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Dynamic scaling in thin-film growth with irreversible step-edge attachment
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We study dynamic scaling in a model with collective diffusion (CD) of isolated atoms in terraces and
irreversible aggregation at step edges. Simulations are performed in two-dimensional substrates with several
diffusion to deposition ratios R=D/F. Data collapse of scaled roughness distributions confirms that this model
is in the class of the fourth-order nonlinear growth equation by Villain, Lai, and Das Sarma (VLDS) with
negligible finite-size effects, while estimates of scaling exponents show some discrepancies. This result is
consistent with the prediction of a recent renormalization group approach and improves previous numerical
works on related models. The roughness follows dynamic scaling as W=L%/R"?f(&/L), with correlation length
&=(Rr)"?, where z is the dynamic exponent. We also propose a limited mobility (LM) model where the incident
atom executes up to G steps before a new atom is adsorbed, and irreversibly aggregates at step edges. This
model is also shown to belong to the VLDS class. The size of the plateaus in the film surface increases as G'/2
and the lateral correlation scales as G'%t"/?. The time evolution of the roughness reproduces that of the CD
model if an equivalent parameter G~ R%? is chosen. This suggests the possibility of using LM models with
tunable diffusion length to simulate processes with simultaneous diffusion of many atoms. A scaling approach
is used to justify exponent values and dynamic relations for both models, including the significant decrease of

surface roughness as R or G increases.
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I. INTRODUCTION

Thin film growth by molecular beam epitaxy motivated
the proposal of many atomistic and continuous models be-
cause it is one of the most important techniques to produce
high quality films with smooth surfaces [1]. The main param-
eter to determine the film surface morphology is the ratio
R=D/F between the free adatom diffusion coefficient D and
the atomic flux F, but other quantities also play an important
role, such as lateral binding energies and barriers at step
edges [2,3]. In low temperatures, one frequently assumes ir-
reversible adatom attachment to island edges or to other at-
oms at the same height, consequently R and the surface cov-
erage determine scaling properties—in submonolayer
growth, this is the case of models with critical island size
i=1 [2,4]. Growth models that incorporate the competition
between deposition and diffusion are usually called full or
collective diffusion (CD) models. Most works on CD models
focus on a particular application and estimate physical quan-
tities such as diffusion coefficients or energy barriers in films
with a small number of layers [2]. On the other hand, for
studying scaling properties, one frequently simplifies the
growth dynamics by introducing limited mobility (LM) mod-
els, where the final position of aggregation of an atom is
chosen immediately after its deposition, i.e., before another
atom is deposited. In most cases, adatom diffusion in a LM
model is restricted to nearest neighbor sites, but this is not a
general rule.

Dynamic scaling is intensively studied theoretically and
experimentally because it helps to find the essential physical
mechanisms of the film growth, independently of the details
of the interactions [2,3]. The set of scaling exponents deter-
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mines the universality class of the process, which is usually
connected to a stochastic equation [2,3]. With LM models,
this connection can frequently be done by inspection of their
symmetries [3,5], by numerical methods, and sometimes by
analytical methods. On the other hand, the situation with CD
models is more complicated. Most numerical works suggest
temperature-dependent effective exponents and the possibil-
ity of anomalous scaling [6-9]. However, a recent renormal-
ization study [10-12] of a CD model with reversible aggre-
gation of all adatoms showed that it belongs to the
universality class of the fourth-order nonlinear growth equa-
tion proposed by Villain, Lai and Das Sarma (VLDS)
[13,14]. The numerical study of the renormalization flux [11]
explained the long crossover from the linear to the nonlinear
growth exponent observed in simulations by Wilby et al.
[15], and helps to understand the apparently nonuniversal
behavior observed in previous works.

Since numerical simulations are widely used to study film
growth models, a deeper analysis of dynamic scaling of CD
models is justified, in the light of the recent advance in the
area. Other relevant questions may also be addressed, such as
the role of the diffusion-to-deposition ratio and the use of
LM models to approximate collective diffusion processes.

