximately one �see Appendix A 2�.
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FIG. 4. �Color online� Illustration of the full FD dynamics as
described by Eq. �3� with A�t�=F�t� ·D�t� and Eqs. �6�–�8�. Upper
panel: presynaptic spike train x0�t�. Middle panel: facilitation dy-
namics F�t�, depression dynamics D�t�, and synaptic amplitude
A�t�. Lower panel: postsynaptic input x�t�. Parameters: F0=0.1, �
=0.3, �F=500 ms, and �D=2000 ms; spike times as in Fig. 2.
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Note that additional noise enters Eq. �15� only via its power
spectrum S��.

In the following sections, we first present our results for a
single synapse �see Sec. IV� and then discuss the general
case including multiple synapses and additional noise �see
Sec. V�. In this section, we start with some general consid-
erations about CRx�f� and CRX�f�.

A. Information rate and coherence function

In this section, we treat the single-synapse situation �i.e.,
N=1� from a more formal point of view. We consider the
mean information rate Rinfo �i.e., the mutual information that
is transmitted per unit of time� over a single synapse in the
absence of external noise �. First of all, we ask for
Rinfo�R ,x0� between R�t� and the presynaptic spike train
x0�t�. For a rate-modulated Poisson process, this information
rate reads to the lowest significant order in � �using Eq. �18�
from �26�; compare also �27��

Rinfo�R,x0� �
1

2
�

−�

�

log2�1 + �2rSRR�f��df �
�2r

2 ln 2
.

�16�

Note that without STP, the postsynaptic response x equals the
presynaptic spike train x0. Hence, Rinfo�R ,x0� is also the
mean information rate between R�t� and the postsynaptic re-
sponse in a situation without STP.

In this paper, we are interested in the effect of STP on the
information transmission of a synapse. In a strict sense, STP
as modeled in Eqs. �3�–�8� and in the absence of external
noise does not change the mean information rate:

Rinfo�R,x� = Rinfo�R,x0� for � � 0. �17�

This can be seen as follows. On the one hand, the informa-
tion carried by the postsynaptic input x�t� cannot be more
than that carried by the presynaptic spike train x0�t�, because
x�t� depends exclusively on x0 �according to Eqs. �3�–�8��.
Put differently, x cannot contain additional information on
the rate modulation R�t� which is not yet present in x0�t�. On
the other hand, x contains not less information than x0, be-
cause one can reconstruct x0 from x by simply extracting
only the spike times from x and ignoring the amplitudes �this
could be realized, for instance, by a spike detector with ar-
bitrarily small threshold�. Therefore, whatever information is
carried by x0, it must also be carried by x. Hence, in the
absence of additional noise and for the deterministic STP
model treated here, synaptic plasticity does not change the
basic information content of a single spike train, although the
amplitudes of the spikes are modulated.

However, the dynamics of the neuron that is driven by the
postsynaptic input x may profit or suffer from this amplitude
modulation. One might also regard a dynamic synapse as
preprocessing instance for the neuron in the sense that it
prepares the spike train for neuronal processing. In this work,
we want to consider a case, where the neuron’s dynamics
depend mainly linearly on the synaptic input it receives.
Therefore, we are interested in the linear information trans-
mission properties of a dynamic synapse. A quantity that is

well suited to describe this linear information transmission is
the coherence function C�f� as defined in Eq. �14�. It quan-
tifies, how well a transmission can be expressed by a linear
filter—and in addition, for Gaussian signals R, it gives a
lower bound on the mean information rate Rinfo�R ,x�
�28–31�,

Rinfo�R,x� � Rinfo,LB�R,x� = − �
0

�

log2�1 − CRx�f��df .

�18�

Note that x does not need to be Gaussian for the lower bound
condition in Eq. �18� to hold; according to �30�, it suffices
that the stimulus R is Gaussian—as we assume in this work.

First, we want to consider the coherence function CRx0
�f�

between R and the presynaptic spike train x0. Following
�30,32�, we can write to the lowest significant order in �:

CRx0
�f� � �2rSRR�f� . �19�

Putting this into Eq. �18� and comparing to Eq. �16�, one sees

Rinfo,LB�R,x0� �
1

2
�

−�

�

log2�1 + �2rSRR�f��df � Rinfo�R,x0� .

�20�

Hence, for a Poissonian spike train with constant amplitude,
the lower bound coincides with the information rate itself.
Using Eq. �18�, we can conclude that—to the lowest signifi-
cant order in �—the integral of the single-synapse coherence
CRx�f� cannot become greater than the integral of the coher-
ence of the presynaptic spike train CRx0

�f�:

�
0

�

CRx�f�df � �
0

�

CRx0
�f�df . �21�

Indeed, we observe that even CRx�f��CRx0
�f� for all f 
0

�see below�.
In this work, we want to examine the coherence function

CRx�f� between R�t� and the postsynaptic input x�t� in depen-
dence on frequency. We use CRx�f� in order to judge, whether
dynamic synapses can be considered as preprocessing units
for those neurons which evaluate mainly the linear informa-
tion content of their postsynaptic input. If, for example, at a
certain frequency f1, CRx�f1� is considerably less than
CRx0

�f1� while at another frequency f2, CRx�f2� is close to
CRx0

�f2�, frequency-dependent information filtering would
come into play.

We emphasize, that Eq. �17� holds true for a single syn-
apse neglecting stochasticity of transmitter release. For the
total synaptic input, the coherence and the mutual informa-
tion is expected to be reduced, for instance, by an external
noise ��t�. The extent of this reduction is addressed in Sec.
V B.

B. Main idea for the calculation of CRx

We present a way to calculate the coherence function
CRx�f� according to Eq. �14�. In order to do this, we show
how to derive the power spectrum Sxx�f� as well as the cross-
spectrum SRx�f�.

SYNAPTIC FILTERING OF RATE-CODED INFORMATION PHYSICAL REVIEW E 81, 041921 �2010�

041921-5



Using Eqs. �10� and �11� and stationarity, we can calculate
Sxx�f� for f �0 by the Fourier transformation of

	x�t�x�t + ��
 = 		x�t�x�t + ��
x0
R
�22�

and SRx�f� for f �0 by the Fourier transformation of

	R�t�x�t + ��
 = 	R�t�	x�t + ��
x0
R
, �23�

where 	 · 
x0
indicates averaging over the x0 ensemble for fro-

zen R and 	 · 
R indicates averaging over the R ensemble.
The main difficulty of the derivation is the calculation of

the averages

	x�t�x�t + ��
x0
and 	x�t + ��
x0

�24�

to the lowest significant order in �. Once expressions for
these averages have been found, the subsequent averaging
over the R ensemble and the Fourier transformation are el-
ementary.

For the calculation of the averages in Eq. �24�, we adopt
the following strategy: First, we attempt to express x explic-
itly in terms of the unmodulated spike train x0. Second, we
calculate these averages, now only involving x0. In the fol-
lowing, we describe both steps in more detail.

Concerning the first step, we can write the averages in Eq.
�24� in terms of F, D, and x0, because, x�t�=F�t−�D�t−�x0�t�
�cf. Eqs. �3� and �4��. What remains is the derivation of ex-
plicit formulas expressing F and D in terms of x0�t�. Unfor-
tunately, because of the static nonlinearity in F�FC� in the
facilitation dynamics and because of the term F�D in the
depression dynamics, this appears to be disproportionally
complicated. For this reason, we linearize the F and D dy-
namics as outlined below.

