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Due to the migration of mobile molecules and ions, a thin diffusive layer of distributed charge—the electric
double layer—forms at the interface between a polyelectrolyte gel and a liquid ionic solution. When two
polyelectrolyte gels are brought closely together, the electric double layers overlap and interact with each other,
resulting in an effective repulsion. The multiphysics-coupling nature of soft gels makes their surface interac-
tions significantly different from the interactions between rigid solids. Using the recently formulated nonlinear
theory, this paper develops a continuum model to study the surface interactions between two like-charged
polyelectrolyte gels, accounting for the coupled electric, concentration, and deformation fields in both the gels
and the liquid. Numerical solutions of the surface interactions are obtained and compared to a qualitative
scaling law derived via linearization. The results suggest that the structure of double layers, as well as their
interactions, depends not only on the concentration of liquid solutions, but more on the bulk properties of the
gels such as stiffness and fixed-charge density. This model also provides insights to the mechanism of the
low-friction phenomena on the surface of a polyelectrolyte gel.
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I. INTRODUCTION

When a solid is brought into contact with an ionic solu-
tion, an electric double layer will form on the solid-liquid
interface due to charge separation. A widely accepted model
known as the Derjaguin-Landau-Verwey-Overbeek �DLVO�
theory �1,2� describes this phenomenon: surface charge ac-
cumulates on the solid side while a diffusive charge layer
forms in the liquid, without much dependence on the bulk
state of the solid. A double layer will also form on the inter-
face between a polyelectrolyte gel and a solution, but exhibit
distinct characteristics. Containing a great amount of solvent
molecules when swollen, a polyelectrolyte gel encompasses
mobile ions and thus the double layer is diffusive on both
sides of the interface. In addition, the concentrations of sol-
vent and solutes in a polyelectrolyte gel couple strongly with
deformation, making it suitable for stimuli-responsive smart
devices �3–7�. Naturally, the double layer is also expected to
be influenced by the swelling state of a gel, but the correla-
tion has not yet been fully understood �8�.

When two interfaces are brought closer and the free en-
ergy of the system increases, the double layers will overlap
and create an effective repulsion in between, known as the
disjoining pressure. Besides electrostatic interactions, current
understanding of surface interactions also accounts for van
der Waals forces, as well as steric and depletion effects �8,9�.
The double layers are usually very thin and their effects are
often seen on microscale particles in systems such as thin
films and colloidal suspensions. However, there are cases
when double-layer interactions dominate over other factors
and become macroscopically appreciable. One prominent ex-
ample would be the disjoining pressure between two like-
charged polyelectrolyte gels in an ionic solution. The repul-
sion between double layers may be the origin of the low

friction between gels �10,11�: when the disjoint pressure is
strong enough to balance the normal load, the solution forms
a liquid layer in the gap and prevents dry friction. This cor-
relation is strongly supported by the direct measurements of
the normal and friction forces between solid surfaces deco-
rated with polyelectrolyte brushes �12–15�. This mechanism
is also believed to be essential to understanding the extraor-
dinary lubrication properties of articular cartilages, a type of
strongly charged composite polyelectrolyte gels which have
a friction coefficient of 10−3 even at very low relative speed,
while sustaining a compression of up to 10 MPa �16–19�.

Due to the multiphysics-coupling nature of polyelectro-
lyte gels, the disjoining pressure is usually dependent on the
seemingly unrelated material properties such as stiffness, de-
formation state, and ion concentrations. The continuum
theory regarding the understanding of the macroscopic elec-
trochemical interactions in a polyelectrolyte gel is still dubi-
ous. Some researches extend the theory of porous media to
gels �20,21�. Others propose multiphasic models which treat
the polymer network, solvent, and mobile ions as separate
continuum phases in order to understand the behaviors of
polyelectrolyte gels from the viscous drag between the net-
work and solvent �16,17�. A more recent study models the
gels as solids with surface charge and calculates the repul-
sion due the double layers formed between gel surfaces �11�.
However, some assumptions drawn directly from studies of
rigid impermeable solids may not be justifiable for gels. For
example, the electroneutral assumption is no longer tenable
inside the double layer on a gel-liquid interface. Although
solving the electric field in the liquid independently may be
valid for a solid-liquid interface, such an approach disregards
the exchange of ions and solvent molecules and is thus not
suitable for gel-liquid interfaces.

