PHYSICAL REVIEW E 81, 041808 (2010)

Sucking genes into pores: Insight into driven translocation
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Flexible polymers such as long DNA, RNA molecules, and proteins, can pass through a narrow pore whose
size is comparable to their molecular thickness. We highlight the richness and complexity involved in the
dynamics of this unique mode of molecular transport, called translocation, actively driven by external forces.
In particular, the process takes place in the condition far from equilibrium accompanying of large conforma-
tional distortion in line with the propagation of the tensile force along the chain backbone. A general frame-
work is proposed, which captures such essential features, whereby can account for reported various experi-

mental data from a unified viewpoint.
DOI: 10.1103/PhysRevE.81.041808
I. INTRODUCTION

In their pioneering work, Kasianowicz et al. demonstrated
detection of the passage of single polynucleotide molecules
driven by a voltage drop through a nanometer-size ion chan-
nel in a lipid bilayer membrane [1]. Since then, the translo-
cation of nucleic acids and other chainlike molecules has
been an active research area in the nanobiological sciences
[2-5]. Together with rapid progress in the design and fabri-
cation of nanoscale pores, this has opened up a promising
pathway for novel macromolecular characterization methods
[6]. It has also motivated theoretical studies in which people
are seeking to understand the underlying physics of this
unique mode of molecular transport [7—14]. Most theories
proposed to date have been formulated under the assumption
that the translocating polymer essentially remains in an equi-
librium shape. However, this naive assumption is question-
able in view of the high susceptibility and long relaxation
time of polymer molecules [10]. Here we argue that the
driven translocation is inherently an out-of-equilibrium pro-
cess. Following the formalism that explicitly features the
propagation of tensile force along the polymer backbone
[12], we aim to address various numerical and real experi-
ments from a unified viewpoint. The emergent physical pic-
ture may also provide valuable insight into other nonequilib-
rium phenomena in polymeric systems associated with
tension propagation; for example, the dynamics of adsorp-
tion [15,16], crystallization and folding [17], responses to
mechanical manipulations [18,19], and ultimately the func-
tioning of biopolymers as well as the design of polymer-
based nanoscale machines.

Often, the pore is comparable to the monomer in size so
that at each moment only one monomer resides at the pore,
and there is a driving force f (imposed by a voltage drop for
charged polymer or more generally a chemical potential dif-
ference across the wall) to achieve the active transport.
Given such a set up, a basic question is the following; what
is the typical time 7(N,,f) for transporting a flexible mol-
ecule with the polymerization index N, under the action of
the driving force f? Various regimes are expected depending
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on the magnitude of the driving force [12], as well as char-
acteristics of the pore. Here we shall focus on paradigmatic
situations where the pore functions solely as a geometrical
constraint, i.e., it has no specific interaction with polymers,
and the driving force f is of the order of kz7/a, where kpT is
the thermal energy and a is the monomer size.

Numerous numerical simulations have reported the scal-
ing 7~ Ny with an apparent scatter in the exponent «, which
may indicate the complexity and subtlety of the problem
[11,13-15,20-28]. Interesting theories have been put forward
based on either the fractional Fokker-Plank equation [13] or
the memory effect arising from monomer exchange across
the pore [14], but predictions resulting from either of these
approaches do not seem to agree with the latest systematic
simulations. An experiment of double-strand DNA transloca-
tion through a solid-state nanopore has also been carried out
[4,5], but its interpretation, and its relationship with the re-
sults of various simulation studies, seem unclear at present
[29].

The equilibrium shape assumption in previous studies is
based on the fact that the polymer is pulled at only one point
inside the pore. However, force applied in such a way can
propagate along the polymer backbone; thus it is able to
induce large scale shape distortion. In Ref. [12], several pre-
dictions were made by pointing out that such a nonequilib-
rium effect is indispensable for the description of the driven
translocation process, but any comparison with experiments
was not attempted at that time. In this paper, we generalize
the framework proposed in Ref. [12] and provide a unified
view by introducing dynamic as well as static (Flory) expo-
nents. This leads to the first-ever generic scaling formula for
7 fully consistent with the latest high-accuracy simulations
[22] and experiments [4,5]. The theory also resolves (i) a
factor entailing the finite-size effect, which may be a source
for apparent discrepancies among reported simulations, and
(ii) conditions under which different scaling formulas pro-
posed in literatures can be valid.