The first aim of this paper is to study dynamic scaling of
a CD model with irreversible adatom attachment to lateral
and upper neighbors, i.e., where only isolated atoms at ter-
races are mobile. Simulations in two-dimensional substrates
(2+ 1-dimensional model) are performed, which is the most
relevant case for applications. The comparison of roughness
distributions provides the strongest evidence that this model
belongs to the VLDS class for any R, even using data of
small lattices. On the other hand, estimates of growth and
roughness exponents are slightly below the VLDS values, in
agreement with previous numerical works. We also discuss
the role of the diffusion-to-deposition ratio R on the dynamic
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scaling relation, showing a drastic reduction of surface
roughness as R increases.

Subsequently, we study a limited mobility (LM) model
that mimics the dynamics of the above CD model. In order to
tune the diffusion length in the LM model, an adsorbed atom
executes up to G random steps and stops only if it encounters
a lateral neighbor during its diffusion. We show that this
model is also in the VLDS class and that results of the CD
model can be reproduced by an equivalent LM model with
G~ R®, This is a nontrivial result, since the effective num-
ber of steps of free atoms in the CD model is much smaller
than R. It also suggests that extensions of the LM model may
be used to speed up simulation of realistic models with large
R.

Finally, we will use scaling arguments to predict the time
evolution of the correlation length in the CD and the LM
model and to explain their connection and the significant
decrease of surface roughness as R or G increases.

The rest of this paper is organized as follows. In Sec. II,
we will define the CD and LM models, present the most
common stochastic equations for growth processes with dif-
fusion and review the basics of dynamic scaling. In Sec. III,
we will show numerical results for the CD model. In Sec. 1V,
we will show numerical results for the LM model. In Sec. V,
we present scaling arguments to explain the role of R and G
in the dynamic scaling relations. In Sec. VI, we present our
conclusions.

II. ATOMISTIC MODELS, STOCHASTIC GROWTH
EQUATIONS, AND DYNAMIC SCALING

All models studied here are of solid-on-solid type. Depo-
sition occurs in a two-dimensional substrate of linear size L,
with the lattice parameter as the length unit. The surface is
flat at #=0. There is an external flux of F atoms per site per
unit time. In our simulations, we take F=1 for simplicity, so
that one layer of atoms is deposited in one time unit.

In the CD model, an incident atom is adsorbed upon land-
ing above a previously deposited atom or a substrate site. All
adsorbed atoms with no lateral and no upper neighbor (i.e.,
isolated atoms in terraces) diffuse with coefficient D, which
is the number of random steps to neighboring columns per
unit time. If an adatom has a lateral or an upper neighbor,
then it is permanently aggregated at that position.

The diffusion coefficient D is expected to depend on tem-
perature as D=1, exp(—E,/kzT), where v, is a frequency of
order 10'> Hz and E; is the activation energy in a flat sur-
face. However, since we are not interested in studying a par-
ticular growth process, we will use R=D/F as the model
parameter in the rest of this paper.

In real processes, the ratio R may vary of several orders of
magnitude. For this reason, most simulation works are per-
formed with R ranging from 10* to 10°. Under these condi-
tions, almost all simulation time is spent with adatom diffu-
sion and the substratg size has to be much larger than the
diffusion length ~\R during one layer deposition. Thus,
simulations with large R are frequently limited to the sub-
monolayer regime. However, here we are interested in study-
ing deposits with many layers, up to the regime of roughness
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saturation. Consequently we simulated smaller values of R,
ranging between 10' and 10* Since the basic dynamic
mechanisms of the model are the same for any R, a single
universality class is expected.

In simulations of the CD model, the adsorption of each
new atom occurs in a time interval 1/L2, using F=1. Subse-
quently, R/L? steps of randomly chosen free atoms are per-
formed. Since R/L? is usually not integer, and it may be
small for large L, we keep its fractional part for determining
the number of steps after the next adsorption events. This
represents the correct value of the ratio R.