In this paper, we adopt the recently developed nonlinear
field theory for the coupled large deformation and electro-
chemistry of polyelectrolyte gels �22� in order to study the
interactions between the surfaces of two like-charged gels.*whong@iastate.edu
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Starting from the basic principles of thermodynamics, this
approach makes no assumption beyond the material-specific
free-energy functions. We simultaneously solve the electric
and concentration fields in both the gel and the solution,
together with the deformation in the gel, and calculate the
disjoining pressure under various circumstances. The depen-
dences of the disjoining pressure on various material and
environmental parameters are studied and discussed subse-
quently.

II. MODEL

A polymeric gel, formed through crosslinking a polymer
solution, can swell and deswell reversibly by exchanging sol-
vent with the environment. As a special kind of polymeric
gels, the polyelectrolyte gel carries functional groups which
dissociate in a solvent and form fixed charges on the net-
work. Naturally, the swelling and deformation of the poly-
electrolyte gel are sensitive to the ionic concentrations both
in the environment and on its own network. Following Hong
et al. �22�, we adopt a nonlinear field theory to describe the
coupling behaviors of a polyelectrolyte gel.

The system under consideration is sketched in Fig. 1. Two
identical polyelectrolyte gels, both submerged in a liquid
ionic solution, are brought closely together to a distance d so
that the double layers will overlap and affect each other.
Both gels are swollen and in equilibrium with the external
solution. The overall sizes of the gels are much larger than d,
therefore we will treat both of them as semi-infinite and
model the system as one dimensional. The effect of the sur-
face is also neglected when we are calculating the overall
swelling of the gels. The x axis is set at a direction normal to
the interfaces and the origin lies on middle plane of the gap
between the gels. Due to symmetry, we will only look at half
of the system, 0�x��. The deformation field in a gel is
determined by the stretch along x axis, ��x�, namely the ratio
between the current length and the length in the reference
state. Here we will take the dry state of the polymer network
as the reference. The lateral stretch parallel to the gap is
assumed to be a constant, ��. The directions of the stretches
are also shown in Fig. 1. An external pressure p is applied in
the x direction to balance the repulsion in between the two
gels. Denoting the electric potential as ��x�, we will have
the electric field E=−d� /dx in both the gel and the solution.

In deforming gels, it is often convenient to invoke the nomi-

nal electric field defined in the reference state �23�, Ẽ=�E.
We take the continuum approach so that no interaction be-
tween individual charges needs to be explicitly accounted
for. Although the valence of ions will affect the equilibrium
swelling ratio of a gel and further the double layers, it is
beyond the scope of the current paper and, for simplicity, we
will study a system that contains monovalence ions. We as-
sume that the charged groups on the network are fully disso-
ciated so that the nominal concentration of fixed ions C0 is a
constant. Without losing generality, we also assume that the
fixed ions are negatively charged. Let C+�x� and C−�x� be the
nominal concentrations of the mobile counterions and
coions. All nominal concentrations are measured with re-
spect to the volume of the dry polymer in the reference state
and they are related to the true concentrations as c�

=C� /���
2.

A. Inhomogeneous fields inside a polyelectrolyte gel

Following Hong et al. �22�, we extend the Flory-Rehner
model �24,25� by writing the free energy per unit reference
volume of the gel as

W��,Ẽ,C+,C−� =
G

2
��2 + 2��

2 − 3 − 2 ln����
2�� −

�

2
E2���

2

+
kT

v
�vCs ln

vCs

1 + vCs −
�

1 + vCs�
+ kTC+�ln

C+

Csvc0
− 1�

+ kTC−�ln
C−

Csvc0
− 1� , �1�

where v is the volume of a solvent molecule and that of a
unit on a polymer chain, kT is the temperature in the unit of
energy, and Cs is the nominal concentration of the solvent.
The first term on the right-hand side of Eq. �1� is the free
energy of stretching the polymer network, in which a neo-
Hookean material law with initial modulus G is adopted. The
second term is the Gibbs free energy of polarization, with the
assumption that the nonionic solvent and polymer network
are both liquidlike ideal dielectrics �26� of permittivity �.
The third term represents the free energy of mixing the sol-
vent with the polymer network �24,27�, consisting of both
the entropy of mixing and the enthalpy of mixing with the
latter characterized by a dimensionless parameter �. The last
two terms are contributions from the solute ions due entirely
to the entropy of mixing with the solvent, with c0 being the
reference concentration in a liquid solution at which the
chemical potentials of the solutes are set to be 0. Here we
will take the concentration in the external solution far from
the gel to be the reference for solute chemical potentials. In
this paper, we still assume the molecular incompressibility
and neglect the volume of the solute ions, so that the volume
expansion in the network is fully taken by solvent molecules