II. EQUILIBRIUM SHAPE ASSUMPTION

Let us first disregard the out-of-equilibrium effect and as-
sume that a polymer takes an equilibrium conformation in
the presence of a wall all the way along the translocation
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FIG. 1. (Color online) Equilibrium shape assumption for the
driven translocation process. The translocated part of the chain is
represented by the dotted curve.

(Fig. 1). This may be a reasonable approximation when the
driving force is sufficiently weak fasl\FO”<1. Hereinafter,

we adopt the notation f,= fx/(kzT) for the dimensionless
force, with the quantity x possessing the dimension of length.
The dynamics is regulated by the balance between the driv-
ing force f and the dissipative force ~yv. Under the equi-
librium shape assumption, the friction coefficient y can be
expressed as

y= YR = yN2, (1)

where R=aN" is the equilibrium size of a polymer of length
N, vp==ma is the monomeric friction coefficient with solvent
viscosity n, v is the Flory exponent and z is a so-called
dynamic exponent associated with the dissipation mecha-
nism [30]. Therefore, if we drag a polymer by pulling it at
one end with a constant force f, the steady-state relation
between the velocity v and the force can be expressed as

f, = ON&¥ = GR=2, (2)

Here the velocity and the chain size are also made dimen-

sionless; 0= Ttyw/a and R=R/a, respectively, where 7,
= na®/ (kgT) is the microscopic time scale. In our problem,
the number of “relevant” monomers changes with time as
N(t)=Ny-m(t), where m(t) is the number of monomers al-
ready transferred at time ¢ (Fig. 1).

Hence, the translocating velocity v and the friction coef-
ficient 7 are, respectively, given by v(r)/a=—-dN(¢)"/dt and
(1) yo=N(1)'=2". Equation (2) is then a differential equa-
tion with respect to N(z), the solution of which is

N(®) = No(1 = 7RV, )

where 7=t/ 7, is the dimensionless time. The translocation
time is found to be

Z (z=1)
6 _ N()Z 14

7= L=

fRO fa
Two cases deserve further elaboration. In the first case, we
assume that the friction is a local event, i.e., free draining.

Then, z=(14+2v)/v and Eq. (4) lead to ?:N(l)“’/fa. In the
second case, we allow for the collective effect of hydrody-

(4)
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namic interactions and adopt a nondraining approximation

[30]. Then, we have z=3, thus, F:Név/fa. We see that the
first is a paradigmatic formula initially proposed by Kantor
and Kardar, and often seen in the literature [11] and the
second corresponds to the result proposed by Storm et al. to
interpret their experiment of DNA translocation across a
solid-state nanopore [4,29]. We also note that these two for-
mulas with or without hydrodynamic interactions accord
with the recent results from a Monte Carlo algorithm [25].

Furthermore, the inspection of Eq. (3) indicates the faster
translocation velocity in later time (the nondraining case
with v=1/2 is marginal). This acceleration is a consequence
of the time dependent frictional force which decreases with
the process advanced under the constant driving force.

II1. OUT-OF-EQUILIBRIUM DYNAMICS
A. Qualitative picture

In reality, however, the translocating polymer no longer
retains an equilibrium conformation under the action of mod-

erate driving forces faz 1. To get a feeling for this, it is
instructive to recall a macroscopic thought experiment of
pulling a rope randomly dropped on a desk, described in Ref.
[15]. If one suddenly pulls the rope by one end from the desk
edge, it is obvious that the rope does not move all at once,
and instead, exhibits a sequential dynamical response. Re-
turning to the microscopic world of polymers, this dynamical
response is again governed by the balance between driving
and dissipative forces, but now with proper consideration of
the chain deformation dynamics associated with propagation
of the tensile force along the chain (Fig. 2).