For the facilitation dynamics, we linearize the dependency
F�FC� as discussed in Appendix C. In our linear approxima-
tion, F is a constant plus a convolution of x0:

F�t� � Flin�t� = F0,lin + �lin�
−�

t

e−�t−t��/�Fx0�t��dt�, �25�

where F0,lin and �lin are constants that depend on the model
parameters and r. For linear facilitation models as used for
example in �13�, F0,lin and �lin correspond to F0 and �, re-
spectively.

For the depression dynamics, we also use a linearized
equation in which, however, the input enters in a multiplica-
tive fashion �cf. Appendix D�. The solution is for this reason
more complicated and reads

D�t� � Dlin�t� = �
−�

t

e−�t−t��/�De�t�+,t�� 1

�D
− x0�t��

��	Dlin
Flin�t�−� + 	FlinDlin
 − 2	Flin
	Dlin
��dt�,

�26�

where we define the term e�ta , tb� as follows:

e�ta,tb� = exp�ln�1 − F1��
ta

tb

x0�t��dt��, ta � tb. �27�

The constants F1= 	Flin
, 	Dlin
, and 	FlinDlin
 depend merely
on model parameters and r �cf. Appendix D�.

Regarding the explicit dependencies of F and D on x0, we
find, that the averages in Eq. �24� take the form of sums of
multiple convolution integrals over averages of the kind

	x0�t1�x0�t2� ¯ e�tj,tj+1�e�tj+2,tj+3�¯
x0
, �28�

where the time instants t1 , t2 , . . . , tj , tj+1 , . . . may in general be
completely arbitrary �including, that any two of these time
variables may be identical�, except for:

tj � tj+1, tj+2 � tj+3, . . . .

For the sake of illustration of how the averages Eq. �28�
appear in the calculation of spectral measures, let us consider
the simple case of pure depression �F�t��F0�. For the cross-
spectrum SRx�f�, we obtain

SRx�f� = F0�
−�

�

e2�if�	R�t�	Dlin�t + �−�x0�t + ��
x0
R
d� .

�29�

Inserting the explicit solution for Dlin�t�, we find for the av-
erage 	Dlin�t−�x0�t�
x0

�using that for pure depression Flin

=F0�

	Dlin�t−�x0�t�
x0

=
1

�D
�

−�

t−

e−�t−t��/�D	x0�t�e�t�+,t−�
x0
dt�

− �	Dlin
F0 + 	FlinDlin
 − 2	Flin
	Dlin
�

��
−�

t−

e−�t−t��/�D	x0�t��x0�t�e�t�+,t−�
x0
dt�

=
1

�D
�

−�

t−

e−�t−t��/�D	x0�t�e�t�+,t−�
x0
dt�. �30�

This way, we express the average 	Dlin�t−�x0�t�
x0
in terms of

	x0�t�e�t�+ , t−�
x0
, which is of the kind described by Eq. �28�.

For the more involved case of full FD dynamics, the deri-
vation of the power spectrum requires the calculation of av-
erages as in Eq. �28� with up to eight x0 factors.

Given, that we can reduce the spectral measures to aver-
ages like in Eq. �28�, we now have to clarify how to actually
calculate these averages. Our method of solution for this
problem �outlined in Appendix B� is to express averages like
in Eq. �28� in terms of averages of products of another inho-
mogeneous Poissonian � spike train x̂0

	x̂0�t1�x̂0�t2�¯
x̂0
, �31�

where the firing rate of x̂0 is

�̂�t� = ��t��1 − F1�k.

These terms can be calculated following Stratonovich �20�.
For the special cases of either pure facilitation or pure de-
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pression, the required averages can be calculated by hand. In
the general case of both facilitation and depression present,
we used a Python script to compute the formulas for the
averages.

Note that the average of any product of F, D, and x0 can
be derived in that way—for instance, the average synaptic
amplitude

	A
 � 		Flin�t�Dlin�t�
x0
R
.

Remarkably, the resulting expression for 	A
 turns out to be
the same as that derived in �13�, although different approxi-
mations have been made.

C. Contributions to CRX

It is convenient to introduce the following dimensionless
single synapse spectra �approximating the spectra to the low-
est significant order in ��

ŝxx�f� �
Sxx�f�

r
, ŝRx�f� �

SRx�f�
�rSRR�f�

. �32�

Without short-term plasticity, they become exactly one for all
frequencies: ŝx0x0

�f�= ŝRx0
�f�=1 �this can be derived as ex-

plained in Sec. III B or as previously described in �30,32��.
Short-term plasticity turns them into frequency-dependent
functions.

We express Eq. �15� by means of these dimensionless
spectra. Using CR	x
�f��1 �see Appendix A 2�, we obtain to
the most significant order in �

1

CRX�f�
�

1

N
�

1

�2rSRR�f�
�

ŝxx�f�

ŝRx�f�
2

+
N − 1

N

+
1

N
�

1

�2rSRR�f�
�

S���f�
Nr
ŝRx�f�
2

. �33�

A number of interesting results are apparent in this equation.
First, a small � leads to a large first and third term in Eq.
�33�. Hence, a weak influence of the external stimulus on the
rate modulation diminishes linear information transmission.
Similarly, a low firing rate r combined with a low power
spectrum of the external stimulus SRR decreases the linear
information transmission. Finally, a large number of input
neurons N improves linear information transmission, in par-
ticular when N�2rSRR�1. Moreover, one can always bring
the coherence arbitrarily close to 1 by increasing N suffi-
ciently. In the following two sections, we investigate the ef-
fect of each of the three terms in Eqs. �15� and �33�.

IV. RESULTS FOR A SINGLE SYNAPSE

Without noise ���t��0� and for N=1, only the first term
in Eq. �15� remains. In this section, we present our results for
CRx�f� and spectra Sxx�f� and SRx�f�. We calculate everything
to the lowest significant order in � �results that have been
approximated in such a way are marked by “�”�. Simula-
tions show that for ��0.2, this is sufficient to characterize
the spectra �see Figs. 5, 7–10, and 13–16�. This can be jus-
tified by the fact that all terms in Sxx and in 
SRx
2 vanish that

are odd with respect to �. This is a direct consequence of the
two facts that on the one hand, � accompanies R as factor;
and on the other hand, the distribution of R is symmetric
under sign reversal. In addition, we always assume f �0
�i.e., we will ignore the DC components of the spectra�.

For convenience, we will use the dimensionless versions
ŝxx�f� and ŝRx�f� of the spectra as defined in Eq. �32�. The
coherence without noise is then given by Eq. �33� with N
=1 and S��=0,

CRx�f� � �2rSRR�f�

ŝRx�f�
2

ŝxx�f�
. �34�

Note that for a static synapse,

CRx�f� = CRx0
�f� � �2rSRR�f� , �35�

because in that case, ŝx0x0
�f�= ŝRx0

�f�=1 �see above�. We dis-
cuss the special cases of pure facilitation and pure depres-
sion, before we make some remarks about the general case.

A. Pure facilitation

For the pure facilitation case, we use

Ai�t� = Flin,i�t� �36�

instead of Eq. �4�. In other words, we ignore the depression
variable �D�t��1� and use the linearized F-dynamics from
Appendix C. The facilitation-only dynamics is exemplified in
Fig. 2. The results are discussed in the following and illus-
trated in Figs. 5–7.