1 + vCs = ���
2. �2�

FIG. 1. Schematic representation of the model under consider-
ation. Two thick polyelectrolyte gels, both immersed in an ionic
solution, are brought together to a distance of d. Double layers form
in the gap and in the gels near the surfaces. The interaction between
the double layers induces a repulsion, which could balance the ex-
ternally applied load p.
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The constitutive relations between the conjugate pairs of
field variables can be determined from the partial derivatives
of the free-energy function in Eq. �1�. The stress along x axis
can be given as

	 =
�W��,Ẽ,C+,C−�

��
2 � �

=
G

��
2�� −

1

�
� +

�

2
E2 +

kT

v �ln�1 −
1

���
2�

+
1

���
2 +

�

����
2�2 −

C+ + C−

Cs 	 , �3�

in which the first term is the stress from stretching the poly-
mer network, the second term is the Maxwell stress, and the
last term is the contribution from mixing, often referred to as
the osmotic pressure. The true electric displacement is re-
lated to the electric field as

D = −
�W��,Ẽ,C+,C−�

��
2 � Ẽ

= �E = − �
d�

dx
. �4�

The electrochemical potentials of the mobile counterions �+�
and coions �−� are, respectively,


� = � e� +
�W��,Ẽ,C+,C−�

�C� = � e� + kT ln
C�

Csvc0
,

�5�

where e is the elementary charge.
In equilibrium, the stress balances the externally applied

load and the boundary condition from the liquid, the electric
displacement satisfies Gauss’s law

dD

dx
= e�c+ − c− −

C0

���
2� , �6�

and the electrochemical potentials of the solute ions equal
those in the liquid solution in the far field, i.e., the reference


� = 0. �7�

Substituting Eq. �5� into Eq. �7�, we have the equilibrium
concentration of mobile ions in the gel

C� = Csvc0 exp���� , �8�

where �=e� /kT is the dimensionless electric potential. A
combination of Eqs. �4�, �6�, and �8� further yields the
Poisson-Boltzmann equation for the electric field in the gel

d2�

d
2 =
1

���
2�����

2 − 1�sinh � +
C0

2c0
	 , �9�

in which 
=x /LD is the dimensionless coordinate, with LD

being the Debye length, LD=
kT� /2e2c0.
Substituting Eq. �8� into Eq. �3�, we have

v	

kT
=
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kT

1

��
2�� −

1

�
� + �ln�1 −

1

���
2� +

1

���
2 +

�

����
2�2	

+ vc0��d�

d

�2

− 2 cosh �	 , �10�

where v	 /kT and vG /kT are the dimensionless axial stress

and modulus, respectively. Equations �9� and �10� form an
algebraic-differential system for the coupled normalized
electric potential ��
� and stretch ��
� in the polyelectrolyte
gel.

B. Interaction between two double layers

Despite the use of a sharp gel-liquid interface in the
model, a transition zone with inhomogeneous but continuous
fields at the vicinity of the interface exists in both the gels
and the liquid gap. The liquid can be regarded as a limiting
case of a polyelectrolyte gel with the network stiffness being
0 and the volume fraction of solvent approaching 1. At such
a limit, neither the free energy of stretching nor that of mix-
ing the network and solvent is present. The approach de-
scribed in Sec. II A is also applicable to a liquid solution,
with the exception of the indeterminate deformation field.

In the domain 0�
�d /2LD, since the space is fully oc-
cupied by the liquid solution, the electric field is decoupled
from the stress balance and Eq. �9� reduces to

d2�

d
2 = sinh � . �11�

Equation �11� can be integrated once into

d�

d

= 
2�cosh � − cosh ��0�� . �12�

Due to symmetry, the electric field vanishes on the middle
plane in the gap between the two gels, where 
=0, and the
true stress reduces to

v	

kT
= − 2vc0 cosh ��0� . �13�

Similarly, we can also obtain the stress in the solution far
from the gap where the electric potential equals 0, v	0 /kT
=−2vc0. From a mechanical point of view, the disjoining
pressure is the difference between the stress in the gap and
that in the far field, i.e., the part of stress that balances ex-
ternal mechanical loads, p=−�	−	0�.