At the beginning of the translocation, i.e., at time =0,

only part of the chain of size §pm=aj~‘;1, comprised of

8pore :]7;1/ ¥ monomers in the immediate vicinity of the pore,
is tensed and able to react to the driving force with speed
v(0)=f/y(0), while the remaining rear part is essentially un-
affected as yet. It should be noted that it is g, monomers
only that contribute to the friction coefficient ¥(0) at this
moment. The driving force which constantly pulls the poly-
mer at the pore necessitates the formation of a tensed blob of
size &,,,. in the immediate vicinity of the pore, down through
the translocation process. This is local regulation occurring
at fast time scales, thus, it is realized irrespective of the en-
tire chain conformation. At the next moment, as initially
&pore monomers have already been transported across the
pore, some monomer in the rear part has to be pulled and
reloaded to recreate the &, blob at the pore. Here again,
only parts of polymers adjacent to the initial §,,, blob can
respond, i.e., the tensile force is transmitted to the rear sec-
tion over a finite range by the moment. Along with such a
tension propagation process, the friction coefficient grows,
by which the conformation of the tensed part and its average
velocity are self-adjusted. In this way, the polymer sequen-
tially responds to the driving force by progressively trans-
forming its larger scale conformations. To proceed with the
quantitative argument, we need to know the conformational
property of the dragged chain which shall be briefly sketched
in Appendix.
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FIG. 2. (Color online) Schematics of the translocation process
driven by the action of a moderate force fa= 1. The front (repre-
sented by a dashed curve) separates the steady-state region under
tension (designated by the colored area) and the rear part as yet at
rest.

B. Quantitative formulation

At time ¢, the tension is transmitted as far as the M()-th
monomer (counting from the head). One can define an asso-
ciated front whose location is characterized by its distance
X(t) from the pore (Fig. 2). Inside the front, the polymer is
under tension and sucked into the pore at an average velocity
v(t)=f/~[X(r)], while outside the front, the polymer is es-
sentially at rest. To quantify the dynamical response, let us
relate the evolution of the front to the monomer flux across
1t;

dX(t dM(t
[pS]front{ # + U(t)} = %a (5)
where p and S are the monomer number density and the
cross sectional area of the conformation of the tensed part,
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respectively. Along with this continuity equation, we have to
identify the relations among the dynamical variables v(z),
X(1), M(t), and [pS] 0= g free! Efree (see Appendix). An ad-
ditional key relation emerges from the fact that the M(r)-th
monomer has not been affected by the driving force by this
time, so its average position X(¢) is given by the equilibrium
conformation at =0; thus, the following Flory relation holds

M(1)" = X(1). (6)

Combining Egs. (A2), (A3), and (6) with Eq. (5), one
arrives at the tension propagation law

fz)+2—z)2(t)w+2q)(fx(t)) — ;’ (7)

where we define w=(1-v)(z—2)/[v(z—1)] and the function
®O(x)=1-cx™®, with ¢ being a numerical coefficient of order
unity. This is the generalization of the result of Ref. [12] with
the dynamic exponent. By setting X(7)=R,=N}, in Eq. (7),
one finds the characteristic time

T = (Eo)z(fko)mz_z[l - C(fRO)_w]’ (8)

at which the tensile force reaches the chain end.
Remarks. (i) Under the condition of interest fR0>fﬂz 1,
Eq. (8) reduces to

»7:1 —~ fflu+2—zN(()w+2)V' (9)

In the limit of long chains, this corresponds to a translocation
time 7=7,. (ii) Contrary to the predictions of other theories
7~ f~! (linear response), Eq. (9) predicts a highly nonlinear
response behavior. This point has been addressed in a recent
simulation [24] and deserves further careful examinations.
(iii) Strictly speaking, the entire discussion applies to the

translocation process driven by a moderate force NEV<J7£,
< 1. For stronger forces, the results need to be modified to
encompass the crossover to the regime of very strong forc-
ing, in which the precise dynamics depends on the flexibility
mechanism. In the limit of the very strong forcing, we expect

?ZN(I)“’/.)?‘I, the same scaling structure as the translocation
time in the weak driving regime [Eq. (4) with the free drain-
ing] [12]. (iv) The result is consistent with crossover to the
unbiased limit 7= (R,) at fR0—> 1, in accordance with the
natural scaling hypothesis (see also the discussion in Sec. V).
(v) Because of the piling up of the translocated monomers
[dotted curve in Fig. 2], the transient monomer density at the
trans-side is slightly higher than that expected from the equi-
librium conformation [20,24]. The resultant imbalance in the
osmotic pressure acts as a retarding force, but does not alter
the scaling limit as it is much smaller than the driving force.
(vi) In contrast to Eq. (3) in the weak driving regime, the
inspection of Eq. (7) indicates the deceleration of the trans-
location process. Physically, this is a consequence of the ten-
sion propagation which results in the increasing number of
monomers set in motion, thus, higher friction.