For the cross-spectrum and its absolute square, we obtain
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FIG. 5. �Color online� 
ŝRx�f�
2, ŝxx�f�, and CRx�f� for the case of
facilitation only. The parameter values are F0=0.1, �=0.3, r
=10 Hz, �F=80 ms, and �=0.2. Circles show the results of a simu-
lation without any approximations made �error bars within symbol
size�; while the solid lines illustrate the theoretical predictions ex-
pressed in Eqs. �38�, �41�, and �34�, respectively. The spectra show
pronounced low-pass behavior while the coherence function is
rather flat. The dotted coherence curve shows the coherence for the
case without any synaptic plasticity �i.e., F�t�=D�t�=1�.
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ŝRx�f� � F1 +
�linr�F

1 – 2�if�F
, �37�

and


ŝRx�f�
2 �
1

1 + �2�f�F�2��F1 + �linr�F�2 + �2�f�F�2F1
2� ,

�38�

where

F1 = F0,lin + �linr�F. �39�

The absolute square of the cross-spectrum 
ŝRx�f�
2 can be
understood as the sum of a constant plus a Lorentzian low-
pass spectrum, i.e., pure facilitation has a low-pass effect.
The low- and high-frequency limits of the squared cross-
spectrum are given by


ŝRx�f�
2 � ��F0,lin + 2�linr�F�2 for f → 0 and

�F0,lin + �linr�F�2 for f → � .
� �40�

Hence, the low-pass behavior is most pronounced for a high
ratio �linr�F /F0,lin �i.e., for high rates and for high �lin com-
pared to F0,lin�. The ratio between the two limits is shown in
Fig. 6�A� as a function of r�F and �lin /F0,lin and illustrates
the parameter region of low-pass behavior of the cross spec-
trum. In terms of the original parameters � and r�F �compare
Fig. 6�B��, we see a similar effect: For high input rate and a
large increment �, the low-pass behavior is most pro-
nounced. An exception to this is observed in the limit of very
large � and r�F, which is due to the saturation effect in the
nonlinearity F�FC� in Eq. �7�: for a very high-input rate and
high �, the effective increment �lin decreases with growing
� and, thus, leads to a weaker facilitation effect and a less
pronounced low-pass behavior of the cross spectrum.

Remarkably, the expression for the power spectrum is
similar to that of the absolute square of the cross-spectrum.
To the lowest significant order in �, ŝxx�f� equals 
ŝRx�f�
2 up
to a shift of 1

2�lin
2 r�F:

ŝxx�f� � 
ŝRx�f�
2 +
1

2
�lin

2 r�F. �41�

Both cross- and power spectra predicted by these formulas
show good agreement with the results of numerical simula-
tions �see, for example, Figs. 5 and 7, �A� and �B�, respec-
tively�. There is a slight deviation in the power spectrum,
which is overestimated by Eq. �41�. We have verified that
this deviation is due to the linearization approximation for
the F dynamics outlined in Appendix C.

The coherence CRx�f� as calculated from cross- and power
spectra reads

CRx�f� � �2rSRR�f��1 +
�1 + �2�f�F�2��lin

2 r�F/2
�F1 + �linr�F�2 + �2�f�F�2F1

2�−1

= CRx0
�f��1 +

�1 + �2�f�F�2��lin
2 r�F/2

�F1 + �linr�F�2 + �2�f�F�2F1
2�−1

.

�42�

The latter relation reflects the fact that the coherence of dy-
namic synapse CRx�f� is always smaller than that of the static
synapse CRx0

�f�, because the inverted square bracket is al-
ways smaller than one.
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FIG. 6. �Color online� Theoretical results for 
SRx�0�
2 / 
SRx���
2
and for CRx�0� /CRx���. �A� 
SRx�0�
2 / 
SRx���
2 depending on r�F

and the facilitation intensity expressed by the parameters for linear
facilitation dynamics �lin /F0,lin. �B� 
SRx�0�
2 / 
SRx���
2 for F0

=0.04, depending on r�F and �. �C� CRx�0� /CRx��� depending on
r�F and �lin /F0,lin. �D� CRx�0� /CRx��� for F0=0.04, depending on
r�F and �. The � axes in �B� and �D� are scaled such that � /F0

ranges from 0.1 to 10 like �lin /F0,lin in �A� and �C�.
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FIG. 7. �Color online� 
ŝRx�f�
2, ŝxx�f�, and CRx�f� for the case of
facilitation only. The parameter values are F0=0.01, �=0.3, r
=1 Hz, �F=80 ms, and �=0.2. Circles show the results of a simu-
lation without any approximations made �error bars within symbol
size�; while the solid lines illustrate the theoretical predictions ex-
pressed in Eqs. �38�, �41�, and �34�, respectively. The spectra and
the coherence function show pronounced low-pass behavior. The
dotted coherence curve shows the coherence for the case without
any synaptic plasticity �i.e., F�t�=D�t�=1�.
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In order to find conditions for broadband coding, we in-
spect the ratio between low and high-frequency limits of the
coherence. This ratio is given by

CRx�0�
CRx���

=
2 + r�F/�F0,lin/�lin + r�F�2

2 + r�F/�F0,lin/�lin + 2r�F�2 . �43�

Note that this ratio only depends on two dimensionless pa-
rameters: �lin /F0,lin and r�F. The first characterizes the
strength of facilitation approaching zero in the absence of
facilitation �i.e., for �lin=0�. The second parameter, r�F, is
the ratio of two time scales: the decay time constant of fa-
cilitation and the mean interspike interval of the input spike
train. The coherence is broadband if one or both of the fol-
lowing conditions are met:

1

2
r�F 
 �F0,lin/�lin + r�F�2 and r�F 
 F0,lin/�lin.

�44�

Closer inspection of these inequalities reveals that indeed for
most parameter values, the synapse performs broadband cod-
ing. The ratio in Eq. �43� shown in Fig. 6�C� as a function of
�lin /F0,lin and r�F is close to one unless for strong facilitation
and for intermediate values of the time scale ratio r�F, where
the coherence differs by a moderate factor of 1.5 between the
low and high-frequency limits. The effect is less pronounced
in terms of the original parameters � and r�F as depicted in
Fig. 6�D� for F0=0.04. An example for a low-pass coherence
is shown in Fig. 7, where the coherence suffers a consider-
able overall reduction compared to the case of a static syn-
apse �dotted line�. Note that in this case, the ratio between �
and F0 is extremely large—typical values are rather � /F0
�5 �2,8,12�.

B. Pure depression

For the pure depression case, we use

Ai�t� = F0Dlin,i�t� , �45�

instead of Eq. �4� �the facilitation variable is set to F�t�=F0�.
Note that the parameter F0 not only scales the amplitude in
Eq. �45�, but also the multiplicative decrease in the D vari-
able �compare Fig. 3 and Eq. �8��. The results calculated to
the lowest significant order in �, are illustrated in Fig. 8 and
discussed in the following.

We obtain for the cross-spectrum and its absolute square:

ŝRx�f� �
F0

�
�1 −

F0r�D/�
1 − 2�if�D/�� �46�

and


ŝRx�f�
2 �
F0

2

�4 �
1 + �2�f�D/��2�2

1 + �2�f�D/��2 , �47�

with

� = 1 + F0r�D. �48�

The absolute square of the cross-spectrum 
ŝRx�f�
2 can be
regarded as a constant minus a Lorentzian spectrum leading

to a high-pass effect of the transfer function for pure depres-
sion. The low- and high-frequency limits are given by


ŝRx�f�
2 ��F0
2/�4 for f → 0 and

F0
2/�2 for f → � .