Since distributed charge dominates in a double layer, we
hereby assume the electric displacement to be continuous
across the interface and neglect any surface charge. Given
the high swelling ratios of most polyelectrolyte gels, we as-
sume the effective permittivity of the nonionic components
in the gel to be the same as that of the liquid solvent. As a
result, both the electric potential and its spatial derivative are
continuous at the interface, 
d=d /2LD. Consequently, Eq.
�12� provides a boundary condition to the algebraic-
differential system in the gel

�d�

d

�


d

=
2 cosh ��
d� +
	

kTc0
. �14�

C. Donnan equilibrium of a swollen gel

On the bulk gel side far from the interface, the electric
field vanishes and thus the deformation, as well as the ion
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concentrations, of the gel becomes homogenous. The state of
the gel recovers that of Donnan equilibrium �17,28� and Eq.
�9� reduces to the electric-neutrality condition

sinh �� = −
C0

2c0�����
2 − 1�

, �15�

where �� is the axial stretch deep inside the gel and �� is
the dimensionless Donnan potential, namely, the equilibrium
electric potential �relative to 0 in the external solution�.
Eliminating � from Eqs. �10� and �15�, we have the axial
stress

v	

kT
=

vG

kT

1

��
2��� −

1

��
� + �ln�1 −

1

����
2� +

1

����
2

+
�

�����
2�2	 − v
� C0

����
2 − 1

�2

+ 4c0
2. �16�

The lateral stress in the gel also balances that in the solution,
2	0��� =�W /���. Consequently,

vG

kT

1

��
�1 −

1

��
2� + �ln�1 −

1

����
2� +

1

����
2 +

�

�����
2�2	

− v
� C0

����
2 − 1

�2

+ 4c0
2 = − 2vc0. �17�

Equation �16� can be written in terms of the disjoining pres-
sure by considering Eq. �17�,

p

G
=

1

��

−
��

��
2 . �18�

Under a specific deformation state, the disjoining pressure
p and the equilibrium stretches deep in the gel, �� and ��,
can be obtained by solving the nonlinear algebraic systems
�17� and �18� simultaneously. The result is further used as the
input parameters to the field equations in the double layer,
Eqs. �9� and �10�. The resulting Donnan potential �� can
also be used as the boundary condition for ��
� at 
→�.
The algebraic-differential system is then solved numerically
in the gel domain, with boundary conditions �14� and ��.
Once the electric potential on the interface ��
d� is evalu-
ated, we can further integrate Eq. �12� to obtain the equilib-
rium width of the gap between the gels

d

LD
= 2�

��0�

��
d� d�


2 cosh � +
	

kTc0

. �19�

III. RESULTS AND DISCUSSION

A. Approximate solution at the low-potential limit

When Donnan potential is relatively low, ���1, from
Eq. �15�, we have

�� 
 −
C0

2c0�����
2 − 1�

. �20�

At such a limit, if we further neglect the inhomogeneity in
the deformation near the interface by taking �
�� in Eq.

�10�, we can decouple the differential-algebraic system and
linearize Eq. �9� as

d2�

d
2 
 �1 −
1

����
2��� − ��� . �21�

Equation �21� holds in the gel domain, 
d�
��, at the
low-potential limit. Similarly in the liquid domain, 0�

�
d, Eq. �11� is linearized to the Debye-Huckel equation

d2�

d
2 
 � . �22�

Integrating Eqs. �21� and �22� directly with the boundary
condition ����=��, we obtain an approximate analytical
solution for the electric potential:

� 
�
��� cosh 


sinh 
d + � cosh 
d
�0 � 
 � 
d�

− �� sinh 
d

sinh 
d + � cosh 
d

exp�− �
�
exp�− �
d�

+ �� �
d � 
 � �� ,�
�23�

where �=
1−1 /����
2.

The solution in Eq. �23� shows the characteristics of the
double layers in a gap between two like-charged polyelectro-
lyte gels. The spatial profile of the electric potential re-
sembles that shown in Fig. 2�a�. On each interface, the
double layer extends into both the liquid solution and the gel.
The influence of the double layers decays exponentially into
the gel, with a characteristic length LD /�, which depends on
the equilibrium swelling ratio of the gel. For a highly swol-
len gel, the part of the double layer inside the gel is similar to
that in the liquid, both sharing the same Debye length, LD.
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FIG. 2. �Color online� �a� Normalized electric potential in the
liquid solution and in the gels near the interfaces. �b� Inhomoge-
neous axial stretch of the gel near a gel-liquid interface. ��c� and
�d�� Concentrations of coions and counterions, respectively, in the
gap and in the gels near the interfaces. Vertical solid lines denote
the location of the gel-liquid interface. Parameters used in the nu-
merical calculation: normalized stiffness of the gels vG /kT=0.01;
molar fraction of fixed charge in the reference state vC0=0.05. The
gels are submerged in a binary solution of three different concen-
trations as indicated.
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On the other hand, for a very stiff gel that hardly swells, �

0, Eq. �23� predicts the limit of a conducting solid. How-
ever, at such a limit, the Donnan potential is often high and
this approximation may not be accurate. A detailed discus-
sion on this limit will be carried out later in Sec. III B.