IV. COMPARISON WITH EXPERIMENTS

Most simulation studies adopt a flexible polymer model in
a good solvent (¥=0.5876) with a free-draining dynamics
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[z=(1+2v)/v=3.70]. We then find the translocation expo-
nent a=1.43, which agrees remarkably with recent high-
accuracy numerical simulations using Langevin dynamics
with the bead-spring model for which a=1.41*+0.01 and
atomistic molecular dynamic simulations for which «
=1.42+0.01 [22]. We note, however, a slightly lower value
of a=1.36~1.37 is also reported in the literature [23,24].
The reason for such a discrepancy among simulation results
is not clear, but the effects associated with various crossovers
and/or finite chain length effect may play some role (see the
comment in Sec. V). Turning to the experiment in Refs.
[4,5], we set z=3 (hydrodynamic interactions) and »=0.5, as
the DNA chain is practically ideal for the length range inves-
tigated because of the stiffness of double-strand DNA
[29,30]. We then find a=1.25 which again is in very good
agreement with the experimental data for which «
=1.27+0.03. In addition, overall trends found in the multi-
scale modeling simulation focusing on the effect of hydrody-
namic interactions [26—28] are similar and consistent with
the prediction.

Simulations with a two-dimensional (2D) model reported
a crossover from a=1.5 for short chains (N,=<70) to «
=1.65 for long chains (Ny=300) [20-22]. Substituting v
=0.75 for 2D polymers and z=(1+2v)/v=3.33, our version
of the formula that is valid in the long chain limit predicts
a=1.64 which, as expected, corresponds well with the latter
value. To address a different exponent for shorter chains,
consider the moment =7, at which the tensile force has just
reached the chain end [Fig. 2 (iii)]. Ny—M(7;) monomers are
still on the cis-side and yet to be transported. These remain-
ing monomers are under the influence of the tension, hence
the process at 1> 7 is similar to that based on the equilib-
rium shape assumption. The only distinction lies in the fact
that the overall conformation of these monomers is in a
steady-state and not in an undistorted equilibrium state; con-
sequently the dynamic equation is given by Eq. (A2) instead
of Eq. (2). Then, the characteristic time for this second stage
is calculated to be ?2:1%'3@0)2-1 [36]. The total transloca-
tion time 7=7,+ 7, is then given by

Fe Clj}";u+2—sz)w+2)v+ Cz(fa)2—zN2v’ (10)

where the numerical coefficients c;, ¢, are undetermined and
may possibly depend on the model details. The first term

dominates under the condition faN(’; > (cz/cl)“’_l. This is
readily satisfied for long enough chains, but if ¢,>c¢; holds,
there appears a regime dominated by the second term in Eq.

(10) before the weak driving or unbiased regime f,Nj=<1 is
entered. This predicts a value of a=1.5 for short chains in
2D, again in perfect agreement with the reported data
[20,22]. It is noteworthy that the relevant exponent in 2D
(w™'=5.26) is much higher than that in three-dimensional
(3D) (w'=2.27), which takes account of the appreciable
crossover effect in 2D [11,20-22]. As both ¢, and ¢, are of
order unity, the value c,/c; would be, say, at most five or less
(it can be estimated from the analysis of numerical simula-
tions as the translocation dynamics changes qualitatively af-
ter =7, see the discussion in Sec. V). Then, the crossover
point Ny==100 found in 2D simulations seems to be reason-
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able. In 3D, recent simulations have detected no crossover
[22] in agreement with the present analysis.

V. DISCUSSION AND PERSPECTIVES

First of all, some comments on the generic description
presented are noted. The theory is based on the blob picture,
so it works for the situation under which the magnitude of

the tensile force is on the order of fa =1 or less. For stronger
driving force, the blob description is no longer valid, and the
precise dynamics then depend on the flexibility mechanics
(freely joined, or wormlike chain, etc.). The force range in
typical DNA experiments seems to be higher than the above
threshold force [31], thus, dynamics of the DNA transloca-
tion during the initial period should be different from what
predicted from the present theory. In fact, the fast time/short
length scale behaviors should be governed by the bonding
mode [18,19]. In later time [for example, imagine the situa-
tion between (i) and (iii) in Fig. 2], however, the tensile
force acting the chain becomes weaker along the chain, thus,
the blob picture becomes again feasible for the large scale
behaviors at later time. The translocation time is thus a sum
of the initial period (dictated by the bending mode) and the
later stage described by the present theory. Under the action
of the driving force which is not too strong, the asymptotic
scaling for the translocation time is controlled by the latter
contribution [12]. We believe that this is the primal reason
why the present theory is able to account for the asymptotic
scaling for the DNA experiments.