The second model studied in this work is of LM with
tunable diffusion time. Only the last incident atom moves on
the surface, executing up to G random steps to nearest neigh-
bor columns. If it encounters a lateral neighbor during its
diffusion, it permanently aggregates at that position. Other-
wise, it permanently aggregates at the final position after the
G steps. As far as we know, this growth model was not
studied before. However, the idea of tuning the diffusion
time in a LM model is not new; for instance, it was proposed
in the Family model [16] (deposition with relaxation to
smaller heights) and in an extension [7] of the model of Das
Sarma and Tamborenea [17].

Our simulations of the LM model are also restricted to
small values of G, not only for reaching long times but also
for the interest to compare results with the CD model.

Note that both the CD and the LM models studied here
allow downhill movement at terrace edges without additional
energy barries (Ehrlich-Schwebel) [18]. This movement al-
ways lead to permanent aggregation at the step edges. For
this reason, the inverse process (uphill movement) is not pos-
sible.

In the hydrodynamic limit, diffusion dominated processes
are expected to be described by a fourth order equation of the
form [3]

oh
s vV + N VAV + p(x,1), (1)

where h(x,r) is the height at position ¥ and time 7 in a
d-dimensional substrate, v, and A\, are constants and 7 is a
Gaussian (nonconservative) noise. The contribution of the
average external flux (a constant term) was omitted in Eq.
(1). The linear version (\,=0) is the Mullins-Herring (MH)
equation [19], while the nonlinear case is the Villain-Lai-Das
Sarma equation [13,14].

If atom diffusion leads to frequent downhill movements,
surface tension may be the dominant mechanism,
thus the second order linear equation of Edwards and
Wilkinson [20] provides the suitable hydronamic description:
%= 1, V2h+ 5(%,t). Nonlinear terms in this equation are ex-
pected if the growth mechanisms lead to excess velocity of
Kardar-Parisi-Zhang (KPZ) type [21], but this is not the case
in the present work.

The most important geometrical quantity to characterize
the film surface is the roughness (or interface width)

W= ((h-1)*", 2)

where the overbars represent spatial averages and the angular
brackets represent configurational averages. For short times,
it scales as
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W~ B, (3)

where S is called the growth exponent. For long times, in the
steady state, the interface width saturates at

Wiar ~ LY, (4)

where « is called the roughness exponent. The crossover
time from the growth regime to the steady state scales as

t>< -~ LZ, (5)
where
z=a/B (6)

is the dynamical exponent. These relations can be condensed
in the dynamic scaling relation originally proposed by Fam-
ily and Vicsek [22]

W= Lef(1/L9), (7)

where f is a scaling function. Extensions of this scaling re-
lation may include one or more model parameters [23-25],
as will be shown in Sec. III.

We also measured the roughness distributions in the
steady states of our models. P(w,) is defined as the probabil-
ity density of the squared roughness of a given configuration
to lie in the range [w,,w,+dw,] [26-28]. Tt is expected to
obey the scaling relation

Wo— <W2>> )

P(Wz) = l"l’(

where o= \(w,%)—(w,)? is the rms deviation of the squared
roughness and W is a universal scaling function. Recent
works on KPZ models [29,30] showed that comparison of
roughness distributions is a much more accurate method to
determine the universality class of a growth model than mea-
suring scaling exponents. There are alternative approaches,
such as using space-time correlations and response functions
[31], but the above quantities are sufficient for the current
investigation.

The exponents of the (linear) EW and MH classes are
exactly known; the EW class in d=2 has logarithmic scaling
(=0, B=0) and the MH class has @=1 and £=0.25. On
the other hand, for the (nonlinear) VLDS class, the best es-
timates are calculated with atomistic models. The conserved
restricted solid-on-solid (CRSOS) models [32-35] are suit-
able for this purpose because they were clearly shown to
belong to the VLDS class [36,37] and their data have small
finite-size corrections. The most accurate estimates of rough-
ness and dynamic exponents [35] are very close to the one-
loop values @=2/3 and z=10/3 [3,13,38].