Using the electric potential on the symmetry plane, ��0�,
we can further identify the relation between the disjoining
pressure and the gap width using Eq. �13�

vp

kT

 2vc0�cosh

��� exp�− 
d�
sinh 
d + � cosh 
d

− 1	 . �24�

In the case when the gel is highly swollen, �
1, Eq. �24�
can be further simplified into

vp

kT

 vc0��

2 exp�− 2
d� . �25�

Equation �25� provides an approximate scaling law that char-
acterizes the dependence of the disjoining pressure on Don-
nan potential, the gap width, and the ion concentration in the
external solution. Although not shown explicitly in Eq. �25�,
the bulk properties of the polyelectrolyte gels �e.g., stiffness
and fixed-ion concentration� also affect the disjoining pres-
sure through changing Donnan potential. In more general
parameter ranges other than the low-potential limit, the va-
lidity of this scaling law will be checked by comparing to the
numerical calculations as follows.

B. Structure of overlapping double layers

Following the procedure described in Sec. II B, we solve
the nonlinear system numerically. To enable calculations, we
set the dimensionless stiffness of the polymer network
vG /kT=0.01, corresponding to a modulus of �105 Pa at
room temperature when the solvent is water. We also set the
nominal fixed-ion density vC0=0.05, corresponding to a 5%
molar fraction of charge-carrying monomers on the network.
To demonstrate the interactions between the overlapping
double layers, solutions to the cases when the disjoining
pressure is in equilibrium with the external load at a gap
width of 1 D length are presented here.

Figure 2 plots the spatial profile of the field variables in
the liquid domain and the gel domain near the interfaces of
two polyelectrolyte gels that are immersed in solutions of
various concentrations, vc0=10−3, 10−4, and 10−5. In the
near-interface regions, the distributions of the electric poten-
tial, axial stretch, and concentration are all inhomogeneous.
The gel and the liquid solution are no longer electroneutral:
ions diffuse through the gel-fluid interface and result in a
negatively charged layer in the gel and a positively charged
layer in the liquid. As shown in Fig. 2�a�, the electric poten-
tial decays exponentially into the gels and approaches the
Donnan potential. This agrees qualitatively with the predic-
tion of the approximate solution in Eq. �23�.

Plotted in Fig. 2�b� is the stretch along the x axis in a
polymeric gel. Corresponding to the inhomogeneity in the
electric potential, loss of counterions in a gel near the inter-
face breaks the swelling equilibrium and the polymer net-
work stretches less compared to the bulk. In the depth direc-

tion, the stretch is smaller as shown in Fig. 2�b�. Along the
interface, the surface layer is constrained by the bulk and a
tensile surface stress is thus developed. Such a stress has
little contribution to the surface interactions and is thus not
shown here. On the other hand, the effect of the ion imbal-
ance on the axial stretch is determined by volume fraction of
solvent. In a dilute external solution, the fixed ions on the
network become more prominent and the stronger effect will
result in a more inhomogeneous deformation.

As can be seen on the plots in Fig. 2, the penetration
depth, namely, the thickness of the diffusive layer in the gel
where the fields are inhomogeneous, is no longer the Debye
length, but depends on various parameters including the
equilibrium swelling ratio and mobile-ion concentrations.
There are three major energy contributions in the system: the
elastic energy of the network which scales with the modulus
G, the electrostatic energy which scales with �E2, and the
entropic thermal energy which scales with kT. To understand
the mechanism, we further look at the following two limiting
cases. When the network is relatively compliant, vG /kT�1,
the electrostatic energy and the thermal energy dominate
over the elastic energy and balance each other in the inho-
mogeneous layer. As shown in Figs. 3�a� and 3�b�, just as in
a liquid, the inhomogeneous layer in the gel also has a char-
acteristic length comparable to the Debye length, which re-
sults from the competition between the electrostatic energy
and the thermal fluctuation. When the network is relatively
stiff �vG /kT�1�, Donnan potential is high under a relatively
low external concentration �vc0�C0 /Cs� and the electro-
static energy is balanced by the elastic energy. The competi-
tion between the elastic energy in the polymer network and
the electrostatic energy gives rise to a new characteristic
length
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FIG. 3. �Color online� Equilibrium profiles of the normalized
electric potential and axial stretch in a gel in the cases of ��a� and
�b�� relatively compliant gels with dimensionless modulus Gv /kT
=10−3 and fixed-charge density vC0=0.01 and ��c� and �d�� rela-
tively stiff and strongly charged gels with Gv /kT=10 and vC0=1.
The gels are submerged in a binary solution of concentration vc0

