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We study smooth, slightly inelastic particles flowing under gravity on a bumpy inclined plane using event-
driven and discrete-element simulations. Shallow layers (ten particle diameters) are used to enable simulation
using the event-driven method within reasonable computational times. Steady flows are obtained in a narrow
range of angles (13°-14.5°); lower angles result in stopping of the flow and higher angles in continuous
acceleration. The flow is relatively dense with the solid volume fraction, »= 0.5, and significant layering of
particles is observed. We derive expressions for the stress, heat flux, and dissipation for the hard and soft
particle models from first principles. The computed mean velocity, temperature, stress, dissipation, and heat
flux profiles of hard particles are compared to soft particle results for different values of stiffness constant (k).
The value of stiffness constant for which results for hard and soft particles are identical is found to be k=2
X 10mg/d, where m is the mass of a particle, g is the acceleration due to gravity, and d is the particle
diameter. We compare the simulation results to constitutive relations obtained from the kinetic theory of
Jenkins and Richman [J. T. Jenkins and M. W. Richman, Arch. Ration. Mech. Anal. 87, 355 (1985)] for
pressure, dissipation, viscosity, and thermal conductivity. We find that all the quantities are very well predicted
by kinetic theory for volume fractions ¥<<0.5. At higher densities, obtained for thicker layers (H=15d and
H=20d), the kinetic theory does not give accurate prediction. Deviations of the kinetic theory predictions from
simulation results are relatively small for dissipation and heat flux and most significant deviations are observed
for shear viscosity and pressure. The results indicate the range of applicability of soft particle simulations and

kinetic theory for dense flows.
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I. INTRODUCTION

We consider a layer of particles flowing on an inclined
surface under the influence of gravity, often referred to as a
chute flow. The system is a configuration of practical rel-
evance that preserves the fundamental complexity inherent to
granular rheology and yet is simple enough for detailed
analysis. The parameters of the system, in addition to particle
properties, are the inclination of the surface (#) and the
height (k) of the flowing layer. Various experimental [1-4]
and numerical [5-9] studies have been done to understand
the flow behavior of granular materials in this geometry.
Most of the numerical studies incorporate friction to mimic
the real frictional grains and focus upon different issues such
as the effect of particle properties [7,10], side wall effects
[9,11,12], effect of layer thickness [6,13], boundary effects
[14-17], flow initiation, and transition to jamming [18].

Individual particles may be modeled as either hard par-
ticles or as soft particles in numerical studies. Hard particle
simulations are event driven (ED) and suffer from simulation
artifact called inelastic collapse [19] in which the interval
between collisions, for a sequence of collisions occurring
between a pair of particles, goes to zero. The result is an
infinite number of collisions in a finite time due to reduction
of the relative normal velocity with each collision. Inelastic
collapse occurs typically in high-density regimes of the flow.
As a consequence, most of the studies of granular flow under
gravity, in which high densities are typical, utilize discrete
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element (DE) simulations where the particles are modeled as
deformable soft particles characterized by stiffness constant,
k.

The materials typically used in experimental studies (such
as glass, steel, etc.) have stiffness constants of the order of
k=10 mg/d [20], where m is mass of the particle, d is the
diameter of the particle, and g is the acceleration due to
gravity. Simulating soft particles with these realistic values
of the stiffness constants results in a computational step that
is so small as to make large scale simulations infeasible. For
computational convenience, the values of k used are typically
4 orders of magnitude smaller which correspond to those for
soft rubber balls. Small values of k may cause an unphysi-
cally large duration of contacts giving rise to so-called “de-
tachment effect” in DE simulations leading to erroneous re-
sults [10,21,22].

Thus it is important to know the soft particle stiffness
beyond which the behavior approaches the infinitely stiff
hard particle behavior in flows of practical importance. This
limit is also required for comparison of granular kinetic theo-
ries [23,24], which assume the particles to be infinitely stiff.
This issue has been considered previously for two-
dimensional (2D) flows in chute flow [25] and homogeneous
shear flow [26]. Mitarai and Nakanishi [25] observed in their
2D simulations of frictional disks that for large values of
stiffness constant (k=2 X 10° mg/d), the collision rate and
the average multiple contact time fractions approach that for
hard particle system only in the low-density limit (¥<<0.2).
For high densities (v~0.8), even for particle stiffness as
large as k~ 10'° mg/d, soft particle behavior does not ap-
proach the hard particle behavior. However, microlevel inter-
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actions for three-dimensional (3D) simulations observed by
Silbert et al. [27] and Reddy and Kumaran [28] reveal that
for layers as thick as H~ 100d under chute flow, the contacts
are predominantly hard-particle-like binary collisions for
sufficiently stiff particles (k=2 X 10° mg/d) even near the
base where the density is fairly high.

On a macroscopic scale, Ketterhagen er al. [26] compared
the stresses under uniform 2D shear flow for hard and soft
particles and found that for sufficiently stiff soft particles
(k=7.85%10*pd?/ %), stresses are identical to those for
hard particles. Reddy and Kumaran [28] found that Bagnold
coefficients for chute flow of soft particles are almost iden-
tical to those obtained from shear flow of hard particles un-
der similar density regimes. Recently, Klongboonjit and
Campbell [29] showed that convection rolls observed in ver-
tically vibrated beds disappear for very high values of stiff-
ness constants for soft particles whereas hard particle simu-
lations, which correspond to infinitely stiff particles, show
the presence of convection rolls [30]. A detailed comparison
of all flow parameters for hard and soft particles is lacking.
Although the expression for calculation of stress tensor from
simulation is well known for both particle models, a deriva-
tion from first principles has not been previously reported.
The granular heat flux has either been obtained from an en-
ergy balance [31,32] or a constitutive relation [33] and a
method of direct calculation from simulations is not avail-
able.