� �49�

Hence, the high-pass behavior is most pronounced for large
F0r�D �i.e., for strong depression and high rates�.

The power spectrum ŝxx�f� shows �up to a constant factor�
exactly the same behavior,

ŝxx�f� � 
ŝRx�f�
2�1 −
F0

2r�D

2�
�−1

. �50�

This results in a coherence function, that is does not depend
on frequency at all

CRx�f� � �2rSRR�f��1 −
F0

2r�D

2�
� = CRx0

�f��1 −
F0

2r�D

2�
� .

�51�

The broadband coherence for pure depression is a nontrivial
result. As in the case of pure facilitation, one can also verify
for the case of pure depression that the coherence CRx�f� is
lower than that of a static synapse CRx0

�f�. The reduction
compared to the static case can be neglected

CRx�f� � CRx0
�f�,

F0
2r�D

2�

 1. �52�

Hence, a substantial reduction of the coherence is only ex-
pected for high F0 and moderate to large r�D.

C. General case

For the general case, we use the full coupled FD dynam-
ics according to Eq. �4�, which is illustrated in Fig. 4. For
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FIG. 8. �Color online� 
ŝRx�f�
2, ŝxx�f�, and CRx�f� for the case of
depression only. The parameter values are F0=0.4, r=10 Hz, �D

=300 ms, and �=0.2. Circles show the results of a simulation with-
out any approximations made �error bars within symbol size�; while
the solid lines illustrate the theoretical predictions expressed in Eqs.
�47�, �50�, and �34�. The spectra show pronounced high-pass behav-
ior while the coherence function is perfectly flat. The dotted coher-
ence curve shows the coherence for the case without any synaptic
plasticity �i.e., F�t�=D�t�=1�.
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both—facilitation and depression—present, our results for
power and cross-spectra become very involved.

To the lowest significant order in �, we obtain the follow-
ing general structure for the absolute square of the cross-
spectrum,


ŝRx�f�
2 � ŝc,� + �
k=1

4
ŝc,k

1 + �2�f�k�2 . �53�

Here, ŝc,� is a constant indicating the high-frequency limit of

ŝRx�f�
2. The constants ŝc,k �with k=1, . . . ,4� are factors for
Lorentzian terms while the �k are the corresponding time
constants. The expressions for these four time constants are
simple

�1 = �F,

�2 =
�D

1 + F1r�D
,

�3 = �F/2,

�4 =
�̃

1 + F1r�̃
, �54�

where F1=F0,lin+�linr�F and �̃= ��F
−1+�D

−1�−1. The expres-
sions for the constants ŝc,� and �ŝc,k� are too cumbersome to
be presented here.

The general expression of the power spectrum is of the
same kind as 
ŝRx�f�
2,

ŝxx�f� � ŝp,� + �
k=1

4
ŝp,k

1 + �2�f�k�2 . �55�

The time constants �k of the Lorentzians are the same as for

ŝRx�f�
2. However, the coefficients in Eq. �55� differ from
those in Eq. �53�, are rather lengthy �the complete formula
amounts to �100 kB of Python code�, and will not be stated
here explicitly.

As discussed previously �13�, one can find parameter
ranges where facilitation or depression will dominate and
where the spectral statistics are similar to the cases of pure
facilitation and depression discussed above. However, we
can also find parameter sets, where new spectral features are
observed, in particular if the time scales of facilitation and
depression differ significantly. Examples are displayed in
Figs. 9 and 10, they show a minimum or a maximum in the
power and cross-spectra, which are predicted by theory and
confirmed by simulations. Substantial deviations are seen in
Fig. 10�A�. Closer inspection reveals that these deviations
are mainly due to the Dlin approximation �cf. discussion in
Appendix D�.

In order to characterize the changes induced by STP over
a large part of the parameter space, we consider again the
ratio between low and high frequency limits of power and
cross-spectra �see Fig. 11�. We find that the low-pass prop-
erty of both, 
SRx�f�
2 and Sxx�f�, behave similar over the
whole domain shown. For moderate r�F and low r�D, we find
a strong low-pass behavior. In contrast to that, for high r�D,
we find a strong high-pass behavior. The results of the simu-

lations are in general in a good accordance with the theory—
except for the aforementioned deviation, due to the Dlin ap-
proximation, which comes into play for high r�D.

0.0

0.1

0.2

~|
cr

os
s

sp
ec

tr
um

|2

simulation
theory

0.0

0.1

~p
ow

er
sp

ec
tr

um

0.1 1 10
frequency [Hz]

0.000

0.002

0.004

co
he

re
nc

e

A

B

C

FIG. 9. �Color online� 
ŝRx�f�
2, ŝxx�f�, and CRx�f� for the general
case �facilitation and depression�. The parameter values are F0

=0.1, �=0.3, r=10 Hz, �F=300 ms, �D=100 ms, and �=0.2.
Circles show the results of a simulation without any approximations
made �error bars within symbol size�; while the solid lines illustrate
the theoretical predictions. The spectra show a pronounced mini-
mum while the coherence function is rather flat. There is only a
slight deviation of the spectra between theory and simulations for
low frequencies that cancel out for the coherence. The dotted co-
herence curve shows the coherence for the case without any synap-
tic plasticity �i.e., F�t�=D�t�=1�.
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FIG. 10. �Color online� 
ŝRx�f�
2, ŝxx�f�, and CRx�f� for the gen-
eral case �facilitation and depression�. The parameter values are
F0=0.1, �=0.3, r=10 Hz, �F=100 ms, �D=500 ms, and �=0.2.
The circles show the results of a simulation without any approxi-
mations made �error bars within symbol size�; while the solid lines
illustrate the theoretical predictions. The spectra show a pronounced
maximum, while the simulated coherence is flat again. For the
power spectrum, theory and simulation are in good accordance.
However, the cross-spectrum shows a deviations for low frequen-
cies, which leads to deviations in the coherence function. However,
the coherence function as determined from simulations is rather flat.
The dotted coherence curve shows the coherence for the case with-
out any synaptic plasticity �i.e., F�t�=D�t�=1�.
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Turning to the coherence function, the theory predicts for
a large part of the physiological parameter space broadband
coding, i.e., the coherence between low and high frequencies
deviate not more than 10% �see Fig. 12�. For low r�D, facili-
tation seems to dominate and consequently, we find a mild
low-pass behavior which is also confirmed by simulations
�compare the numbers in Fig. 12�. At large r�D and moderate
r�F, the theory predicts a strong high-pass behavior of the
coherence, which is not confirmed by simulations. An ex-
ample for such a parameter set is shown in Fig. 10�C�, which
illustrates how the deviations in cross- and power spectra
between theory and simulations lead to a strong error in their
ratio, i.e., in the coherence function. We find from simula-
tions, that in this region of parameter space, the coherence is
rather flat. The above simulations and analytical calculations
were carried out for fixed F0=0.1 and �=0.3. We have ob-
served, that for smaller values of �, differences between
low- and high-frequency values are even smaller as well as
the general discrepancies between theory and simulations.
Put differently, the parameter set considered in Fig. 10 rep-
resents an extreme example.

In conclusion, while for parameter regimes of dominating
facilitation or depression, we find low-pass and high-pass
behavior, respectively, for the cross-spectrum, the coherence
function for a single synapse is largely independent of fre-
quency.