=10−3 in both cases. The fields in the compliant gels show a char-
acteristic length close to the Debye length LD, while those in the
stiff gels show a much smaller characteristic length Le=
���

e /G.
Vertical solid lines denote the location of the gel-liquid interface.
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Le =
���
2

G
. �26�

As shown in Figs. 3�c� and 3�d�, the inhomogeneous fields in
the gels decay at a depth comparable to Le and much smaller
than LD. In the limit of a rigid solid, Le→0, our model re-
covers the classical picture of the double layer on a solid-
liquid interface: the charge in the solid only concentrates on
its surface.

C. Disjoining pressure as a function of the gap width

The interaction energy between the double layers in-
creases when two polyelectrolyte gels approach to each other
and the excess in the total free-energy gives rise to the dis-
joining pressure. The origin of the disjoining pressure be-
tween two gel surfaces is similar to that between two solid
surfaces �9�, although the behavior is different. We plot the
results of the normalized disjoining pressure, pv /kT, as a
function of the dimensionless gap width d /LD in Fig. 4. The
numerical solutions to the nonlinear differential-algebraic
system are plotted together with the approximate solution at
the low-potential limit, Eq. �25�. As can be seen in Fig. 4, the
exponential dependence of the disjoining pressure on the gap
width agrees qualitatively well with the numerical solutions,
especially when the network stiffness is relatively low and
the gels are not too close. The deviation from the low-
potential approximate is greater when the gel is stiffer. The
dependency of the disjoining pressure on the gap width ob-
tained here also agrees with that measured experimentally
between two solid surfaces bearing polyelectrolyte brushes
�13–15�, although the influence in the material properties has
not been fully revealed in the experiments due to the con-
straint from the rigid substrate.

For comparison, we also plot the solution to an approxi-
mate model in which the gels are taken to be impermeable
solids �the dotted curves in Fig. 4�, i.e., the charge in a gel
exists only on the surface �9�. The equilibrium Donnan po-

tential in the gel is used as the surface potential in this ap-
proximate. The solid-liquid model and our gel-liquid model
show a very similar trend in the gap-width dependence of the
disjoining pressure, although the quantitative predictions can
differ by 1 order of magnitude. From the plots shown on Fig.
4, one might be able to obtain a better approximate by as-
suming an effective gap width slightly larger than the dis-
tance between the gels. It is physically sensible since the
double layers now also extend to a finite depth into the gels.
However, it may be impractical because the effective in-
crease in the gap width and the surface potential depend on
the local deformation state of the gel and the ion concentra-
tions.

D. Dependence of the disjoining pressure on various
parameters

One unique feature of the double-layer interaction be-
tween polyelectrolyte gels is its dependence on material pa-
rameters �e.g., the network stiffness G and the fixed-charge
density C0� as well as the environmental conditions �e.g., the
ion concentration of the external solution c0�. Using the rig-
orous model and the approximate scaling law developed in
previous sections, we will study the dependence of the dis-
joining pressure on all these parameters. Since its depen-
dence on the gap width has already been explored in Sec.
III C, the disjoining pressure shown below is evaluated at a
gap width of one Debye length.