III. NUMERICAL RESULTS FOR THE COLLECTIVE
DIFFUSION MODEL

In Fig. 1 we show the time evolution of the surface rough-
ness for four values of R and different substrate sizes. Two
lines with the expected slopes of the VLDS class (8~0.2)
[35,38] and of the MH class (8=1/4 exactly) are also shown
in Fig. 1. Note that the roughness significantly decreases as R
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FIG. 1. (Color online) Time evolution of the surface roughness
in the CD model with R=10 (triangles), R=10? (squares), R=10°
(crosses), and R=10* (asterisks). The dotted line has slope 0.25 and
the dashed line has slope 0.2.

increases. For R=10% despite the long simulation time
(t=10°) and large size (L=1024), the roughness is always of
order unity.

For R=10 and R=100, the slopes of the growth regimes
are close to 0.2. For larger R, the slope is slightly below 0.2,
but the values of the roughness are very small, thus there
may be strong corrections to the dominant scaling in Eq. (3).
We recall that the EW roughness increases logarithmically,
thus this possibility is ruled out.

For R=10%, we calculated the saturation roughness for
several sizes L, as shown in Fig. 2(a). A least-squares fit
gives a=0.64, which is close to the VLDS exponent
a=~2/3 [35,38], but very far from the MH and EW values
(a=1 and a=0, respectively). We estimated effective rough-
ness exponents following the same lines of Ref. [35], but the
number of data points is too small to provide a reliable ex-
trapolation.

In Fig. 2(b), we show the scaled roughness distributions
for R=10? and R=107, in lattice size L=128, and the distri-
bution for the CRSOS model in size L=64 [39]. The exact
distribution for the MH equation (linear, fourth order) [27] is

)
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FIG. 2. (Color online) (a) Saturation roughness as a function of
the system size for the CD model with R=10%. The dashed line is a
least-squares fit of the data, with slope 0.64. (b) Scaled roughness
distributions for the CD model with R=10? (squares) and R=103
(triangles), both in L=128, for the diffusive CRSOS model
in L=64 [39] (solid curve), and for the MH equation [27]
(dashed curve).
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FIG. 3. (Color online) Scaled roughness versus scaled time for
the CD model with R=10 in L=64 (triangles), R=10% in L=128
(squares), R=10% in L=128 (crosses), and R=10* in L=1024
(asterisks), using @=2/3 and z=10/3.

also shown in Fig. 2(b) for comparison. The distribution for
the EW equation is a delta function [not shown in Fig. 2(b)].
The excellent data collapse with the CRSOS curve confirms
that the CD model is indeed in the VLDS class. The distri-
butions for the CD model in size L=64 [not shown in Fig.
2(b)] also collapse very well with the curves for L=128,
which indicates small finite-size effects.

These results lead to the conclusion that the difference
between the estimated exponents and the VLDS values are
only due to finite-size effects. However, it is very difficult to
obtain accurate results in larger sizes because simulation
times become very large (note the large dynamical exponent
z=10/3).

Given that the class of the model is VLDS, now we ana-
lyze the effect of the diffusion-to-deposition ratio R on dy-
namic scaling by collapsing data for different values of D
and L. We propose the extension of the Family-Vicsek rela-
tion (7) as

a

= % f(R1/LY), )

with @=2/3, z=10/3, and exponents x and y to be deter-
mined. Similar scaling forms are found in models with com-
petitive growth dynamics [23,24]; a recent example is shown
in a model of random deposition with surface relaxation con-
taining a temperaturelike parameter [25].

In Fig. 3 we show that a good data collapse is obtained
with x=0.5 and y=1 in Eq. (9), using data for four different
values of R. A significant deviation in Fig. 4 is observed only
in the steady state for R=10, probably due to finite-size
corrections—we used L=64 in that case. With those esti-
mates of x and y in Eq. (9), we have

R=107

R=108
ww—/\,mm

FIG. 4. (Color online) Cross sectional views of the surfaces of
films grown with two values of R and L=256, at = 100.
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FIG. 5. (Color online) Scaled roughness distributions for the
LM model with G=10 in L=128 (squares) and for the diffusive
CRSOS model in L=64 [39] (solid curve).