Kinetic theories for frictionless particles have been avail-
able for long [23,24,34] and kinetic theories for slightly fric-
tional particles have also been developed [35-37]. However,
there have been relatively few attempts to test the various
constitutive equations obtained from Kinetic theories of
smooth particles in detail. Uniform [38-40] or boundary-
driven [41-43] shear flow has been widely used for kinetic
theory studies of smooth particles. Most of the studies have
been done for 2D systems and only a few studies [38,39,41]
have considered 3D granular flows.

Monte Carlo simulations of uniform shear flows give
good agreement with kinetic theory predictions for a range of
densities [39,40,44]. Numerical studies of uniform shear
flows in high-density limits [38] have found deviations for
normal stress and dissipation as predicted from Kinetic
theory and have been attributed to the presence of velocity
correlations. Kinetic theory has also been able to predict ve-
locity, density and stresses, [42] and particle flux [45] (2D)
along with quite reasonable predictions of self-diffusion [41]
(3D) for boundary driven flows.

Heated granular media [31,46-49] have been another
popular choice for granular kinetic theory comparisons.
However, properties such as thermal conductivity («) have
been successfully predicted by kinetic theories either for very
small inelasticities (e=0.99) [48] or for very small densities
[49] (v<0.1 for ¢=0.92). Dissipation and viscosity, how-
ever, have been relatively well predicted by the theory
[31,47].

One objective of this work is to compare the results of
hard and soft particle simulations for soft particles of differ-
ent stiffness for a system of practical importance at relatively
high solids fractions. We restrict our study to relatively shal-
low flows (h~10d) to avoid inelastic collapse [50]. We con-
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FIG. 1. 2D schematic of the chute flow configuration. x is the
flow direction and z (out of the plane of paper) is the neutral direc-
tion. @ is the inclination angle and periodic simulation box is 10d
X 10d long and wide in x and z directions, respectively. Shaded
spheres correspond to the particles fixed at the base.

sider an idealized system of smooth particles, which enables
us to directly compare our numerical results to constitutive
equations from kinetic theory for smooth, slightly inelastic
particles in a dense flow. The focus here is on a detailed test
of constitutive relations for pressure, stress, dissipation, heat
flux, and self-diffusivity by comparison of numerical results
to theoretical predictions. We also extend the study of kinetic
theory constitutive equations to thicker layers and investigate
the deviation of kinetic theory predictions for various quan-
tities of interest including normal stress and dissipation rate
at higher densities.

The organization of the paper is as follows. Section II
describes the hard and soft particle models and the simula-
tion methodology for both event-driven and discrete-element
simulations. Expressions for calculating stress tensor, dissi-
pation, and granular heat flux vector are derived from first
principles in Sec. III. Balance equations from continuum de-
scriptions for the steady chute flow case along with kinetic
theory constitutive equations are given in Sec. IV. Results
and discussions are presented in Sec. V followed by conclu-
sions.

II. SIMULATION METHODOLOGY

We simulate frictionless, slightly inelastic (e=0.9) mono-
disperse spheres of diameter d and mass m flowing on a
bumpy inclined surface schematically depicted in Fig. 1. The
simulation box is chosen to be 10d X 10d long and wide in
the x and z directions. The layer height in y direction is
approximately 10d. We use periodic boundary conditions in
the x (flow) and z (neutral) directions so as to simulate an
infinitely long and wide chute without end effects or sidewall
effects. The chute base is made rough by sticking spheres of
the same size as of the flowing particles and the base par-
ticles are arranged in a square lattice touching each other. At
the start of the simulation, the flowing particles are arranged
with their centers on a cubic lattice with side 1.1d so that no
two particles are in contact. Particles are given random initial
velocities. The chute angle, 6, is kept sufficiently high (6
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FIG. 2. Schematic of hard particle collision. ¢;, ¢; are velocities
just before the collision and ¢/, ¢] are velocities just after the col-

lision of particles i and j.

=30°) for an initial period so that particles accelerate and
gain energy. The inclination is then reduced to a smaller
value and the flow is allowed to achieve steady state, if one
exists. Individual particles are modeled either as nondeform-
able hard particles or as deformable soft particles as de-
scribed below.

A. Hard particle model

Particles in this model are considered infinitely stiff and
hence the collision time is zero. As a result, only one colli-
sion or “event” is allowed at a given instant. This also im-
plies that only binary collisions are permitted and multipar-
ticle contacts cannot be accounted for.

The particles move freely under the influence of gravity
until a collision occurs. From the positions and velocities of
particles, the pair of particles colliding next is identified and
the duration (A7) after which the collision to occur is calcu-
lated as described below. All the particles are then moved for
time At using the equations of motion. Since the particles are
frictionless, the tangential component of the velocities of the
colliding particles remains unchanged after the collision.
Considering momentum conservation and the definition of
normal restitution coefficient, the post-collision velocities of
colliding particles i and j are easily calculated and are given
by the collision rule in Ref. [23] for the case when both the
particles are moving. The post-collision velocity ¢; of a mov-
ing particle i colliding with a static boundary particle j is
given by

ci,=ci_(1+e)(nij'ci)nij, (1)

where n;;=(x;—x;)/|x;—x;| and x; and ¢; are position and
velocity of particle i, respectively (see Fig. 2). The velocities
of the colliding particles are then updated. The above steps
of calculating the time interval (Az) for the next collision,
moving all particles for Az and updating the velocities of the
colliding pair, are repeated.