Figure 5 plots the disjoining pressure as a function of the
molar fraction of solute in the external solution, vc0. The
gels with three different network stiffness values, Gv /kT
=10, 0.1, 0.001, are calculated and the numerical results and
the low-potential linearization, Eq. �24�, are shown side by
side. The fixed-charge density with respect to the reference
�dry� state is set at vC0=0.05. However, the true molar frac-
tions of fixed charge at the current state, C0 /Cs, are different
because the equilibrium swelling ratio of a polyelectrolyte
gel is determined by the stiffness and the external ion con-
centration. As shown in Fig. 5, the disjoining pressure first
increases with the external ion concentration and then de-
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creases after reaching a peak at a certain value of vc0. The
two limiting cases can be understood as follows. When the
external solution has a very low ion concentration, the avail-
ability of ions in the gap is also limited. Due to the low
absolute value of ion concentration, the osmotic pressure in-
duced by the concentration difference will be low, even
though a significant difference is present between the con-
centration in the gap and that in the far field. When the
external solution has a very high ion concentration, the fixed
ions in the gels are less effective in tuning the ion concen-
trations in the gap. Even though the ion concentration in the
gap is high, it is not too different from that in the far field
and thus the resulting osmotic pressure is also low. The value
of the external ion concentration, vc0, at which the disjoining
pressure reaches a maximum, is on the same order of the true
concentration of the fixed ions in the swollen gels, C0 /Cs.
Although no direct experimental evidence has been reported,
the positive correlation between the disjoining pressure and
the external ion concentration agrees qualitatively with the
observation in a closely related experiment on solid surfaces
coated with polyelectrolyte brushes �12�, especially for the
case of relatively high network stiffness.

A similar trend can be seen on the dependence of the
disjoining pressure on the fixed-ion concentration, as plotted
in Fig. 6. Here, the molar fraction of solute in the external
solution is taken to be 10−4. The same arguments of the two
limiting cases could be used to rationalize the trend. How-
ever, in terms of the nominal concentration of the fixed ions,
the value at which the disjoining pressure reaches a maxi-
mum is much higher than the external ion concentration. The
maximum here is no longer located at the place where the
true concentrations of the fixed ions are comparable to that
of the ions in the external solution. Instead, for a relatively
stiff gel, although the equilibrium swelling ratio is low, the
disjoining pressure peaks at a fixed-ion density vC0�1. At
such a high fixed-ion concentration, our free-energy function
is arguably valid, but the qualitative trend predicted by the
current model shall still hold. A more realist free-energy
function capable of characterizing the behavior of the gel
with high ion concentrations may provide more accurate
quantitative predictions.

Finally, the dependence of the disjoining pressure on the
network stiffness is shown in Fig. 7. As plotted in the figure,
the disjoining pressure is a monotonically increasing func-
tion of the modulus. When the gel is relatively complaint,
Gv /kT�1, the disjoining pressure is almost linearly propor-
tional to the modulus, p�G. When the gel is relatively stiff,
Gv /kT�0.1, although the disjoining pressure still increases
with the stiffness, the accretion is less significant. Moreover,
at the limit of a very stiff gel, Gv /kT�1, the Donnan equi-
librium described by Eq. �15� no longer exists and the dis-
joining pressure is determined by the surface potential of the
material rather than its bulk properties.

It can be seen in Figs. 5–7 that the approximate scaling
law captures the qualitative behavior of the disjoining pres-
sure quite well, especially when Donnan potential is low, i.e.,
when the gel has a low fixed-ion density and a compliant
network. Inspired by the approximate Eqs. �24� and �25�, we
further plot the disjoining pressure as a function of the nor-
malized Donnan potential, ��, in Fig. 8. The external ion
concentration vc0 is fixed at 10−3, while a wide range of
Gv /kT �10−3, 10−2 , . . . ,10� and vC0 �10−4, 10−3 , . . . ,1� com-
binations is calculated. Different combinations of Gv /kT and
vC0 may give the same Donnan potential. The disjoining
pressures at three gap widths are calculated for each param-
eter combination. The results of 25 different parameter com-
binations are categorized into four groups based on the net-
work stiffness and the fixed-ion concentration: �1� soft
�Gv /kT�0.1� and weak �vC0�0.01� gels; �2� soft �Gv /kT
�0.1� and strong �vC0�0.01� gels; �3� stiff �Gv /kT�0.1�
and weak �vC0�0.01� gels; �4� stiff �Gv /kT�0.1� and
strong �vC0�0.01� gels. From the survey of the wide range
of data in Fig. 8, we can see that the approximate scaling
law, Eq. �25�, agrees well with the rigorous results of the
model. Some deviations are expected for very stiff and/or
highly charged gels, but the scaling law is still able to cap-
ture the qualitative trend.