a

L
WZW]C(§CD/L), (10)

where &cp is a lateral correlation length given by

éen= (Rn)"=. (11)

The scaling exponent x=0.5 is not trivial and represents a
drastic decrease in the roughness as R increases; in the
steady state, we have W,,,~ L%/ R">. Figure 4 shows cross
sectional views of the film surface for R=10% and R=10° that
illustrate this feature. As R increases, the size of the plateaus
increases, and the steps between flat regions and the density
of surface cracks decrease. The scaling ideas presented in
Sec. V, in connection to the LM model, explain the exponent
values obtained here.

IV. NUMERICAL RESULTS FOR THE LIMITED
MOBILITY MODEL

The estimates of scaling exponents 8 and « for this model
are similar to those of the CD model. For G=10, we obtain
B=0.2 in the growth regime and @~ 0.60 from the satura-
tion roughness. Consequently, there is no improvement of
previous numerical results by estimating those exponents.
However, comparison with the roughness distribution of the
CRSOS model provides again the strongest evidence of
VLDS scaling, as shown in Fig. 5.

The VLDS scaling is not an obvious result for the LM
model. The kinetic rules of our model with G=1 resemble
those of the model of Das Sarma and Tamborenea (DT) [17],
where the incident atom permanently aggregates at a site
with at least one lateral neighbor, chosen only among the
column of incidence and its nearest neighbors. However,
simulations of the DT model in d=2 suggest EW scaling
[40,41]. We also recall that Ref. [7] proposed an extended
DT model in d=1 where the incident atom searches for the
aggregation position in a neighborhood of size [ around the
column of incidence. That model is also similar, though not
equal to our LM model, and Ref. [7] suggested that it had
anomalous scaling.

In Fig. 6(a) we show results for four values of R and the
values of G that give nearly the same roughness as a function
of time. For R=10%, we compare data in L=256. For
R=10* and G=60, we compare data in L=1024 because
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FIG. 6. (Color online) (a) Time evolution of the surface rough-
ness: CD model with R=9 in L=256 (triangles), R=90 in L=256
(squares), R=103 in L=256 (crosses), and R=10* in L=1024
(asterisks); solid curves are for the LM model, from top to bottom
with G=1 in L=256, G=4 in L=256, G=16 in L=256, and
G=60 in L=1024. (b) Equivalent parameter G of the LM model as
a function of the parameter R of the CD model. The dashed line is
a linear fit.

roughness saturation is attained at short times for small lat-
tices; however, due to the larger size, only data until t=10°
were calculated in this case. Since the roughness evolution of
the CD model can be reproduced by the LM model with an
equivalent parameter G,,, simulation of realistic CD models
may be faster with the use of equivalent LM models with
tunable number of steps.

In Fig. 6(b) we show G,, as a function of R and a linear fit
which gives

G,, ~ 0.28R"%. (12)

This means that large values of the diffusion-to-deposition
ratio are represented by much smaller values of G. We un-
derstand that G, is a measure of the average number of steps
of an adatom before aggregation, while the meaning of R is
more complicated due to the many atom dynamics involved
in the CD model. The scaling relation (12) implies that the
effective number of steps is much smaller than R, particu-
larly for large R. The scaling exponent in Eq. (12) is dis-
cussed in Sec. V.

V. SCALING RELATIONS

In the CD model, the correlation length of Eq. (11) is
obtained by replacing the growth time by Dr (taking F=1
and unit lattice size). This is the natural variable to represent
the faster adatom dynamics as D increases. On the other
hand, the exponent z>2 in Eq. (11) represents the subdiffu-
sive propagation of correlations, which is a universal VLDS
feature.

In the LM model, G has the role of determining the size
of terraces because there is only one adatom moving at each
time. This is confirmed in Fig. 7, where we plot the average
number of steps (S) before aggregation as a function of G.
We observe a linear increase in that plot for G>10, with
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FIG. 7. (Color online) Average number of steps of free atoms as
a function of G in the LM model. The dashed line is a linear fit of
the data.
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some deviations for smaller G (where (S) is quite small).