The procedure used to calculate the duration for the next
collision is as follows. The time interval for collision (At,-j)
for every probable pair of particles is calculated. The time
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interval for the next collision (Af) corresponds to the pair
with the minimum positive At;. The condition for collision
between a pair of particles i,j is

be(r+ Ar) —x(t+ Ar)| =d. )

For the case when both particles are moving, Az is calculated
by solving the quadratic equation

alAf> + bAt+ ¢ =0, (3)

where coefficients are defined as a=c;;-¢;;, b=2¢;;-x;;, and
c=x;;-x;—d*, with x;;=x,—x;. For a moving particle collid-
ing with a static bottom particle, we obtain a quartic equation

alAr* + bAP + cAP> + dAt+ e =0, (4)

where a=(g-g)/4, b=g-c;, c=c;-¢;+g-x;;, d=2¢;-x;;, and e
:xij~xl-j—d2. x; and ¢; are the position and velocity of moving
particle i colliding with static particle j at x;. To obtain At,
we solve Eq. (4) using Ferarri’s method for general quartic
equations [51,52].

Several methods have been proposed to avoid inelastic
collapse [53-55], a simulation artifact that has restricted the
applicability of hard particle simulations to relatively dilute
flows. We use the model proposed by Luding and McNamara
[19] in which a collision is assumed to be elastic (e=1) if a
pair suffers a second collision within a time span that is less
than a specified interval, 7.. We refer to this model as the TC
model because of the finite time of collision incorporated in
it. Incorporating the TC model switches off the dissipation
whenever such a situation arises and hence At does not re-
duce beyond a minimum critical value and the simulation
proceeds in very small steps until one of the particles in the
trapped particle pair collides with another particle. However,
for the TC model to remain valid, the number of forced
zero-dissipation collisions must be a very small fraction of
total number of collisions to ensure that the net energy in the
system does not increase significantly.

B. Soft particle model

In the soft particle model, particles interact with each
other for a finite time and deform during the interaction. The
simulation advances by time steps small enough to capture
each collision in several fine steps. The contact forces be-
tween interacting particles are usually assumed to depend on
the deformation and rate of deformation. We employ a linear
spring and dash-pot-type force scheme in our simulations.
Since the particles are smooth, tangential forces are zero.
Thus our force scheme is equivalent to the L3 model used in
Ref. [7] with ¢=0.9 and pw=k,=1v,=0.

The normal force, F;, acting on particle i due to particle j
is a summation of two parts: an elastic spring force that tends
to push the particles apart and a viscous force that accounts
for the dissipation during the interaction and is given by

Fij= kanij_ VYMerfCnijo (5)

where k is the stiffness and vy is the damping constant. In the
above equation, a=(d—-x;) is the deformation with x;;=|x;
-x,|, ¢,;=(n;-c;n; is the relative normal velocity, and
mg=m;m;/ (m;+m;) is the effective mass of the spheres with
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masses m; and m;. For the case when both particles i and j
are moving, m.g=m/2 and for the interaction with base par-
ticle, assumed to be of infinite mass, mypp=m. The force on
particle j due to particle i is F ;;=—F;. Since the mass of base
particles is infinite, the base particles do not move despite
finite forces on them. The motion of any particle i under the
influence of gravity (g) and the force exerted by all other j
particles is given by

dx;
t_ . 6
5 G (6)
dc:
dt ]

The above differential equations are integrated using second-
order Runge-Kutta method with step size correction [56].
The choice of basic step size, df, depends upon the stiff-
ness, k. We use a base integration time step dt=t.,/70,
where 7., is the contact duration of a binary collision given

by [7]
-1/2
Leot = W(%C - ?) (8)

for identical particles with mass m, for a binary collision of
soft particles with the linear spring dash-pot force scheme.
The normal restitution coefficient for this case is given by

— Yt..
e:exp(%). 9)

Rearrangement of Eq. (9) using Eq. (8) gives

[ Bk(nep
YN [+ (ne)?]’ (10)

Thus for a specified value of the coefficient of restitution, e,
Eq. (10) is used to calculate 7y for the different values of
stiffness.

III. CALCULATION OF STRESS AND HEAT FLUX

The stress and the heat flux, i.e., the flux of fluctuation
kinetic energy, have contributions from two distinct mecha-
nisms: streaming (due to velocity fluctuations) and contact
between particles. The expressions for the streaming compo-
nent (which are the same for hard and soft particles) are
widely reported and are given in the next section for the sake
of completeness. This is followed by expressions for contact
stress, and dissipation and heat flux for hard and soft par-
ticles, respectively. Although Campbell and Gong [57] gave
expressions for the stress tensor for hard particle model, we
present here derivation for the stress tensor due to collisions
for hard particles along with the derivation of heat flux. We
also derive expressions for the stress tensor, dissipation, and
heat flux due to contacts for soft particles from first prin-
ciples in this section. Expressions for heat flux and dissipa-
tion have not been previously reported.

PHYSICAL REVIEW E 81, 041307 (2010)

A. Streaming components

The streaming stress is defined as the rate of transfer of
momentum per unit area due to velocity fluctuations and is
given by [58]

N

1
o= ‘—/Z mC,C; = p(C,C)), (11)
i=1

where C;=c;—v is the fluctuation velocity of particle i, c; is
the instantaneous velocity of the particle i, v={(c;) is the local
number average velocity, and the average is over the N par-
ticles in a volume V. In the above equation p=mN/V, and the
number average is defined as

N
1
«M=N§cx (12)

On simplification, we obtain the streaming stress to be
o’ =p((c,c;) —vv). (13)

The streaming heat flux (g*) is defined as the transport of
fluctuation kinetic energy (%mC,-C,-) by velocity fluctuations
and is given by

N

1 1
q = ‘_/E <Emci : Ci>Ci' (14)

i=1

Using the definition of fluctuation velocity and simplifying,
the streaming heat flux is found to be

1 1 1
q'= EP<C,-ZC,'> -0'v- (Etr(OJ) + Epv2>v- (15)

B. Contact components

Consider a cuboid of volume V(L, X L, X L,) containing N
contacting pair of particles. Since the mode of contact de-
pends on the choice of the particle model, we derive expres-
sions for hard and soft particle models separately, starting
with the hard particle case.