V. RESULTS FOR MANY SYNAPSES AND ADDITIONAL
NOISE

Let us state again Eq. �15�,

1

CRX�f�
=

1

N
�

1

CRx�f�
+

N − 1

N
�

1

CR	x
�f�

+
1

N
�

1

CRx�f�
�

S���f�
NSxx�f�

.

So far we have seen that the first term, which is essentially
determined by the coherence for a single synapse, is largely
independent of frequency. In this section, we want to exam-
ine the influence of the second and the third term in the
above equation, reflecting the effects of a multitude of syn-
apses and of an additional noise. In particular, we want to
know whether the broadband property of CRX�f� is main-
tained or even enhanced for many synapses and/or in the
presence of noise.

A. Many synapses without additional noise

In general, averaging over many independent spike trains
with common rate modulation improves the coherence with
this rate modulation and thus, the coherence increases with
N. Here we ask how the coherence increases with N and how
its frequency dependence is affected by N. To this end, we
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FIG. 11. �Color online� Theoretical results for �A� 
SRx�0�
2 / 
SRx���
2 and �B� Sxx�0� /Sxx���. The low-pass property is shown in depen-
dence of r�F and r�D for a large part of the physiological parameter space. The dots with the annotations show simulation results for the
ratios between the values at two different frequencies �simulation uncertainties on the left side: less than 3%; on the right side: less than
0.1%�, while the values in parentheses are the corresponding theoretical results. The values of the spectra have been calculated at the
frequencies 1.5 mHz and 25 Hz. They have been chosen so that according to Eqs. �53�–�55�, the spectra do not vary much outside of this
interval. The dots with the red �gray� annotations correspond to the simulations shown in Figs. 9 and 10. Here, the frequency values 15 mHz
and 27 Hz have been used. We simulated at constant r=1 Hz varying �F and �D. For theory and simulations, we used the parameter values
F0=0.1 and �=0.3.
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consider Eq. �15� without additional noise �S���f�=0�,

1

CRX�f�
=

1

N
�

1

CRx�f�
+

N − 1

N
�

1

CR	x
�f�
. �56�

We would like to recall that CR	x
�f��1 �see Eq. �A7� in Sec.
A 2�.

It is instructive to consider the two limiting cases of small
and large N. If N is small, we find that we can neglect the
second term in Eq. �56�,

CRX�f� � NCRx�f�, NCRx 
 1. �57�

Hence, for small N, the multiple synapse coherence grows
proportionally with the number of synapses. Therefore, any
low-pass or high-pass behavior in CRx�f� with respect to fre-
quency �i.e., deviations from broadband coding� is preserved
in this case.

In the opposite limit of large N, we obtain,

CRX�f� � 1 −
1

NCRx�f�
, NCRx � 1. �58�

Thus, the coherence approaches 1 by a N−1 correction term.
This describes the saturation in the limit of an infinite num-
ber of synapses in which a perfect noiseless signal transfer is
achieved. The very same saturation effect is responsible for a
suppression of a possible frequency dependence. In other
words, the relative difference between low- and high-

frequency limits of the coherence decreases for growing N.
This indicates an enhancement of the broadband property for
many synapses. In particular, the absolute and relative differ-
ences �C= 
C�f1�−C�f2�
 and �C /C�f1� decrease with N �for
arbitrary f1 and f2�:

�CRX �
�CRx

NCRx
2 �f1�

, NCRx � 1 �59�

and

�CRX

CRX�f1�
�

1

NCRx�f1� − 1
�

�CRx

CRx�f1�



�CRx

CRx�f1�
, NCRx � 1.

�60�

In order to further illustrate the N dependence of CRX�f�,
we consider a situation of N facilitating input synapses. The
model parameters are chosen as in Fig. 7, so that the single
synapse coherence CRx�f� exhibits a mild low-pass behavior.
Simulations and theory for different N are shown in Fig. 13.
With the parameters given, we have CRx�10−4. For N

1 /CRx�104, the coherence function CRX�f� is proportional
to N. In a logarithmic plot, this manifests itself in the fact
that the curves for N=1 to 1000 are shifted versions of each
other. However, if N�1 /CRx�104, the coherence function
CRX�f� approaches one and becomes more flat.

B. Many synapses and additional noise

Additional noise may arise from spike train input �not
modulated by the signal� stemming from other neurons.
These inputs will enter via synapses that we refer to as noise
synapses; equivalently, the rate-modulated spike trains enter
via the signal synapses. Noise synapses and signal synapses
may share the same STP character, i.e., both may be
facilitation- or depression-dominated. They may however
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FIG. 12. �Color online� Theoretical results for the low-pass
property of the coherence function CRx�f� expressed by the ratio of
the low- and the high-frequency limit: CRx�0� /CRx���. The low-
pass property is shown in dependence of r�F and r�D for a large part
of the physiological parameter space. The dots with the annotations
show simulation results for the ratios between the values at two
different frequencies �simulation uncertainties: less than 3%�, while
the values in parentheses are the corresponding theoretical results.
The dots with the red �gray� annotations correspond to the simula-
tions shown in Figs. 9 and 10. Theory and simulation parameters
are the same as in Fig. 11.
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FIG. 13. �Color online� Influence of the number N of synapses
on the coherence function CRX�f�. The synapses are purely facili-
tating with parameters as in Fig. 7. We assume zero noise �=0.
Simulations �circles� agree well with the theoretical curves �black
solid lines� corresponding to Eq. �56�. For N�103, the coherence
function is proportional to N preserving the low-pass property
�compare Eq. �57��. However, for N=104, we see that CRX�f� ap-
proaches 1 and starts to flatten out.
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also differ, e.g., signal synapses may be depressing while
noise synapses may be facilitating.

For the coherence, we can again distinguish between the
limiting cases of small N and large N. For small N, we ob-
tain,

CRX�f� � NCRx�f��1 +
S���f�
NSxx�f��−1

for NCRx�1 +
S��

NSxx
�−1


 1, �61�

while for large N, the coherence reads,

CRX�f� � 1 −
1

NCRx�f��1 +
S���f�
NSxx�f��

for NCRx�1 +
S��

NSxx
�−1

� 1. �62�

In both expressions, it becomes obvious that additional noise
always reduces the coherence between the total postsynaptic
input and the rate modulation. Furthermore, let us assume
that S�� results from Poissonian spike train input without rate
modulation, but with similar baseline rate r and via similar
FD dynamics for the involved synapses. Then, the additional
noise terms in Eqs. �61� and �62� do not introduce any addi-
tional frequency dependence of the coherence. In these cases,
the broadband coherence of synaptic filtering is maintained.

We may, however, also consider, that noise arrives via
static synapses or via dynamic synapses which are different
from the synapses that transmit the signal R�t�. In either case,
the ratio S���f� / �NSxx�f��, if equal or larger than one, intro-
duces a frequency dependence into the coherence function.
This is illustrated for static noise synapses in Fig. 14, which

lead in conjunction with facilitating signal synapses to a low-
pass coherence function. The reduction of coherence at high
frequencies results essentially from the frequency-
independent noise. Similarly, for static noise synapses and
depressing signal synapses, one observes a high-pass coher-
ence function �not shown�. The above filtering effects are
even more enhanced, if noise and signal synapses have op-
posite STP character. For instance, facilitating signal syn-
apses and depressing noise synapses lead to a strong low-
pass filtering of information as quantified by the coherence
function �see Fig. 15�. The opposite case is illustrated in Fig.
16: depressing signal synapses and facilitating noise syn-
apses will lead to a pronounced high-pass filtering of the
coherence.