For this reason, the average distance traveled by an ada-
tom before aggregation is proportional to G'2. Thus, the
length of the plateaus in the film surface is also of order G"/2.
The same factor is expected to appear in the scaling of the
lateral correlation length,

§LM~ G1/2t1/z. (13)

The equivalence between the CD and LM models is ob-
served if both correlation lengths scale in the same form.
Matching Egs. (11) and (13), we obtain

2
=06 (14)
Z

G —_~ RZ/Z,

This exponent is in excellent agreement with the numerical
value of Sec. IV [Eq. (12)].

The LM model features also shows that the strong de-
crease in surface roughness as G (or R) increases comes from
two contributions, as follows.

Since the plateaus in the two-dimensional substrate have
length of order [~ G'2, they have area of order [;;~ G. This
is the order of the number of aggregated atoms in the pla-
teau. The random fluctuations of this number are of order
G2, and relative fluctuations of order G~"2. These fluctua-
tions appear in the borders between the flat regions, corre-
sponding to formation of small hills and valleys. Since the
atoms have unit size, they appear in the surface roughness
amplitude as a factor G~/2. This argument is similar to those
of Refs. [23,24] for competitive growth models.

The increase in the size of the plateaus also reduces the
roughness in a length scale of order ;. The reduction factor
is the local roughness for G=1 in a length [; which
is 15~ G,

Combining the effects of smoothing larger regions and
reducing the size of steps, the parameter G leads to an over-
all reduction in surface roughness by G'2G*?=G@*V"2 The
dynamic scaling relation reads

LC{
W= Wf(GI/ZII/Z/L). (15)
The values of « and z for the VLDS class [3,35,38] give an
exponent (a+1)/2~=5/6 which agrees with numerical val-
ues obtained from data collapse methods (similar to Fig. 3).
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The connection between the CD and LM models
[Eq. (14)] leads to a dynamic scaling relation for the CD
model in the form of Eq. (9) with x=(a+1)/z~1/2 and
y=1. These values are in excellent agreement with the results
in Fig. 3 for the CD model.

VI. CONCLUSION

We studied a CD model with irreversible step edge attach-
ment and diffusion-to-deposition ratio R, and a LM model
with maximum number of steps G after adsorption of a new
atom, with the same aggregation rule. Simulations in two-
dimensional substrates were performed. Estimates of scaling
exponents are close to the values of the VLDS class and
comparison of scaled roughness distributions provide a
stronger support to that conclusion. This confirms the recent
analytical connection of collective diffusion models and sto-
chastic equations, and improves previous numerical results.
The VLDS scaling of the LM model contrasts with the evi-
dence of EW scaling in the DT model, which has similar
stochastic rules. The CD model shows a remarkable decrease
of the roughness as R'2, and a scaling of the lateral correla-
tion length as (R7)"%. In the LM model, the correlation length
increases as G'?t"2. The roughness evolution of the CD
model is reproduced if the equivalent parameter G,, ~Ris
used. This connection and the smoothing of the surface as G
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increases explain the numerical values of exponents obtained
in the dynamic scaling relations.

Previous works on CD models suggested R-dependent ex-
ponents and anomalous scaling in 1+1 and 2+1 dimensions
[6-9]. This was certainly a consequence of corrections to the
dominant VLDS scaling. Our work shows that comparison of
roughness distributions is the best procedure to avoid the
effects of those corrections. Such comparison may also be
useful in the study of some growth models of porous films
that are also in the VLDS class [42,43], in contrast to the
usually expected KPZ scaling.

The most common LM models have diffusion steps re-
stricted to nearest neighbors, while the CRSOS models allow
an infinitely large number of steps. For this reason, they pro-
vide results very different from the CD models, which in turn
are more realistic for diffusion dominated growth. However,
the LM models have the advantage of being simpler for
simulation work. Thus, the possibility of using a LM model
with tunable diffusion length to reproduce features of a CD
model is promising, for instance in extensions to reversible
lateral aggregation.
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