1. Hard particle model

We calculate stress for hard particle system as the net rate
of transfer of momentum due to collisions across a surface
with a unit normal n as shown in Fig. 3. A collision results in
a net transfer of momentum across the surface only if the
centers of the colliding particles lie on either side of the
plane. The momentum gained by particle i due to the colli-
sion is

AP;=m(c; ~¢;)=-mlc;-c;) (16)

and corresponds to the momentum transfer by the collision.
The probability of the colliding particles’ centers lying on
either side of the surface is

= |xij‘”|
YL

(17)

The stress vector (T) defined as the rate of transfer of mo-
mentum per unit area across the surface is then
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L L.

FIG. 3. Pair of contacting particles in volume V. The unit nor-
mal to the shaded surface is denoted as n and x;; is the vector
joining the centers of particles.

1
D APp, (18)

T=
L.Lot'y,

where or is the time duration in which N, collisions occur.
By definition, the stress tensor (o) is related to the stress
vector as T'=o-n. Thus the collision stress tensor is

1 !
@% mle! —¢;)x;;. (19)

o =
We have removed the modulus sign since interchanging par-
ticles i and j do not make any difference to the expression
because of momentum conservation in a collision [Eq. (16)].
Further, in the absence of friction, there are no couple forces
and the stress tensor is symmetric.

Consider next the heat flux across the surface, defined as
the net rate of transfer of fluctuation kinetic energy due to
collisions across the surface with unit normal r. A collision
between two inelastic particles results in loss of part of the
kinetic energy of one of the particles. A part of this loss is
dissipated and the rest is transferred to other particle, so that

AK =AK'+¢, (20)

where ¢ is the energy dissipated in the collision and AK™ and
AK* are the loss and gain in fluctuation kinetic energy of the
respective particles due to the collision. Assume that particle
i gains energy after the collision so that

1
AK*:Em(|c{—v|2—|c,-—v|2). (21)

Taking into account the direction of the transfer, the energy
transferred across the surface because of the collision is

x P n
AE=AK ——. (22)
|xij -n|
Considering the probability of collisions which span the sur-
face [Eq. (17)], the energy transfer per unit area per unit time
is

> AEp;;. (23)

C _
D=L Lo N,

On simplification and using ¢, =¢°-n, we get the expression
for the heat flux vector due to collisions as
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1
q = _E AK+xU. (24)

Ve

The dissipation rate (I"), defined as energy loss per unit
volume per unit time due to inelastic collisions, is obtained
by considering sum of the change of kinetic energy of each
colliding pair over time interval ot as

1
I's— , 25
V5z% € 23)

which upon simplification yields

r= iz (c2+ c?) —(c]*+ C‘]{z). (26)

C2vary,

2. Soft particle model

Consider next the contact stress for the soft particle
model. The stress on the surface with normal vector n is due
to forces exerted by particle pairs in contact with each other
with their centers lying on either side of the surface. The
force on the surface is

szZEFij{Oij’ (27)
NC
where p;; [Eq. (17)] is the probability of the contacting pair
being on either side of the surface and the summation is over
all N, contacts in volume V. The stress acting on the surface
with unit normal n is then

F Fi' i"n
0.6',n=ﬂ=2_i;_ (28)
LL, % LLL,

Hence, contact stress tensor o is
1
\% N,

As found above for hard particles, the stress tensor is sym-
metric. Using the same construction as above, we calculate
the contact heat flux for soft particles as the net rate of work
done by contact forces due to velocity fluctuations. The net
rate of work done is

Wij=Fij' (c,n—v), (30)

where ¢,,=(c;+c;)/2 is the velocity of the contact point. The
rate of energy transfer per unit area across the surface is then

1
c=—2 W0, 31
4, LXLZ% i (31)
On simplifying as above, we obtain the contact heat flux
vector as

1 -
qcz_zFij.cmxij—v~0'L. (32)
VN(

Note that final expressions for stress and heat flux remain
unchanged when i and j are interchanged in the expression
and hence removing the modulus sign for p;; in Eq. (17) does
not make any difference.
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TABLE 1. Normalization of various quantities of interest.

Dimensionless Dimensionless
quantity Scaling quantity Scaling
x o
3 d G mgld®
Vv P
v & P mgld®
T
n nd? T m
t E
7 Vdiz E mad
a Y
a d ¥y Jord
v r
o V"g—zl T mg>2Id>?
k
T ed k mgld
9
F mg>2Id>?
F mg q

The dissipation rate for the soft particle case is obtained
as the rate of work done per unit volume by the damping
force due to the relative motion of particles and is given by

F * ci'
=3~ (33)
N, VY
where F;=ym,c,;;. On simplification, we get
2
r=X TR, (34)
N,

c

C. Dimensionless expressions

We nondimensionalize all the quantities of interest and
represent dimensionless quantities with an overbar. The defi-
nitions of all dimensionless quantities are given in Table I.
Using these definitions, dimensionless expressions for stress,
heat flux, and dissipation rate are given below.