Simple and heuristic scaling types of arguments have
been shown to be very powerful in understanding the com-
plex physical properties of polymer systems. We have to
keep it in mind, however, that there are cases in which a
great care has to be taken to properly take the underlying
physics into account. A polymer confined in a small closed
cavity (a situation called the strong confinement regime in
Refs. [32,33]) would be one of such examples, in which a
length scale (mesh size) other the geometrical size of the
confinement emerges upon the confinement. In the present
problem, the main complexity originates from the out-of-
equilibrium, transient nature of the process. We described the
process as the progressive response of the chain along with
the tension propagation, and demonstrated very good agree-
ments with various measurements as long as the asymptotic
scaling of the translocation time is concerned. However, the
presence of various crossovers and/or finite-size effects [see
the remark (iii) after Eq. (8) and the discussion around Eq.
(10)] must not be forgotten. This generally complicates the
identification of the scaling exponent through the data analy-
sis.

The effect of the transient piling-up of monomers at the
trans-side [the remark (v) after Eq. (8)] should be incorpo-
rated in a more refined treatment. The idea in Ref. [14]
would be useful for it.

In relation with the remark (iv) after Eq. (8), we notice
that both translocation times born of the equilibrium shape
assumption [Eq. (4)] and of the analysis of the out-of-
equilibrium process [Eq. (9)] show the crossover to 7

= (Ry)* at fRO—> 1. Thus, from the scaling argument alone,
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one cannot draw the definite conclusion on the presence of
the regime described by the equilibrium shape assumption
(weak driving regime). However, a recent simulation in 3D
with the weak driving force has reported a=1+ v, which is
consistent with our prediction Eq. (4) under the equilibrium
shape assumption [24].

It is certainly interesting to go beyond the discussion of
the asymptotic scaling. This is a natural direction toward the
better understanding, and at the same time would find a prac-
tical importance given the rapid experimental progress, in
which the detailed characterization of the translocation pro-
cess is becoming feasible [31]. One of the appealing dynami-
cal features predicted is the deceleration of the process dur-
ing the driven translocation [remark (vi) after Eq. (8)]. As
already discussed in Sec. IV, however, the deceleration pro-
cess is to be ceased at r=7;, when the tension reaches at the
chain end. The following dynamical stage at t> 7; is quali-
tatively different, in which the process is accelerated [12]. A
physical reason for it is the same as that causes the accelera-
tion in the weak driving regime as this later stage is the
generalization of the weak driving regime discussed in Sec.
1L

Another interesting direction is to leave the set up with a
passive pore and take into account the complex (and specific)
interactions between the pore and the passing polymer [8].
Such a study would have intimate links with many of realis-
tic situations in biological sciences.

Aside from the translocation, there would be a barrel of
situation in which polymers show unique dynamic response
inherent in themselves. Clarifying underlying physics there
is certainly a boon, for which the present formalism would
play a vital role by furnishing lucid molecular pictures.
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FIG. 3. (Color online) Steady-state conformation of a chain
dragged by a constant force f with velocity v and longitudinal

length X. The length scale &(x) corresponds to the size of the lateral
chain excursion at the position x.

APPENDIX: STEADY-STATE OF A DRAGGED CHAIN

For a dragged chain, there is a length scale &(x) below
which the effect of pulling is insignificant (Fig. 3), and thus
one can expect that a near-equilibrium formula for the drag-
ging coefficient can be applied [Eq. (1) with N replaced by
g(x)=(&(x)/a)""] [34]. The overall deformed conformation
can be pictured as a sequence of blobs of size &(x) which are
hydrodynamically decoupled, hence the dragging force act-
ing at the position x is

[T &)

fdrug(x) = vf dx _ .
o &

Utilizing the Pincus blob prescription &(x)==kpT/f4q(x)

[35], the above consideration can be mathematically ex-

pressed as &(x) =[5%]"2). Now let us look at both chain

ends. One end is pulled by the force f, thus, its balance with

the total dragging force f=kzT/£&(X) leads to a steady-state
dynamical relation among the global variables f, v, and X:

(A1)

fa=[0X]"2), (A2)

The other end is free; thus, the largest blob of size &, there
experiences the dragging force acting on itself only. The Pin-

cus relation leads to g}}eez 175;;38, yielding

~ V=1,

gfree - (A3)
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