We note that this filtering effect is largest for a single
signal synapse. As discussed in the previous section, also in
the presence of additional noise, the coherence increases but
also flattens out �with respect to frequency� by increasing the
number of signal synapses. To see a significant filter effect
on the coherence without reducing its magnitude too much,
the number of signal synapses should be intermediate, i.e., it
should be roughly about N��1+S�� / �NSxx�� /CRx.

VI. SUMMARY AND DISCUSSION

In this paper, we developed a method to calculate spectral
measures of spike trains transmitted by dynamic synapses
showing facilitation and depression. Mathematically, dy-
namic synapses assign a history-dependent amplitude to each
spike. Besides this amplitude modulation, we also considered
a weak modulation of the firing rate by a time-dependent
signal. We described, how to compute time-dependent aver-
ages of these postsynaptic responses. These measures can
then be used in order to obtain an expression for the coher-
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FIG. 14. �Color online� Influence of noise � on the coherence
function CRX�f�. We simulate N=10 facilitating input synapses with
F0=0.1, �=0.3, r=10 Hz, �F=80 ms, and �=0.2. The noise �
originates in 10 static synapses with amplitude ANoise=0.4 each of
which is driven by a Poissonian process with constant rate rNoise

=10 Hz. The resulting coherence is well predicted by Eq. �15�
�black line�. In this situation, a low-pass power spectrum of the
input synapses together with a flat power spectrum of the additional
noise leads to a low-pass coherence function.
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FIG. 15. �Color online� Influence of noise � on the coherence
function CRX�f�. We simulate N=10 facilitating input synapses with
parameters as in Fig. 14. The noise � originates in 100 depressing
synapses with F0,Noise=0.4 and �D,Noise=300 ms each of which is
driven by a Poissonian process with constant rate rNoise=10 Hz.
The resulting coherence is well predicted by Eq. �15�. Comparing to
Fig. 14, a high-pass noise power spectrum leads to an even stronger
low-pass behavior of the coherence function.
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ence function between the amplitude-modulated spike train
and the rate modulation. By means of the coherence func-
tion, we estimated the effect of STP on information transfer
through the synapse. Although we treated the rate modula-
tion in linear response theory, assuming a small relative am-
plitude �
1, the obtained expressions were also shown to be
valid for moderate amplitudes ��=0.2�.

We systematically examined spectral information mea-
sures and found that if the presynaptic population is modu-
lated with a time-dependent signal, STP does not filter the
information content about such a rate modulation �broadband
coding�. We thus confirmed the numerical results from �13�.

In examining this effect, we observed that for a single
synapse, the coherence function is flat for various parameter
sets chosen from the physiological parameter space. Further-
more, analytical arguments revealed that a growing number
of synapses does not only increase the information transmis-
sion, but also decreases any frequency-dependent informa-
tion filtering effect.

However, for an extended scheme with additional noise
�i.e., background synaptic activity�, we showed that substan-
tial information filtering becomes possible. This kind of fil-
tering is particularly pronounced if the short-term plasticity
character of signal and noise synapses differ �e.g., one is
facilitating and the other one is depressing or vice versa�.
The synaptic background input can switch the information
transfer from broadband coding to frequency-dependent fil-
tering.

Our results make predictions about spectral measures that
are accessible in experiments. For example, according to
Sec. II E, the coherence CRV of the subthreshold membrane
potential in the absence of postsynaptic spiking is to a good
approximation given by the coherence of the total synaptic
input CRX, which we studied in this paper. Broadband coding
for the subthreshold membrane voltage under Poissonian rate
modulation can be verified or falsified experimentally. Fur-
thermore, according to Sec. II E, power and cross-spectra

would be simple low-pass-filtered versions of the synaptic
input spectra which we discussed here. Fitting, for instance,
power spectra to experimental data obtained for Poissonian
stimulation may allow for an estimate of the parameters
characterizing STP. Note, that experiments in vitro are closer
to the single-synapse scenario, which we focused on in Sec.
IV. This is so, because upon stimulation, a number of presyn-
aptic input fibers receive one and the same spike train
�11,12�.

In our study, we made a number of simplifying assump-
tions. First of all, we considered Poisson statistics for the
presynaptic spike trains. If the firing statistics is not exactly
but close to Poissonian statistics, we do not expect any dras-
tic changes of the main conclusions of the present study. Our
results do not apply, however, to pacemakerlike or bursting
presynaptic inputs �for a study on the latter in the context of
STP, see �33��.

Second, we assumed statistical independence of the pre-
synaptic spike trains �apart from the common rate modula-
tion�. Weak correlations between input spike trains �as ob-
served in vitro �34�� will presumably diminish the beneficial
averaging across synapses. In this case, the effective number
Neff of statistically independent synapses is smaller than their
actual number. For a study on the interplay between input
cross-correlations and STP, see �35�.

A third limitation of our results is due to neglecting the
stochasticity of transmitter release. In a more detailed model,
the synaptic amplitude A would be drawn from a probability
distribution. We expect that the difference between stochastic
synaptic response and the deterministic response can quali-
tatively be treated as noise. Therefore, the coherence CRX
will be reduced when considering stochastic synapses. How-
ever, for many release sites with similar parameters contrib-
uting to transmission, this additional transmission noise is
weak.

The analytical methods developed in this paper can in
principle be used to treat a broad range of models, for in-
stance the model by Markram and Tsodyks �7�, models using
multiple facilitation �9� or multiple depression components
�5�. These may be interesting subjects of future investiga-
tions.

APPENDIX A: EXPRESSIONS FOR SPECIFIC
COHERENCE FUNCTIONS

In this section, we derive Eq. �15� for CRX and show that
CR	x
 equals one to leading order in �.

1. The coherence CRX

Using Eq. �12�, we write for the cross spectrum SR	x
�f�
between R and 	x�t�
x0

��f − f��SR	x
�f� = 	R̃�f�	x
˜

x0

� �f��
R
= 	R̃�f�x̃ ��f��
x0,R

= ��f − f��SRx�f� . �A1�

Hence,
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FIG. 16. �Color online� Influence of noise � on the coherence
function CRX�f�. We simulate N=100 depressing input synapses
with r=10 Hz, F0=0.4, and �D=300 ms. The noise � originates in
10 facilitating synapses with parameters as in Fig. 14; each of
which is driven by a Poissonian process with constant rate rNoise

=10 Hz.
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SR	x
�f� = SRx�f� , �A2�

i.e., the cross spectrum between stimulus R and response
equals the cross spectrum between stimulus R and average
response 	x
x0

.
Similarly, we put the definition of X �cf. Eq. �9�� into Eq.

�12� with a=b=X using statistical independence among the
x0,i and statistical independence between x0,i and �,

SXX�f� = N�N − 1�S	x
	x
�f� + NSxx�f� + S���f� . �A3�

Analogously, we find

SRX�f� = NSRx�f� . �A4�

The formulas �A3� and �A4� relate the many-synapses spec-
tra to the single-synapse versions.

We combine Eqs. �A2�–�A4� with the definition of the
coherence �cf. Eq. �14�� and obtain

1

CRX�f�
=

N − 1

N

1

CR	x
�f�
+

1

N

1

CRx�f�
+

1

N

1

CRx�f�
S���f�
NSxx�f�

.