The streaming component of stress tensor is given as

o= ﬁ(<5i5i> - ﬁ) s

where 7=N/V. The collisional component of the stress ten-
sor is

1 .
fz (¢; —=¢)x;;, hard particle
Vét N,
o+ -
-> Fx;;, soft particle,
VN,

where F,«jzlgc_xﬁij— Ymep€,ii/m and a@=(1-Xx;). The total
stress is then given by
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o=0"+0".
Taking a hydrodynamic approach, the total stress may be

written as o¢=—PI-7, where P= %tr((_r) is the pressure and 7
is the deviatoric stress. The total heat flux is

§=7+7"

where the streaming component of the heat flux vector is
§=~(cE) 5 T | (@) + i
= . L) —_ . —_— —_ + f—
q =5mcic; v- |5t S v
and the contact component is

1 L
?E AK*Ax;j, hard particle
Vot N,

I+ - - - —
iz Fij-c,x;;—v-0° soft particle.
VN

c

The expression for dissipation rate is

1 4 -/
— 2+ &)= (E>+¢). hard particle
_ |2Vt N,
= 5
My YCoii )
> L_“, soft particle.
N, mV

IV. THEORY

We apply the granular kinetic theory for smooth, slightly
inelastic spheres of Jenkins and Richman [34] to the case of
steady, fully developed chute flow. We compare predictions
of the theory to results of numerical simulations in two ways.
(1) We compare the predictions of the integrated momentum
and energy balance equations without the use of constitutive
equations to numerical results for the shear stress, pressure,
and heat flux. This is a consistency check of the numerical
simulations and is used to show that the simulations satisfy
the continuum momentum and energy balance equations. (2)
We compare the predictions of theory for viscosity, thermal
conductivity, and rate of dissipation due to inelastic colli-
sions to numerical simulation results.

The governing equations simplified for the case under the
study are

dv,
— =0, 35
n (35)
d
0=——Tﬂ+pg sin 6, (36)
dy
dpP
0=———pgcos 0, (37)
dy
d d
0=-“L_p S (38)
dy dy

The continuity equation [Eq. (35)] is identically satisfied.

Integrating the x and y momentum balance equations [Eq.
(36) and (37)], we obtain
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Txy=—j pg sin 6dy, (39)
y

P= f pg cos dy, (40)
y

assuming 7,,=P=0 at y=c0. Similarly, integration of the en-
ergy balance equation [Eq. (38)], assuming ¢,=0 at y=oe,

gives
* dv,
qyz—f [— Txy——F]dy. (41)
y dy

We list next the constitutive relations obtained by Jenkins
and Richman [34]. The equation of state for the pressure is
given by

P=p(1+4G)T, (42)
where G=v(1-v/2)/(1-v)? and v=nwd’/6 is the solids

volume fraction. The stress constitutive equation for the
present case simplifies to

Toy=— M (43)

and the viscosity is given by
w= (811572 pdGT"?, (44)
with J=1+(7/12)[1+5/(8G)]*. The heat flux is

Gy=—K—, (45)

with the thermal conductivity given by
k= (4M/7"?)pdGT"?, (46)

where M=1+(97/32)[1+5/(12G)]?. Finally, the rate of dis-
sipation due to inelastic collisions is given by

24 pG

'=—5—(1-¢)7". 47
2 4 (1-e) (47)
Self-diffusivity, D, for inelastic spheres using concepts

from dense-gas kinetic theory analysis has been calculated
by various researchers [41,59-62] and the expression can be
captured in the general form

d(’ﬂ'T 12
D=—""—

aG (48)

with a being a constant. References [41,59,60] use a=8(1
+e), where as Ref. [62] use a=16. Using the expression
given in Ref. [61] for the present case of equal-size and
equal-mass particles, we obtain a=46.

V. RESULTS AND DISCUSSION

All the results presented here are in terms of dimension-
less quantities and we drop the overbar notation for ease of
representation.
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FIG. 4. (Color online) Average kinetic energy per particle with
time at different inclinations for (a) hard and (b) soft particles (k
=2X%10%). Steady flow is possible only for #e[13°-14.5°]. For
0=12° and 12.5° (bottom two lines), soft particle assembly comes
to rest but the kinetic energy in case of hard particles does not go to
zero due to advent of inelastic collapse despite using TC model.

A. Approach to steady state

We consider the approach of the system to steady state in
terms of the variation of the average kinetic energy per par-
ticle with time. Figure 4 shows the typical behavior of the
mean kinetic energy per particle for different inclination
angles for hard particles and for soft particles with suffi-
ciently high stiffness constant k=2X 10° mg/d. For small
inclinations (6= 12.5°), the granular layer comes to a rest
and for high inclinations (6=15°), the particles accelerate. In
the range of #=13°-14.5°, the work done by gravity is bal-
anced by dissipation and a steady flow is achieved. Note that
the fluctuation of kinetic energy about the mean value in-
creases with decrease in 6, i.e., fluctuations grow as we ap-
proach jamming. The static limit does not exist for hard par-
ticle model and the assembly of hard particles does not come
to rest as in case of the soft particle model. However, as
shown in Fig. 4(a), the kinetic energy of hard particles de-
creases significantly (to almost 1/5th of steady-state value)
for small inclinations (#=12° and 12.5°). The average time
between collisions keeps decreasing with time and a very
large number of collisions occurs in a very small time as the
hard particle system approaches the static limit.

Soft particles with stiffness k=2 X 10* did not achieve
steady state and accelerated in an unbounded manner at 6
=14.5°. Although a steady-state flow is achieved for k=2
X 10°, the steady-state kinetic energy is higher than the hard
particle case. Particles with k=2 X 10° have a kinetic energy
identical to the hard particle system at steady state. The ef-
fect of ¢, variation was found to be small provided ¢, values
used were sufficiently small as compared to average time
interval between collisions, which is of the order of 1072 for
the hard particle simulation. For #,=1072 and 103, hard par-
ticles accelerate in an unbounded fashion and a significant
portion of total number of collisions (about 30% for ¢,
=1072 and about 5% for 1,=107%) is forced to be nondissipa-
tive by TC model for these values of 7,.. For smaller values of
t., a steady state is obtained with a very small fraction (about
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FIG. 5. (Color online) Average number of contacts per unit vol-
ume at any instant for soft particles of different stiftness. The fitted
line is straight line with slope=—1/2.