E. Friction between two like-charged polyelectrolyte gels

Due to its capability of withstanding external loads, the
disjoining pressure in the gap between two like-charged
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polyelectrolyte gels could play an important role in reducing
the friction. When the disjoining pressure separates the two
gel surfaces apart with a distance d, the gap is filled with
liquid solution that prevents a direct contact of the surfaces.
As a result, the only source of friction is from the viscosity
of the liquid layer. Assuming the fluid to be Newtonian with
viscosity 
, we have the shear stress

� f =

v
d

, �27�

where v is the relative speed of sliding. Substituting the ap-
proximate scaling law Eq. �25� into Eq. �27�, we can further
write the shear stress as

� f 


v
2LD

�ln
c0e2��

2

pkT
�−1

. �28�

Equation �28� is plotted schematically in Fig. 9. The fric-
tional shear stress diverges when the normal pressure reaches
a critical value pcr—the liquid interlayer vanishes and the
two surfaces contact. It is worth mentioning that a contact
may occur earlier than the critical point due to other factors
such as the finite roughness of the surfaces. Using the scaling
law of linear approximate, we can estimate the critical pres-
sure as

pcr 

c0e2��

2

kT
. �29�

When a normal pressure below the critical value is ap-
plied, the friction between the gels is very low and dependent
on the speed of relative sliding. Beyond the critical pressure,
a much higher dry friction would dominate between the two
gel surfaces in physical contact. A dramatic increase in the
friction force is expected near the critical pressure level. As
discussed in Sec. III D, the critical pressure will depend on

the bulk properties of the polyelectrolyte gels �e.g., stiffness,
fixed-charge density� and the environmental parameters such
as the concentration of external solution.

Here, for simplicity, we have used the nonslip boundary
condition on the gel-liquid interface while deriving Eq. �27�.
Since the gel contains a polymer network and mobile solvent
molecules, a continuous velocity profile of the solvent is also
expected in the gel �29,30�, just as the electric double layer.
The consideration of the flow in the gel will effectively in-
crease the thickness of the liquid gap �10�, but will not affect
the qualitative predictions. The detailed discussion on this
issue is beyond the scope of the current paper.

IV. CONCLUSIONS

Using a continuum model that couples the large deforma-
tion and the electrochemistry of polyelectrolyte gels, we
have investigated the electrochemomechanical interactions
between the surfaces of two like-charged polyelectrolyte
gels. When immersed in an ionic solution, the electrolyte
groups on the gel network dissociate and form immobile
charges. Even though the majority of the fixed charges inside
a bulk gel are balanced by the mobile counterions, neither
the liquid nor the gel is electroneutral near the interface: an
electric double layer forms at the interface and extends into
both the liquid and the gel. When two surfaces are brought
close together, the electric double layers overlap and change
their structure. The excessive energy associated with the
change in the double layers gives rise to the disjoining pres-
sure between the two surfaces. The interaction becomes ap-
preciable when the distance between the two surfaces is
comparable to the Debye length, a characteristic length of
the double layer in the liquid solution. Through linearization,
we obtain an approximate scaling law, which implies that the
disjoining pressure decays exponentially with the width of
the liquid gap and scales with the squared of the equilibrium
Donnan potential deep inside the gels. Numerical calcula-
tions further confirm the approximate relation. Both the nu-
merical results and the scaling behavior agree qualitatively
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FIG. 9. Schematic plot of the relation between the frictional
shear stress � f and the normal pressure p. Below a critical value pcr,
the applied normal pressure can be balanced by the disjoining pres-
sure and the two polyelectrolyte gels are separated by a liquid in-
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with existing experimental measurements. The disjoining
pressure also provides a clue to the low-friction phenomena
of polyelectrolyte gels. When the applied normal pressure is
below a critical value so that it can be balanced by the dis-
joining pressure, the liquid interlayer prevents the surfaces
from direct contact and significantly reduces the friction.

Unlike the double-layer interactions between two solid
surfaces, the surface interactions between two polyelelctro-
lyte gels depend not only on the concentrations of fixed and
mobile ions, but also on the bulk properties of the gels. Our
model reveals the intricate dependence of the disjoining
pressure on material and environmental parameters including
the network modulus, the fixed-charge density, and the solute
concentration of the external solution. In summary, the
model suggests the following requirements for a poly-

elelctrolyte gel to be optimized for higher disjoining pressure
and lower friction: a stiff-enough network with the modulus
comparable to kT /v, a very high density of charged groups
on the network, and a moderate concentration of external
ionic solution which is comparable to the concentration of
the fixed ions in the gel when swollen. Interestingly, the ar-
ticular cartilage, a natural material which is believed to func-
tion as a load bearer and friction reducer, seems to fit these
descriptions well.
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