�A5�

2. The coherence CRŠx‹

We want to evaluate the coherence CR	x
�f�. To this end,
we consider the dependence of the average modulated spike
train 	x�t�
x0

on the external stimulus R. As R enters this
dependency only via the rate modulation, it is always accom-
panied by the factor � �cf. Eq. �2��. To the lowest significant
order in �, we obtain a linear relationship in Fourier space:

	x
˜

x0
�f� � �R̃�f���f� , �A6�

where ��f� is the transfer function characterizing this linear
transformation. There is no absolute term, because for �=0,
stationarity has to be fulfilled.

Hence, to the lowest order in �, we obtain a deterministic
linear relation between R�t� and 	x�t�
x0

, for which the co-
herence is one

CR	x
�f� � 1, �A7�

for all frequencies f .

APPENDIX B: CALCULATION OF POISSONIAN
AVERAGES

We show how to calculate averages as in Eq. �28�,

	x0�t1�x0�t2� ¯ e�tj,tj+1�e�tj+2,tj+3�¯
 , �B1�

where the times t1 , t2 , . . . , tj , tj+1 , . . . are completely arbitrary
�including, that any two of these time variables may be iden-
tical�, except for �cf. Eq. �27��

tj � tj+1, tj+2 � tj+3, . . . �B2�

We define the term e�ta , tb� as

e�ta,tb� = exp�ln�1 − F1��
ta

tb

x0�t��dt�� . �B3�

We recall that the time-dependent rate of x0 is

��t� � r�1 + �R�t�� �B4�

In the simple cases where Eq. �B1� does not contain any
e�· , ·�-term, we use Eqs. �6.28� and �6.32� from �20� in order
to obtain the following scheme,

	x0�t1�
x0
= ��t1� ,

	x0�t1�x0�t2�
x0
= ��t1���t2� + ��t1 − t2���t1� ,

¯ = ¯ , �B5�

which directly yields an expression for Eq. �B1� in terms of
r, �, and R.

For the general case, where e�· , ·� terms may be present,
there are two principal steps required. First, we express Eq.
�B1� in the following subsection by a product of averages of
the kind

	x0�t1�x0�t2� ¯ ek�ts,te�
 , �B6�

where the instants t1 , t2 are of arbitrary order, but all of them
are between ts and te

ts � t1,t2, . . . � te �B7�

and the exponent k�0.
Second, in the subsequent subsection, we show how to

calculate the average in Eq. �B6�.

1. Reduction of Eq. (B1) to terms as in Eq. (B6)

For a case distinction between different orderings of the
times appearing in Eq. �B1�, we use the Heaviside-function.
For instance, for two different times, we can use the identity

1 = ��t1 − t2� + ��t2 − t1� for t1 � t2, �B8�

which, as a prefactor of the average Eq. �B1�, formalizes the
distinction between the cases t1
 t2 and t2
 t1 corresponding
to the two different terms on the right-hand side �rhs� in Eq.
�B8�. �The case t1= t2 may demand additional considerations
�36�, not presented here.� In general, the products of Heavi-
side functions cycle through all possibilities of ordering the
times. Formally, this can be written as follows:

1 = �
��Pn

�
i=1

n−1

��t��i� − t��i+1�� , �B9�

where Pn is the set of all permutations of the sequence of
integers from 1 to n. As an example, let us consider the
computation of 	e�tj , tj+1�e�tj+2 , tj+3�
,

	e�tj,tj+1�e�tj+2,tj+3�


= ��tj+2 − tj+1�	e�tj,tj+1�e�tj+2,tj+3�


+ ��tj − tj+3�	e�tj,tj+1�e�tj+2,tj+3�


+ ��tj − tj+2���tj+3 − tj+1�	e�tj,tj+1�e�tj+2,tj+3�


+ ��tj+2 − tj���tj+1 − tj+3�	e�tj,tj+1�e�tj+2,tj+3�


+ ��tj − tj+2���tj+3 − tj���tj+1 − tj+3�

�	e�tj,tj+1�e�tj+2,tj+3�
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+ ��tj+2 − tj���tj+1 − tj+2���tj+3 − tj+1�

�	e�tj,tj+1�e�tj+2,tj+3�
 , �B10�

where we have already used Eq. �B2� reducing the number of
terms on the rhs from 24 to six. For each term, the respective
prefactor determines uniquely the time ordering, which is
essential to calculate the average properly. For instance, for
the term on the first line, we can assume the order tj � tj+1
� tj+2� tj+3 and obtain for the average �omitting the Heavi-
side function�

	e�tj,tj+1�e�tj+2,tj+3�
 = 	e�tj,tj+1�
 � 	e�tj+2,tj+3�
 ,

�B11�

because the averages are taken in nonoverlapping intervals
and thus, the two e�· , ·� terms are statistically independent.
The last term in Eq. �B10� is only nonvanishing for tj � tj+2
� tj+1� tj+3, which yields for this specific case

	e�tj,tj+1�e�tj+2,tj+3�


= 	e�tj,tj+2�e2�tj+2,tj+1�e�tj+1,tj+3�


= 	e�tj,tj+2�
 � 	e2�tj+2,tj+1�
 � 	e�tj+1,tj+3�
 .

�B12�

This example illustrates, that powers of the e�· , ·� term arise
due to overlapping intervals. If there are additional x0�ti�
prefactors in the average in Eq. �B1�, then we have to do
more case distinctions for the respective time instances,
which can be carried out by means of Heaviside functions.
For example

	x0�t1�e�t2,t3�
 = ��t2 − t1� � 	x0�t1�
	e�t2,t3�


+ ��t3 − t1���t1 − t2� � 	x0�t1�e�t2,t3�


+ ��t1 − t3� � 	x0�t1�
	e�t2,t3�
 , �B13�

where we recall, that t2� t3 by virtue of Eq. �B3�.
The techniques presented here can be generalized in order

to split averages of the type of Eq. �B1� into products of the
type of Eq. �B6�. For the necessary case distinctions, one can
also use computer algebra software.

2. Calculation of terms as in Eq. (B6)

Here, we outline the proof for

	x0�t1�x0�t2� ¯ ek�ts,te�
 = Ck	x̂0�t1�x̂0�t2�¯
 , �B14�

where x̂0 is a Poissonian �-spike train with the rate �̂�t� de-
fined by

�̂�t� = ��t��1 − F1�k � r�1 + �R�t���1 − F1�k �B15�

and

Ck = exp�− r�1 − �1 − F1�k� � ��te − ts� + ��
ts

te

R�t��dt��� .

�B16�

The terms 	x̂0�t1�x̂0�t2�¯
 are moment functions of the Pois-
son process x̂0�t�. These can be calculated according to the
scheme �cf. �6.28� and �6.32� in �20��

	x̂0�t1�
x̂0
= �̂�t1� ,

	x̂0�t1�x̂0�t2�
x̂0
= �̂�t1��̂�t2� + ��t1 − t2��̂�t1� ,

¯ = ¯ , �B17�

using the time-dependent rate �̂ given by Eq. �B15�. Equa-
tion �B14� together with the scheme in Eq. �B17� allows for
the analytical calculation of the averages in Eq. �B6�.