2% for t.=10~* and about 0.5% for t.=107°) of total colli-
sions being nondissipative. We use #,=107> in our hard par-
ticle simulations. This value of 7. corresponds to binary con-
tact duration (z,,,) for soft particles with k~ 10°.

B. Number of contacts

To gain a microscopic picture of grain interactions in case
of soft particles, we take snapshots of the flow at intervals of
t.,; and plot average number of contacts (N,) between par-
ticles per unit volume for different values of k. Figure 5
shows that average number of contacts decreases linearly
with k on a log-log plot. The straight line in Fig. 5 has a
slope of —1/2 giving N k™2, This can be understood as
follows. For sufficiently stiff particles, all profiles, including
dissipation rate profile, should be independent of k. This is in
fact the case, as shown later in Fig. 9. Using Eq. (47), the
dissipation rate (I') can be rewritten as F=m<ciij>Ncy/ 2V.
For I and ¢, to be independent of k, we must have N,
«1/7. Since yxk"? [Eq. (10)], we get N =k~ in agree-
ment with the numerical results.

C. Comparison of hard and soft particle results

We compare the results for the hard particle model to the
soft particle model for different values of particle stiffness, k,
in this section. The simulation cell is divided in strips of
width 0.1d along y direction. Results are obtained by mea-
suring the relevant quantities in each strip at steady state for
100 dimensionless time units and are averaged over five such
consecutive sets. We plot every third data point for clarity.
Since the range of steady flow is narrow and fluctuations are
significant for lower values of steady-state inclination, we
compare all our results at =14.5° for hard and soft particles.
Figures 6—11 show the simulation results of soft particles for
three different values of k and for hard particles.

Figure 6 shows the mean velocity profiles for the flow.
The velocity is maximum near the free surface with very
small slip near the base. The error bars in all cases are small
except near the free surface where the number density is very
low. The velocity profile for k=2 X 10° (red squares) deviates
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FIG. 6. (Color online) Velocity profiles for hard and soft particle
(with different stiffness constants) simulations. Error bars are
shown only for hard particle velocity profile for the sake of clarity.
Maximum velocity for k=2 X 10> (red squares) is =~10% higher
than the maximum velocity for hard particles (black circles).

significantly from the hard particle (black circles) case and
the maximum velocity is 10% higher than the hard particle
case. However, the profiles for the soft particle case for k
=2 X 10° (green diamonds and blue triangles) are identical
to those for the hard particle case.

Figure 7 shows the granular temperature profile. The tem-
perature is highest at the base and decreases to a nearly con-
stant low value near the free surface. The results are reason-
able considering that the viscous dissipation (7,,dv,/dy) is
highest at the base and approaches zero near the free surface.
Again, the profile for soft particles with k=2X10° (red
squares) deviates significantly from the hard particle (black
circle) case but the soft particle profiles are identical to the
hard particle profiles for k=2 X 10°. The temperature for k
=2 X 10° is higher than the hard particle case. Figure 8(a)
gives the number density profile, which shows sharp peaks,
indicating layering of particles. The solids volume profile
[Fig. 8(b)] does not show peaks since a larger averaging
volume (bin height 1d) is taken. The volume fraction of sol-
ids gradually increases with depth from the free surface and
reaches a maximum value of v=~0.5 instead of being con-

G0 Hard
0 k=2x10° -
O k=2x10"
A k=2x10'

FIG. 7. (Color online) Granular temperature profile for hard and
soft particle models. Discrepancy for soft particles with k=2 X 10
(squares) is evident.
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(a)
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O k=2x10°
 k=2x10°
A k=2x10'

FIG. 8. (Color online) (a) Number density and (b) solids fraction
profile for hard and soft particle models. Strip size for number
density profile is 0.1d whereas solids fraction profiles are obtained
using strip size=1d.

stant through out the layer. This is because a necessary con-
dition for constant density across the layer is that the heat
flux be negligible, which is the case for frictional particles,
but not for smooth particles as can be seen in Fig. 11. There
is a slight decrease near the base due to the high tempera-
tures. The soft particle profiles with the lowest stiffness, i.e.,
k=2X10° (red squares) deviate only slightly near the free
surface from the hard particle case.

Figure 9 shows the profile for the dissipation due to in-
elastic collisions. The dissipation is highest near the base and
decreases monotonically with height. This is because dissi-
pation depends on the number density and temperature and
both decrease monotonically with height in the layer. Figure
10 shows the pressure (P) and shear stress (7,,) profiles.
Both vanish near the free surface and increase nearly linearly
with depth. The latter is a consequence of a nearly constant
bulk density in the flowing layer. Finally, Fig. 11 shows the
heat flux (g,) profiles in which g, is maximum at the base
and goes to zero at the free surface. This is because the
temperature gradient is maximum near the base and nearly
zero at the free surface. In all the profiles shown in Figs.

0O Hard
0 k=2x10° -
o k=2x10°
A k=ax10'

FIG. 9. (Color online) Dissipation profile for hard and soft par-
ticle models.
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FIG. 10. (Color online) (a) Normal stress and (b) shear stress
profile from hard and soft particle models. Solid line represents the
momentum balance estimate of the stresses from Egs. (39) and (40).

9-11, the profiles for the soft particles and hard particles are
nearly identical.

Results obtained from soft particle simulations for k=2
X 10° are significantly different from the hard particle re-
sults. However, the hard and soft particle results match for
k=2 X 10° for a layer of about ten particles deep. We note
that the value of stiffness reported in previous studies beyond
which the effect of stiffness is small is k=2 X 103 for fric-
tional particles, that too for much deeper layers (40—80 par-
ticle diameters).

D. Comparison to kinetic theory

We compare the predictions of kinetic theory to numerical
results from soft particle simulations for k=2 X 10° and 6
=14.5°. The shear stress and pressure obtained from the con-
tinuum momentum balance equations [Egs. (39) and (40)],
using the number density profile obtained from the simula-
tions, are compared to simulation results in Fig. 10. There is
very good agreement between the two. Figure 11 shows the

167

GO Hard
0 k=2x10" -
& k=2x10°
A k=2x10"

— Energy Balance

FIG. 11. (Color online) Heat flux in y direction from hard and
soft particle simulations. Solid line represents the energy balance
estimate from Eq. (41).
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O Simulation
12 — KineticTheory -

FIG. 12. Pressure profile calculated from simulation (circles)
and kinetic theory (line).

comparison between the heat flux profiles obtained from the
continuum model [Eq. (41)] to the simulation results. The
shear stress, velocity gradient, and dissipation rate from the
simulations are used in computing the heat flux from Eq.
(41). Again, there is good agreement between the two. The
above results indicate the validity of the continuum equa-
tions and consistency of the computations since momentum
and energy are conserved locally.

Using the values of 7 and v from simulation results, we
calculate the pressure (P), the dissipation rate (I'), and the
transport coefficients (u and «) from constitutive relations
using Eqgs. (42)—(47) of Jenkins and Richman [34]. An aver-
aging volume with a strip size of 1d for T and v is used in
order to obtain smooth profiles. Figures 12 and 13 compare
the pressure and dissipation rate from simulation results to
kinetic theory predictions. There is very good agreement be-
tween the two except slight discrepancy in the region where
density v~ 0.5. Figure 14 shows a comparison of viscosity
from kinetic theory to simulation results. The viscosity is
calculated as u=-7,,/(dv,/dy) using 7., and dv,/dy from
simulations and using the kinetic theory expression [Eq.
(44)] with T and v from simulations. Kinetic theory gives
good predictions for viscosity over most of the layer.

We compare the heat flux from simulations to that from
kinetic theory in Fig. 15. The kinetic theory prediction for

16

O Simulation
12 — Kinetic Theory |

FIG. 13. Dissipation rate calculated from simulation (circles)
and kinetic theory (line).
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16

O Simulation
— Kinetic Theory

FIG. 14. Comparison of viscosity from simulation (circles) and
kinetic theory (line).

heat flux is calculated using Egs. (45) and (46) with T and v
values taken from simulation results. Figure 15 shows that
heat flux predicted from kinetic theory is close to simulation
results. A comparison of « from kinetic theory and simula-
tions has been shown as an inset in Fig. 15. The deviation in
K is due to the error in calculation of temperature gradient
which is much smaller than mean velocity gradient.

Figure 16 shows the variation of the mean-square dis-
placement of the particles in y direction with time at different
heights from the base. Diffusivity is calculated as the half of
the slope of the linear part of the graph. We compare self-
diffusion coefficient in y direction (D,,) in Fig. 17 obtained
thus from simulation to the kinetic theory prediction using
Eq. (48) with appropriate values of a. The theory of Jenkins
and Mancini [61] gives good predictions except near the base
and at the free surface where as results from Refs. [59,62]
predict lower values of the diffusivity. The diffusivity is
smaller near the base as compared to the predictions by ki-
netic theory because the presence of the boundary restricts
the diffusion of the particles normal to the surface [63,64].
Deviations near the free surface result from the low number
densities and ballistic trajectories.

O Simulation
— Kinetic Theory

FIG. 15. Comparison of heat flux profiles from simulation
(circle) and kinetic theory (line). Inset figure shows the variation of
K with y.
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<O >
(=)
T

FIG. 16. (Color online) Mean squared displacement of particles
in y direction as a function of time (r) for different values of y.
Straight lines are the linear fit to the data and the legends represent
v, the height from the base. Diffusivity is calculated as half of the
slope of the fitted line.

E. Flow of thick layers

We next consider the flow of relatively thick layers. Since
hard particle simulations lead to inelastic collapse despite
use of TC model, we use only the soft particle model to
simulate H=15d and H=20d thick flowing layers. The stiff-
ness in the soft particle model is taken to be k=2 X 10° with
e=0.9. We report the results at steady state for §=14.5° for
both cases. Figures 18 and 19 show the velocity, solids frac-
tion, temperature, and stress profiles for H=15D and H
=20D thick layers, respectively. A significant slip velocity
and a high granular temperature is observed near the base.
The temperature decreases with height and varies little in
upper part. A dip near the base is observed in solids fraction
profile for both cases. The volume fraction of solids, v, is
greater than 0.5 throughout the layer, except near the base
and free surface. All these features are similar to 10d shallow
layer. The density profile for H=15d thick layer shows a
small bump near y=10 (Fig. 18 top right), which becomes
more prominent for H=20d (Fig. 19 top right).

Jenkins [65], in a study of dense flows, used kinetic
theory expressions given in Ref. [34] for v<<0.49. For 0.49

15

O Simulation
— Jenkins & Mancini [59]
Hsiau & Hunt [57]

FIG. 17. Comparison of diffusivity measured from simulation
(circles) and from kinetic theory [Eq. (48)]. Hsiau and Hunt [59]
correspond to a=8(1 +e) (dotted line) and Jenkins and Mancini [61]
correspond to a=46 (solid line) in Eq. (48).
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FIG. 18. Velocity, density, temperature, and stress profiles for
H~15d thick layer. Note that »>0.5 for most of the part of the
layer. Dotted lines are guides to eyes and thick lines represent mo-
mentum balance predictions for stresses.