In the following, we prove Eq. �B14�. The spike train
within the interval �ts , te� can be regarded as the limit case of
a temporally discretized function. More precisely, in terms of
the equally-sized intervals Ij of width �T= �te− ts� /Nd, the
spike counts nj =�Ij

x0�t��dt�, and the indicator functions � j

for the intervals Ij, we write,

x0�t� = lim
Nd→�

1

�T �
j=0

Nd−1

� j�t�nj . �B18�

For the averages of the spike count in the interval Ij, we
write � j = 	nj
. Using this, we transform the average Eq. �B6�
as follows:

	x0�t1�x0�t2� ¯ ek�ts,te�
x0
= lim

Nd→�
�� 1

�T
�
i1=0

Nd−1

�i1
�t1�ni1�� 1

�T
�
i2=0

Nd−1

�i2
�t2�ni2�¯ �

j=0

Nd−1

�1 − F1�njk�
x0

= lim
Nd→�

� 1

�T
�
i1=0

Nd−1

�i1
�t1�

1

�T
�
i2=0

Nd−1

�i2
�t2� ¯�ni1

ni2
¯ �

j=0

Nd−1

�1 − F1�njk�
x0

�
= lim

Nd→�
� 1

�T
�
i1=0

Nd−1

�i1
�t1�

1

�T
�
i2=0

Nd−1

�i2
�t2� ¯ �

j=0

Nd−1

	ni1

�i1jni2

�i2j
¯ �1 − F1�njk
x0� . �B19�

For the last step, we used, that the nj are statistically independent for different intervals Ij. The average appearing on the last
line can be rewritten as
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	nj
m�1 − F1�nj·k
x0

= �
s=0

�

P�nj = s�sm�1 − F1�s·k = �
s=0

� e−�j� j
s

s!
sm�1 − F1�s·k = �

s=0

� e−�j�� j�1 − F1�k�s

s!
sm

= e−�j·�1−�1 − F1�k��
s=0

� e−�j�1 − F1�k
�� j�1 − F1�k�s

s!
sm = e−�j�1−�1 − F1�k��

s=0

� e−�̂j�̂ j
s

s!
sm = e−�j�1−�1 − F1�k��

s=0

�

P�n̂j = s�sm

= e−�j�1−�1 − F1�k�	n̂j
m
x̂0

, �B20�

where x̂0 is the aforementioned Poissonian �-spike train with

the rate as defined in Eq. �B15� and n̂j and �̂ j = 	n̂j
 are the
corresponding spike count and its average, respectively. In-
serting Eq. �B20� into Eq. �B19� finally yields Eq. �B14�.

APPENDIX C: LINEARIZATION OF F DYNAMICS

We want to approximate the function F�FC� given in Eq.
�7� by a linear relationship,

Flin�FC� = F0,lin + mFC, �C1�

which obeys the linear facilitation dynamics,

dFlin�t�
dt

=
F0,lin − Flin�t�

�F
+ �linx0�t� , �C2�

where we used Eq. �6� and �lin=m�. The integration of this
linear equation yields Eq. �25�. If one demands, that the
mean square difference between the true and the approxi-
mated dynamics becomes minimal, i.e.,

f�m,F0,lin� = 	�F�FC� − Flin�FC��2
 → min, �C3�

one arrives �considering, for simplicity, a constant rate� at the
following expressions for the effective parameters of the lin-
ear dynamics:

�lin =
��1 − F0�2

�2 �1 −
2�

3�
+

�2�1 + 3r�F�
2�2 � , �C4�

F0,lin = F0 +
��r�F�2�1 − F0�

�2 +
�2r�F�1 − F0�2

6�3

��1 −
��1 + 9r�F�

�
� , �C5�

and

� = 1 − F0 + �r�F. �C6�

We sketch briefly how to derive these expressions. First, we
need the first four central moments of FC defined by

Qk = 	�FC − 	FC
�k
, 	FC
 = �r�F. �C7�

These can be obtained using the explicit solution of the lin-
ear FC dynamics �cf. Eq. �6��:

FC�t� = ��
−�

t

e−�t−t��/�Fx0�t��dt�, �C8�

and the Stratonovich scheme Eq. �B5� with constant rate
��t�=r. The central moments read

Q1 = 0, Q2 =
1

2
�2r�F,

Q3 =
1

3
�3r�F, Q4 =

1

4
�4r�F�3r�F + 1� .

The exact minimization of Eq. �C3� is not feasible. In-
stead, we use a Taylor expansion of F�FC� around the mean
value of FC,

F�FC� = �
k=0

� �kF

k!
fC

k , �C9�

where we define

fC = FC − 	FC
 and �kF =� dkF

dFC
k �

	FC

.

Insertion of Eq. �C9� into Eq. �C3� yields

f�m,F0,lin� =���0F − F0,lin − m	FC
 + ��1F − m�fC

+ �
k=2

� �kF

k!
fC

k�2� . �C10�

Standard calculus results in the following expressions for the
minimum:

mmin = �1F +
1

Q2
�
k=2

� �kF

k!
Qk+1, �C11�

and

F0,lin,min = �0F − �1F	FC
 + �
k=2

� �kF

k!
�Qk − 	FC


Qk+1

Q2
� .

�C12�

Using terms up to k=3 results in the expressions in Eqs. �C4�
and �C5�.
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APPENDIX D: APPROXIMATION OF D DYNAMICS

Assuming linear facilitation dynamics, we approximate
the depression dynamics given by Eq. �8� linearizing the
product Flin�t�D�t�. With the deviations �F=Flin− 	Flin
 and
�D=D− 	D
, we write

Flin�t�D�t� = 	Flin
	D
 + 	Flin
�D + 	D
�F + �F�D

� 	FlinD
 + 	Flin
�D + 	D
�F �D1�

where in the last line, we approximated �F�D�	�F�D
.
This leads to the following approximate Dlin dynamics with
Dlin�D:

dDlin�t�
dt

=
1 − Dlin�t�

�D
− �	Dlin
Flin�t−� + 	Flin
Dlin�t−�

+ 	FlinDlin
 − 2	Flin
	Dlin
�x0�t� . �D2�

The explicit solution of this differential equation is Eq. �26�.
We derive the averages 	Flin
, 	Dlin
, and 	FlinDlin
 for a

constant spiking rate ��t�=r as explained in Sec. III B:

	Flin
 = F0,lin + �linr�F, �D3�

	Dlin
 =
1 − r�D�	FlinDlin
 − 	Flin
	Dlin
�

1 + 	Flin
r�D
, �D4�

and

	FlinDlin
 = 	Flin
	Dlin
 −
�linr�̃

1 + 	Flin
r�̃
�	FlinDlin


+
1

2
	Dlin
�linr�F� , �D5�

where

�̃ = ��F
−1 + �D

−1�−1. �D6�

For 	Dlin
 and 	FlinDlin
, these are self-consistent equations.
The solutions are

	Dlin
 =
1 + r�̃�	Flin
 + �lin�

denom.
, �D7�

and

	FlinDlin
 =
	Flin
�1 + 	Flin
r�̃� − 1

2�lin
2 r�̃r�F

denom.
, �D8�

where the denominator of both expressions is given by

denom. = �1 + 	Flin
r�̃��1 + 	Flin
r�D� + �linr�̃

��1 −
1

2
�linr�Fr�D� . �D9�

In the main text, we use the abbreviation F1= 	Flin
.
Using the approximation described in this appendix, we

derived the single synapse spectra and the coherence func-
tion. In most situations, this leads to good agreements with
simulations of the original dynamics �cf. Figs. 9, 11, and 12�,
however, for large r�D and moderate r�F, we find substantial
deviations. For the example shown in Fig. 10, these devia-
tions are clearly due to the Dlin approximation as can be seen
in Fig. 17: simulations where only the facilitation dynamics
is approximated coincide fairly well with the original dy-
namics. However, as soon as the depression dynamics is ap-
proximated, substantial deviations are observed, in particular
in the coherence function for low frequencies.
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