<v<0.6, he used G=0.85v/(0.64—v) as given in Ref. [66]
and the constitutive expressions are given by Eqgs. (42)-(47)
in the limit that terms proportional to 1/G can be neglected
[67]. Garzo and Dufty [68] improved the kinetic theory be-
yond the assumption of nearly elastic particles extending it to
higher values of inelasticities and densities. We omit the ex-
pressions given by them and direct the reader to [38,68].
Various quantities of interest are calculated from these ki-
netic theories, namely, that in Ref. [34] (even for v>0.49),
that in Ref. [65], and Ref. [68] for »>0.49 (coupled with
expressions in Ref. [34] for »<<0.49).

We plot pressure (P), viscosity (7), dissipation (I'), and
heat flux ¢, in Figs. 20 and 21. Diffusivity D, in Fig. 22 is
calculated from simulations and from kinetic theories of Jen-
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FIG. 19. Velocity, density, temperature, and stress profiles for
H~20d thick layer. Note that »>0.5 for most of the parts of the
layer. Dotted lines are guides to eyes and thick lines represent mo-
mentum balance predictions for stresses.
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FIG. 20. (Color online) Kinetic theory predictions for pressure,
viscosity, dissipation, and heat flux for H~15d thick layer. Sym-
bols are simulation results and lines are kinetic theory predictions.

kins and Mancini [61] and Hsiau and Hunt [59] for both
layers. Deviations from kinetic theory prediction are evident
and become prominent for higher densities, i.e., for H
=20D (Fig. 21). Contrary to the finding of [38] that kinetic
theory overestimates dissipation at high densities, we find
that deviations from kinetic theory are small for dissipation
even for densities as high as »=0.58 (Fig. 21, bottom left)
and deviations for heat flux (Fig. 21, bottom right) are also
not much. The most significant deviations from kinetic
theory predictions are observed for pressure (Fig. 21, top
left) and shear viscosity (Fig. 21, top right). Large deviations
in pressure and viscosity in the middle region of the layer are
obtained due to the sharp decrease in the density near y
=10 (Fig. 19, top right).

Mitarai and Nakanishi [38] reported that both normal
stress and dissipation are consistently overestimated by ki-
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FIG. 21. (Color online) Kinetic theory predictions for pressure,
viscosity, dissipation, and heat flux for H~20d thick layer. Sym-
bols are simulation results and lines are kinetic theory predictions.
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FIG. 22. Diffusivity D, for (a) H=15d and (b) H=20d thick
layers. Symbols are simulation results and lines are predictions
from kinetic theory.

netic theory for higher densities. However, we find that the
deviation from kinetic theory is not monotonic and kinetic
theory overestimates the pressure and dissipation only in a
small portion of the lower part of the layer. Though the pre-
dictions of the shear stress (and hence viscosity) from kinetic
theory are very good up to v=0.58 for particles with e
=0.92 in case of homogeneous shear (Ref. [38]), present
study of inhomogeneous shear flow of particles with e=0.9,
however, shows significant difference for viscosity calcu-
lated from simulations and that predicted by kinetic theory.
Note that even in Ref. [38], substantial deviation is observed
for ¢=0.7 as well as ¢=0.98. The authors suggest that the
excellent match for ¢=0.92 is accidental and conclude that
shear stress has a complicated dependence on e. The com-
puted diffusivity, D,,, is shown in Fig. 22 for the two cases.
The kinetic theory underpredicts the diffusivity in both cases.

VI. CONCLUSION

We studied the flow of smooth, slightly inelastic (e
=0.9) spheres down a bumpy inclined surface using both
hard and soft particle models. The TC model [19] was used
to prevent inelastic collapse for the hard particle simulation
of shallow layers. Steady-state flow was obtained for a nar-
row range of angles (13°-14.5°) as compared to frictional
particles (23°-28.5°) [7]. The profiles for the mean velocity,
density, granular temperature, components of stress tensor,
dissipation, and granular heat flux vector were obtained at
steady state. Macroscopic profiles of all the quantities of in-
terest for the hard particles and soft particles were found to

be identical for the stiffness, k=2 X 10°. This value is larger

than the value typically used (k=2X10°) in soft particle
simulations of frictional particles. Apart from the macro-
scopically identical picture of hard and soft particle simula-
tions for sufficiently high stiffness, we found that at micro-
scopic level too, the interaction of soft particles with high
stiffness tends to approach hard-particle-type binary colli-
sions and the number of contacts at an instant vary as N,
~F12.
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We derived expressions for calculation of the dissipation
and contact granular heat flux associated with the granular
temperature for both soft and hard particle models using a
theoretical approach. Since the nature of particle-particle in-
teraction is quite different for the hard and soft particles, the
expressions for the contact heat flux are quite different. The
excellent agreement between the heat flux profiles of hard
and soft particles and that from energy balance validates the
proposed expressions. The expressions for the contact stress
tensor are also derived using the approach and are identical
to those reported earlier.

The simulation results for P, Tays and q, are shown to
match continuum momentum and energy balance predictions
indicating the consistency of the results and establishing the
validity of the continuum approach for even shallow granular

flows. Using simulation results for 7 and v, the dissipation

due to inelastic collisions (I'), pressure (P), viscosity (&),
and heat flux (g,) are computed using the constitutive equa-
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tions of the [34] theory for smooth inelastic spheres and
compared to simulation results. The agreement between

theory and simulations for I, P, jz, and q, 1s found to be very
good for the 10d-thick layer. This is sufprising considering
the extent of layering in the system. However, kinetic theory
predictions start deviating from simulation results at higher
densities for thick layers with the most significant deviation
being observed for pressure and shear viscosity. Dissipation,
contrary to the results reported earlier in literature, is quite
well predicted.

The system studied has the important features of typical
terrestrial flows—shallow flowing depths, high volume frac-
tions, and layering—although the particles are frictionless.
The results provide guidance for the choice of an important
parameter for soft particle simulations—the stiffness. They
also indicate the range of validity of the continuum balance
equations and constitutive equations from kinetic theory.
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